
Software Tools for Technology Transfer manuscript No.
(will be inserted by the editor)

From Task Descriptions via Colored Petri Nets Towards
an Implementation of a New Electronic Patient Record
Workflow System

Jens Bæk Jørgensen1, Kristian Bisgaard Lassen1, Wil M. P. van der Aalst2

1 Department of Computer Science, University of Aarhus, IT-parken, Aabogade 34, DK-8200 Aarhus N, Denmark. e-mail:
{jbj,k.b.lassen}@daimi.au.dk

2 Department of Mathematics & Computer Science, Eindhoven University of Technology P.O. Box 513, NL-5600 MB, Eind-
hoven, The Netherlands. e-mail: w.m.p.v.d.aalst@tue.nl

The date of receipt and acceptance will be inserted by the editor

Abstract. We consider a given specification of func-
tional requirements for a new electronic patient record
system for Fyn County, Denmark. The requirements are
expressed as task descriptions, which are informal de-
scriptions of work processes to be supported. We de-
scribe how these task descriptions are used as a basis to
construct two executable models in the formal model-
ing language Colored Petri Nets (CPNs). The first CPN
model is used as an execution engine for a graphical an-
imation, which constitutes a so-called Executable Use
Case (EUC). The EUC is a prototype-like representa-
tion of the task descriptions that can help to validate
and elicit requirements. The second CPN model is a Col-
ored Workflow Net (CWN). The CWN is derived from
the EUC. Together, the EUC and the CWN are used to
close the gap between the given requirements specifica-
tion and the realization of these requirements with the
help of an IT system. We demonstrate how the CWN
can be translated into the YAWL workflow language,
thus resulting in an operational IT system.

Keywords: Workflow Management, Executable Use Cases,

Colored Petri Nets, YAWL.

1 Introduction

In this paper, we consider how to come from a spec-
ification of user requirements to a realization of these
requirements with the help of an IT system.

Our starting point is a requirements specification for
a new Electronic Patient Record (EPR) system for Fyn
County [11] that existed in 2006 when this paper was
written. Fyn County was one of the thirteen counties
in Denmark and was responsible for all hospitals and
other health-care organizations in its county. We focus
on functional requirements for the new EPR system for
Fyn County; specifically, we look at seven work processes

that must be supported. The work processes cover what
can happen from the moment a patient is considered for
treatment at a hospital until the patient is eventually
dismissed or dead.

In the requirements specification, these work pro-
cesses are presented in terms of task descriptions [19,
20], in the sense of Lauesen. A task description is an in-
formal, prose description. An essential characteristic of
a task description is that it specifies what users and the
IT system do together. In contrast to use cases [10], the
split of work between users and IT system is not deter-
mined at this stage. Task descriptions are meant to be
used at an early stage in requirements engineering and
software development projects.

This means that there is a natural and large gap be-
tween a task description and its actual support by an IT
system. To help bridging this gap, we propose to use Col-
ored Petri Nets (CPNs) [15,16] models. CPNs provide
a well-established and well-proven language suitable for
describing the behavior of systems with characteristics
like concurrency, resource sharing, and synchronization.
CPN are well-suited for modeling of workflows or work
processes [5]. The CPN language is supported by CPN
Tools [33], which have been used to create, simulate, and
analyze the CPN models that we will present in this pa-
per.

Figure 1 outlines the overall approach to be presented
in this paper.

The boxes in the figure present the artifacts that we
will consider in this paper. A solid arrow between two
nodes means that the artifact represented by the source
node is used as basis to construct the artifact represented
by the destination node.

The leftmost node represents the given task descrip-
tions. Going from left to right, the next node represents
an Executable Use Case (EUC) [18], which is a CPN
model augmented with a graphical animation. EUCs are
formal and executable representations of work processes

2 Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System

informal description

Task Descriptions

implementation

YAWL

insights
insights

insights

main focus on description of the problem main focus on devising the solution

requirements model

Executable Use Cases (EUCs)
(CPN + animation)

specification model

Colored Workflow Net (CWN)

Fig. 1. Overall approach.

to be supported by a new IT system, and can be used
in a prototyping fashion to specify, validate, and elicit
requirements. The node Colored Workflow Net (CWN)
represents a CPN model, derived from the EUC CPN,
that is closer to an implementation of the given require-
ments. The rightmost node represents the realization of
the IT system itself. In this case study, a prototype has
been developed using the YAWL workflow management
system [1].

The vertical line in the middle of the figure marks
a significant division between “analysis artifacts” to the
left and “design and implementation artifacts” to the
right. The analysis artifacts represent descriptions of the
problems to be solved, in the form of specifying the core
work processes that must be supported by the new IT
system. To the left of the line, the focus is on describing
the problems, not on devising solutions to these prob-
lems. In particular, to the left of the line, it is not spec-
ified what we want the new IT system itself to do. The
arrow between the nodes Executable Use Cases and Col-
ored Workflow Nets represents the transition from anal-
ysis, in the form of describing the problem, to design, in
the form of devising the solution.

It should be noted that we are not advocating any
particular kind of development process in this paper.
Figure 1 should not be read to imply that we are propos-
ing waterfall development. In real projects there will of-
ten be iterations back and forth between the artifacts in
consideration, as is indicated by the dashed arrows. Also,
we do not advocate that CPN is the only language that
can be used for this approach either. We use CPN since
we are comfortable with the language and it provides
the tool support needed for the development process,
but other languages could be used as well.

It is important to note that it is not possible to
use YAWL already in the early phases of the approach.
YAWL is implementation oriented while a CPN is more
conceptual abstracting from issues such as persistence,
form generation, etc. CPN Tools can be used for simula-
tion and animation, but not for enacting real workflows.
Therefore, a system like YAWL is needed. However, al-
ready using a system like YAWL in the early phases is

not advisable since it limits the generation of require-
ments which do not fit the workflow paradigm. In fact,
it should also be possible to decide not to use a workflow
system based on the EUCs generated. All of this justifies
the use of two languages (CPN and YAWL).

The case study presented in this paper is used to il-
lustrate Figure 1. It has been taken from the medical do-
main. As pointed out in [25,26] “careflow systems” pose
particular requirements on workflow technology, e.g., in
terms of flexibility. Classical workflow-based approaches
typically result in systems that restrict users too much.
As will be shown in this paper, task descriptions aim
at avoiding undesired restrictions. Moreover, the state-
based nature of CPNs and YAWL allows for more flexi-
bility than conventional event-based systems, e.g., using
the deferred choice pattern [2], choices can be resolved
by the health-care workers (rather than a decision by the
system).

This paper is related to one of our previous publi-
cations [3] where we used a similar approach based on
EUCs and CWNs. In the earlier work, however, we con-
sidered a different domain, namely banking, we did not
consider task descriptions, and we used BPEL as target
language instead of YAWL.

The emphasis in this paper is on the different stages
of the software development and how these can be glued
together. We did not have the opportunity to involve
real stakeholders in the work we report on.

This paper is structured as follows: Section 2 is about
task descriptions, both in general and about the specific
task description we will use as case study. Section 3 is
about Executable Use Cases (EUCs). In Section 4, we
describe the Colored Workflow Net (CWN). Section 5
considers the realization of the EPR system in YAWL.
Related work is discussed in Section 6 and the conclu-
sions are drawn in Section 7.

2 Task Descriptions

In this section, we first present task descriptions in gen-
eral and then we introduce the specific task descriptions
for Fyn County’s Electronic Patient Record (EPR) that

Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System 3

we will focus on in this paper. Finally, we motivate why
we move from task descriptions only to EUCs rather
than directly implementing the system.

2.1 Task Descriptions in General

In this context, a task is a unit of work that must be ac-
complished by users and an IT system together. A task
forms a unit in the sense that after having completed
a task, it will feel natural for the user to take a break.
Tasks may be split into subtasks. An example of a sub-
task is “register patient”.

The descriptions of subtasks in a task description are
on the left side of the dividing line in Figure 1. A task
description, however, may also contain proposals about
how to support the given subtasks. Solution proposals
constitute descriptions, which are to the right of the di-
viding line in Figure 1. The explicit division into sub-
tasks and solution proposals enforces a strict split be-
tween describing a problem and proposing a solution.
With solution proposals, the description then properly
changes name to a Task and Support description. A so-
lution proposal for the subtask “register patient” could
be “transfer data electronically from own doctor”.

Variants in task description are used to specify spe-
cial cases in a subtask. Instead of writing a complex sub-
tasks, [20] suggests to extract the special cases in vari-
ants, making the subtasks and variants easier to read.

2.2 Task Descriptions for Fyn County’s EPR

The task descriptions for Fyn County’s EPR that we
consider are the following:

1. Request before patient arrives
2. Patient arrives without prior appointment
3. Reception according to appointment
4. Mobile clinical session
5. Stationary clinical session
6. Terminate course of events
7. Patient dies

Descriptions for each of these seven work processes
are given in [11] (in Danish). In this paper, we will use
“Request before patient arrives” to illustrate our ap-
proach. This description is translated into English and
presented in Tables 1 and 2. As can be seen, it is a
Task and Support description. Except from the trans-
lation from Danish into English, the description is pre-
sented unchanged (which explains the presence of ques-
tion marks and other peculiarities).

The subtasks in tables 1 and 2 are named 1, 1a, 1b,
1c, 2, etc. The meaning behind this scheme is that a
name without any letter suffix, such as subtask 1, is a
main subtask, whereas the subtasks 1a, 1b, and 1c, are
variants of 1.

2.3 From Task Descriptions to Executable Use Cases

One of the main motivations behind task descriptions is
to alleviate some problems related to use cases. A use
case describes an interaction between a computer sys-
tem and one or more external actors. In the sense of
Sommerville [29], use cases are effective to capture “in-
teraction viewpoints”, but not adequate for “domain re-
quirements”. Typically a task description has a broader
perspective than a use case, and, as such, is a means to
address domain requirements as well.

In a use case description, the split of work between
users and the system is determined. In contrast, in a
task description, this split of work is not fixed. A task
description describes what the user and the system must
do together. Deciding who does what is done at a later
stage. Thus, a task description can help to avoid making
premature design decisions. In other words, a task de-
scription is a means to help users to keep focus on their
domain and the problems to be solved, instead of drift-
ing into designing solutions of sometimes ill-defined and
badly understood problems.

On the other hand, use cases and task descriptions
share the salient characteristics that they are static de-
scriptions: They are mainly prose text (may be struc-
tured or semi-structured) possibly supplemented with
some drawings, e.g., containing ellipses, boxes, stick men,
and arrows as in UML use case diagrams. Both task de-
scriptions and use cases may be read, inspected, and
discussed, and in this way, they may be improved.

A traditional prototype, though, tends to focus on
an IT system itself, in particular on that system’s GUI,
more than explicitly on the work processes to be sup-
ported by the new IT systems. This has been a main
motivation to introduce EUCs as a means to be used
in requirements engineering. It is meant to provide exe-
cutable descriptions of new work processes and possibly
of their intended computer support, and in this way, be
able to talk back to the user, thereby facilitating discus-
sions about both work processes and IT systems support.

3 Executable Use Cases (EUCs)

In this section, we first present EUCs in general and then
we introduce the specific EUC related to Fyn County’s
EPR that we will focus on in this paper. We also consider
how to come from EUCs to CWNs.

3.1 Executable Use Cases in General

An EUC consists of three tiers, as indicated in Figure 2.
Each tier represents the considered work processes

that must be supported by a new system. The tiers use
different representations: Tier 1 (the informal tier) is an
informal description; Tier 2 (the formal tier) is a formal,

4 Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System

Table 1. Task description: Request before patient arrives (First part - to be continued in Table 2).

Tier 3 - Animation

Tier 2 - Formal

Tier 1 - Informal

Domain analysis

Insights

Insights

User
responses

Insights

Fig. 2. Executable Use Cases.

executable model; Tier 3 (the animation tier) is a graph-
ical animation of Tier 2, which uses only concepts and
terminology that are familiar to and understandable for
the future users of the new system.

As indicated by Figure 2, the three tiers of an EUC
should be created and executed in an iterative fashion.
The first version of Tier 1 is based on domain analysis,
and the first version of tiers 2 and 3, respectively, is based
on the tier immediately below.

The formal tier of an EUC may in general be cre-
ated in a number of formal modeling languages. We have
chosen CPN because we have good experience with this
language and its tool support, but other researchers and
practitioners may have other preferences, e.g., other op-
tions could be statecharts [13], UML activity diagrams [22],
or other dialects of Petri nets than CPN.

Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System 5

Table 2. Task description: Request before patient arrives (Second part - continued from Table 1).

As was mentioned in Section 2.3, EUCs have notable
similarities with traditional high-fidelity prototypes of
IT systems; this comparison is made in more detail in [9].
In [17], it is described how an EUC can be used to link
and ensure consistency between, in the sense of Jack-
son [14], user-level requirements and technical software
specifications. Jackson’s division into requirements and
specifications resembles the division into subtasks and
solution proposals in task descriptions. User-level re-
quirements and subtasks lie to the left of the dividing
line in Figure 1; technical software specifications and so-
lution proposals lie to the right.

Like a task description, an EUC can have a broader
scope than a traditional use case. The latter is a de-
scription of a sequence of interactions between external
actors and a system that happens at the interface of the
system. An EUC can go further into the environment
of the system and also describe potentially relevant be-
havior in the environment that does not happen at the
interface. Moreover, an EUC does not necessarily fully
specify which parts of the considered work processes will
remain manual, which will be supported by the new sys-
tem, and which will be entirely automated by the new
system. An EUC can be similar to, indeed, a task de-
scription. Thus, despite the name, EUCs can be more
similar to task descriptions than to use cases. The name
“executable use cases” was originally chosen to make it
easy to explain the main idea of our requirements engi-
neering approach to people, who were already familiar
with traditional prose use cases.

3.2 Executable Use Case for Fyn County’s EPR

We have made an EUC that covers all seven task de-
scriptions listed in the beginning of Section 2.2.

In this section, we will present the part of the EUC
that corresponds to the task description of Tables 1 and
2, where we have focussed on the subtasks and not on
the solution proposals. The informal tier of the EUC is
the task description itself.

An extract of the formal tier is shown in Figure 3;
this figure presents the CPN model that corresponds to
the task description from Tables 1 and 2.

In [20], it is said that the subtasks in a task descrip-
tion can be done in any interleaving and any number
of times. We identify that often some partial order of
subtasks exists that reflects a “normal execution” for a
particular task. The term normal execution is to be un-
derstood as the most common or the ordinary way a task
would be carried out. Therefore, the model in Figure 3
for Task 1, is not just one place with all subtasks linked
to this place, describing the situation that [20] proposes.
Instead we enforce a process orientation of the task to
indicate that under normal circumstances the EPR sys-
tem would, e.g., execute the subtask Register patient
before the subtask Establish episode of care.

We have annotated the model by thick lines to denote
main path of the task description, i.e., where the sub-
tasks are carried out consecutively; e.g. to go from the
place Ready to make appointment to Patient ready
for arrival. Solid lines denote subtasks and variants
of subtasks. Dashed lines denote added structure to the

6 Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient

patient
patient
patient

patient

patient

patient

patient

Request
interpreter

(5)

Deny request
(4d)

Transfer case
(4c)

Park task
(4b)

Transfer to
waiting list

(4a)

Go
back 2

Print
notification

(4)

Appointment
made

Go
back 1

Continue 2

Possible clinical
session

(3)

Consilidate plans
(2c)

Adjust data
(2b)

Transfer
iincompatiable data

(2a)

Establish
episode of care

(2)

Continue 1
Security

(1c)

Add companion
(1b)

Patient exists
(1a)

Register patient
(1)

Intake

Finalize
requestPATIENT

Establishing
episode of

care
PATIENT

Ready to make
appointment

In
PATIENT

Patient
ready for
arrival

Out

PATIENT

Registering
patientPATIENT

Out

In

Fig. 3. Task 1 modeled in CPN

model to assert that desired interleavings of subtasks (or
variants) are possible.

The behavior of model for Task 1, is that any of
the subtasks can be executed in any order, since none
of the Continue or Go back transitions are guarded.
If we wanted to enforce that particular circumstances
must be fulfilled before proceeding from, e.g., the place
Registering patient to the place Establishing
episode of care, we could add a guard to Continue 1
stating this requirement. This guard could e.g. express
that the subtask Register patient must be performed
at least once.

In Figure 4, we outline how the formal and anima-
tion tiers are related. At the bottom, we see the for-
mal tier executing in CPN Tools. Please note that the
shown module of the CPN model contains seven transi-
tions (the rectangles), and that each of these transitions
corresponds to one of the considered tasks (cf. the list
in the beginning of Section 2.2). At the top is the ani-
mation tier in BRITNeY [32,31], the animation facility
of CPN Tools. The two tiers are connected by adding

animation drawing primitives to transitions in the CPN
model. These primitives update the animation.

The animation tier is a view on the state of, and ac-
tions in the formal tier. When a transition occurs in the
formal model it is reflected by updates to the animation
tier. Therefore, the behaviors of the two tiers remain
synchronized.

Using the animation tier the user can interact with
each of the seven tasks. Within the animation of each
task, subtasks can be selected and executed. When a
subtasks is chosen for execution, the animation user can
see visually what is happening and see which persons
and/or what devices are involved in completing the sub-
task. In the snapshot shown in Figure 4, the animation
visualizes Task 1. It shows that the animation user has
chosen to execute subtasks 1, 3, 4, and is about to exe-
cute Subtask 4a. We also see that Subtask 4a involves a
computer and a secretary. Even tough the main focus of
our EUC is on a description of the problem, it also adds
suggestion to solve the problem that the task descrip-
tions did not describe. Notice that when we go from left

Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System 7

Subtask 1 Subtask 3 Subtask 4 Subtask 4a

Fig. 4. Connection between animation and formal layer

to right in Figure 1 we gradually add solution proposals
to the artifacts.

In the task description in Tables 1 and 2, it was not
mentioned, who does what. It is us, the creators of the
EUC (software people), who have interpreted the sub-
tasks in this way, i.e., described who does what and what
a normal execution of a task is. When showing this an-
imation to the staff at a hospital in Fyns County, we
are likely to get more feedback on our interpretations of
their daily work than we could get with the static task
descriptions only.

3.3 From Executable Use Cases to Colored Workflow
Nets

The EUC we have presented above describes real-world
work processes at a hospital. When these work processes
are to be supported by a new IT system, of course, what
goes on inside that system is highly related to what goes
on in the real world.

In the approach of this paper (cf. Figure 1), we make
separate models of real-world work processes at a hos-
pital (the EUC) and the IT system that must support
these work processes (the CWN). This is done to clearly
distinguish between the real world, on one hand, and
the software, on the other hand. This distinction is ad-
vocated by a number of software experts, see, e.g., [14].
Not making this distinction may cause serious confusion.

8 Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System

It is our belief that by building a CWN of the sys-
tem, rather than implementing it in YAWL directly, we
actually make the implementation process much easier.
Note that the fact that the EUC and the CWN use
the same language (CPN) and tool (CPN Tools) makes
it easier to smoothly transition from requirements to
specification. When we build the CWN we decide how
tasks are ordered, which tasks are done by who, and
what the life-cycle of a case should be. These issues
would eventually have to be resolved in the final sys-
tem, but by dealing with them, when building the CWN,
we keep a clean distinction between implementation spe-
cific issues and these more high-level problems that the
CWN addresses. This is essentially the reason why we
need the CWN: To resolve the control-flow, resource, and
data/case perspectives, without cluttering our workflow
design proposals with low-level implementation specific
issues. These will be handled at a later stage when we
go from our CWN to the implementation platform.

In this way, the CWN we will now present describes
the IT system, and, as we will see, this can be used to
automatically generate parts of that system.

4 Colored Workflow Nets

In this section, we first present the language Colored
Workflow Nets (CWNs), and then show the model that
we build related to the Fyn County’s EPR. Finally, we
discuss differences between the EUC and the CWN.

4.1 Colored Workflow Nets in General

A Colored Workflow Net (CWN) [3] is a CPN. Although
both the CWN and the formal tier of the EUC use the
same language, there are some notable differences. First
of all, the scope of the CWN is limited to the IT sys-
tem, i.e., only those activities that are supported by the
system appear in the model. Second, the CWN covers
the control-flow perspective, the resource perspective,
and the data/case perspective [5]. In the case study of
this paper, the EUC covered partially these perspective,
but as we move to the right in Figure 1, it is necessary
to fully establish the other perspectives as well. Finally,
CWNs are restricted to a subset of the CPN language,
i.e., CWNs need to satisfy some syntactical and seman-
tical requirements to allow for the automatic realization
in a workflow management system [3].

Although a CWN covers the control-flow, resource,
and data/case perspectives, it abstracts from implemen-
tation details and language/application specific issues.
A CWN should be a CPN with only places of type Case
or Resource. These types are as defined in Table 3. As
we stated earlier we say that the scope of the CWN is
limited to the IT-system. By using the types defined in
Table 3, we restrict the designer to only model a work-
flow system. All data values in the model will either be

Table 3. Places in a CWN need to be of type Case or Resource

colset CaseID = union C:INT;

colset AttName = string;

colset AttValue = string;

colset Attribute = product AttName

* AttValue;

colset Attributes = list Attribute;

colset Case = product CaseID

* Attributes;

colset ResourceID = union R:INT;

colset Role = string;

colset Roles = list Role;

colset OrgUnit = string;

colset OrgUnits = list OrgUnit;

colset Resource = product ResourceID

* Roles

* OrgUnits;

cases or resources, and it is not possible, e.g., to have
places with doctor or nurse tokens; it is only possible to
describe these only as part of cases or resources. What
the modeler is able to express in CWN, is similar to
what many workflow languages provide, and therefore it
becomes easy to implement at a later stage.

A token in a place of type Case refers to a case and
some or all of its attributes. Each case has an ID and a
list of attributes. Each attribute has a name and a value.
Tokens in a place of type Resource represent resources.
Each resource has an ID and a list of roles and organi-
zational units. The distribution of resources over roles
and organizational units can be used in the allocation of
resources.

To better understand the definitions of Table 3, let
us take a few small examples: A place that route cases
could have the marking:

1‘(C(1),[("name","Eric"),("age","43")]) ++
1‘(C(2),[("name","Jane"),("age","17")])

This means that there are two cases, each with their
own unique id, namely C(1) and C(2), and these cases
have attributes name and age. A resource place may have
the marking:

1‘(R(1),["doctor","manager"],["trauma center"])
++ 1‘(R(2),["nurse"],["trauma center"])

This describes two resources: The first is a descrip-
tion of a person who is both a doctor and a manager
(this may indicate he is a chief surgeon), and this person
is associated with the organization trauma center. The
second resource is a nurse working at the same trauma
center.

For more details on CWNs, we refer to [3].

4.2 Colored Workflow Nets for Fyn County’s EPR

Figure 5 shows the CWN for the task Request before
patient arrives. When comparing this CWN with the

Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System 9

c_out
c_in

r

r

r

r

r

r

r

r

r

r

c

c

c

c

c
c

c

c

c

c

c

c
c

c

c

c

c

c

c

c

c

Deny request
(4d)

[has_role(r,"Secretary")]

Transfer case
(4c)

[has_role(r,"Secretary")]

Transfer to
waiting list

(4a)

[has_role(r,"Secretary")]

Go
back 2

Print
notification

(4)

[has_role(r,"Secretary")]

Appointment
made

Go
back 1

Continue 2
Clinical session

(3)

[has_role(r,"Secretary")]

Adjust data
(2b)

[has_role(r,"Secretary")]

Transfer
incompatiable data

(2a)

[has_role(r,"Secretary")]

Establish
episode of care

(2)

[has_role(r,"Doctor")]

Continue 1
Patient exists

(1a)

[has_role(r,"Secretary")]

Register patient
(1)

[has_role(r,"Secretary")]

input (c_in);
output (c_out);
action
let val c_out = set_att(c_in,"Patient Name")
 val c_out = set_att(c_out,"Address")
 val c_out = set_att(c_out,"Patient Id")
 val c_out = set_att(c_out,"Zipcode")
 val c_out = set_att(c_out,"City")
in c_out
end;

Intake

Resource 3

Resource

resources

Resource

Resource 2

Resource
resources

Resource

Resource 1

Resource

resources

Resource

Finalize
requestCase

Establishing
episode of care Case

Ready to make
appointment

In
Case

Patient
ready for
arrival

Out

Case

Registering
patientCase

Out

In

Resource

Resource

Resource

Fig. 5. CWN for the task Request before patient arrives

EUC CPN shown in Figure 3, several differences can
be observed. First of all, some subtasks shown in the
EUC CPN are not included in the CWN because they
will not be supported by the IT system. Subtask 1b
(Add companion) and subtask 2c (Consolidate plans)
are not included because of this reason. Secondly, Fig-
ure 5 includes more explicit references to the resource
and data/case perspectives. Note that Figure 5 shows
three resource places of type Resource defined in Ta-
ble 3. These resource places hold information on the
availability and capabilities of people. Using the con-
cept of a place fusion [15,33], these places together form
one logical entity. Places of type Case hold information
on cases. Cases have several attributes such as patient
name, patient id, address, birth date, preliminary
diagnosis, etc. In Figure 5, the relevant attributes are
only shown for the task Register patient, but, for the
sake of readability, not shown for all other tasks1; they
follow the same form as for Register patient.

One of the advantages of using Petri nets is the avail-
ability of a wide variety of analysis techniques. In CPN

1 It could be considered to add a further tier to the CWN to
hide complex inscription, if it could be justified from a cost-benefit
consideration.

Tools it is possible to simulate models and to do state-
space analysis. We have used both facilities. For the
state-space analysis we have abstracted from time and
color to assess soundness [5]. Initially, we discovered a
minor error (a deadlock because we did not connect
Subtask 4d properly). However, after repairing this, the
CWN was sound. Note that the reachability graph of
the CWN shown in Figure 5 for one patient has only 14
nodes and 29 arcs, so it is easy to verify its correctness by
hand; e.g. that the process has no deadlocks. For more
complicated CWNs, automated state-space analysis of
CPN Tools is, however, indispensable to assess correct-
ness before implementation.

4.3 Differences Between the EUC and the CWN

Although the CPN model used in the EUC and the CWN
may look alike in structure (cf. figures 3 and 5), they re-
ally are two different models. The model used for the
EUC is a description of the real world. It describes pa-
tients, doctors, nurses, and any other relevant vocabu-
lary for the hospital domain. Its focus is not on how
the system could be realized, but simply to describe the
work processes that take place in a hospital.

10 Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System

On the other hand, the CWN model is a description
of the system to support the work processes that were
identified in the EUC. In the CWN we do not allow
ourselves to use the domain specific vocabulary that we
used in the EUC, instead we restrict our vocabulary to
only use that which can be supported by a workflow sys-
tem. This way we end up with a description of a system
that is much easier to translate to an actual workflow
system. CWNs fit better into the way workflow system
are described since they use similar concepts to describe
similar things such as cases and resources, whereas the
EUC CPN model was build without any restriction on
how to express things. This free modeling form results in
a EUC CPN model that is harder to map directly into an
workflow implementation platform, than a CWN model
that has more or less the same concepts as most workflow
implementation platforms.

The CWN is a high-level description of the work-
flow system, in the sense that we do not worry about
concrete workflow system implementation details, such
as port types, if we where to implement the system in
BPEL, or XPath expressions to select the proper parts
of a token in an arc expression had we chosen YAWL.
These details are all dealt with at a later stage in the
implementation of the system, and the CWN high-level
description only focuses on the control-flow, how tasks
are ordered in the process, the resource perspective, who
can do what and with what, and the case perspective,
what is the attributes and life-cycle of a case in the sys-
tem.

Obviously the control-flow in the two models looks
very much alike, as mentioned earlier. We think they will
often do that in general, since it is the same real world
problems that they respectively try to describe and solve
- the difference is how they go about it. For example,
in Figure 3 the transition Register patient (1) is an
activity that may occur when a patient is admitted to
a hospital, but we do not specify how the activity is
actually done, other than we give suggestions to who is
involved in doing it when we add the animation layer
of the EUC. In Figure 5 there is a transition with the
same name, this is, however, not the same behavior that
we model here. Here we explicitly say that the activity
Register patient (1) is a work item that is available
to anyone with the role secretary, immediately after the
patient workflow is in a state where the patient is ready
to be admitted. Also, in the CWN model we specify the
data attributes of a case; something we deliberately did
not fully establish in the EUC model.

To conclude this section, we summarize the main dis-
tinction between EUC and CWN. The CPN model used
for the EUC is strictly used to explore what work pro-
cesses are in the hospital, and the CWN model is used to
devise a solution using workflow system concepts, which
can be easily mapped into a workflow implementation
platform.

5 Realization of the System Using YAWL

In [3], it was shown that for some CWNs it is possible
to automatically generate BPEL template code [8]. The
Business Process Execution Language for Web Services
(BPEL4WS or short BPEL) [8] is a textual XML-based
language that has been developed to form the “glue”
between web services. Although it is an expressive lan-
guage, it tends to result in models that are difficult to
understand and maintain. For example, because of the
verbose nature of BPEL code it is not interesting to show
it to users (e.g., to visualize management information or
to allow for dynamic change [28]). Moreover, BPEL of-
fers little flexibility and no support for the resource per-
spective.2 Therefore, we decided to use YAWL [1] rather
than BPEL.

YAWL (Yet Another Workflow Language) [1] is based
on results achieved by the Workflow Patterns Initiative
(www.workflowpatterns.com, [2]). YAWL offers direct
support for 19 of the 20 patterns identified in [2]. For ex-
ample, because of its native and unrestricted support of
the deferred choice pattern [2], it is possible to leave the
selection of the next task to the user. This offers more
flexibility than BPEL, because it is possible to define for
each state what tasks are possible without selecting one
(in BPEL this is restricted to the inside of a pick ac-
tivity [8]). Moreover, YAWL also supports the resource
perspective (in addition to the control-flow and data per-
spectives). YAWL is supported by an open source work-
flow management system that can be downloaded from
www.yawl-system.com.

Given the fact that YAWL can be seen as a superset
of CWNs, it was easy to translate the running example
from CPN in YAWL. Figure 6 shows the top-level work-
flow and the composite task Request before patient
arrives. Although both models look quite different, a
fairly direct mapping was possible from the CWN shown
in Figure 5 to the YAWL model shown in Figure 6. All
places of type Case in Figure 5 are mapped onto condi-
tions in YAWL and transitions in Figure 5 are mapped
onto YAWL tasks.3

After mapping the CWNs onto a YAWL specifica-
tion, it is possible to enact the associated workflows. Fig-
ure 7 shows a work-list and a form generated by YAWL.
The top of the figure shows the work-list of the secretary
with user code secretary4. It shows work-items associ-
ated to three cases. Each of these three cases is in the
state registering where three tasks are enabled. There-
fore, there are 3*3=9 possible work-items. After selecting
a work-item related to task register patient, three

2 Note that only recently people started to investi-
gate adding the resource perspective to BPEL, cf. the
WS-BPEL Extension for People (BPEL4People) initia-
tive http://www-128.ibm.com/developerworks/webservices/

library/specification/ws-bpel4people/.
3 Note that subtasks in Task Descriptions correspond to transi-

tions in CWNs and tasks in YAWL.

Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System 11

Fig. 6. Screenshot of YAWL editor

work-items disappear from the work-list (the competing
tasks become disabled for this patient) and secretary4
can fill out a form with patient data. After completing
the form there are again nine work-items, etc.

The realization of the workflow process in YAWL
completes the overall approach shown in Figure 1, i.e.,
we moved from informal task descriptions, then to EUCs,
after that to CWNs, and finally realized the task de-
scriptions in terms of YAWL. Note that, given the avail-
ability of a running YAWL system and a CWN, it is
possible to construct a running system in a very short
period, e.g., in a few hours it is possible to make the
process shown in Figure 6 operational. This does in-
clude the generation of user forms as shown in Figure 7
but, of course, does not include system integration or
the development of dedicated applications. The task of
mapping a CWN onto YAWL can be partly automated
by using the automatic translation provided by ProM
(cf. www.processmining.org). ProM is able to auto-
matically map Petri nets in PNML format onto various
other formats, including YAWL. However, this transla-
tion does not take data and resources into account, so
some manual work remains to be done. Nevertheless, it
shows that the overall process shown in Figure 1 is fea-
sible. Moreover, we would like to argue that by using
our approach initially more time is spent on the require-
ments, but considerably less time is spent on the ac-
tual realization and testing. The intermediate steps (i.e.,
EUCs and CWNs) enable an efficient implementation.

6 Related Work

This paper builds on the work presented in [3], where
we also apply CPN Tools to model EUCs and CWNs.
However, in [3], EUCs are not linked to task descriptions
and we used BPEL as target language instead of YAWL.
The extension with task descriptions was inspired by
the work of Lauesen [19,20]. Compared to existing ap-
proaches for requirements engineering and use case de-
sign [10,12,14,29], our approach puts more emphasis on
the two intermediate steps. First of all, we make EUCs
with both an animation and formal tier. Second, we use
CWNs to link these EUCs to concrete implementations.

Today, workflow technology is used in areas such
as radiology [30]. However, there is no systematic and
broader support for workflows in health-care organiza-
tions. Vendors and researchers are trying to implement
“careflow systems” but are often confronted with the
need for more flexibility [25,26]. The state concept in
CPN and YAWL (e.g., places with multiple outgoing
arcs modeling a choice which is resolved by the organi-
zation rather than the system) allows for more flexibility
than classical workflow systems. We know of one other
application of YAWL in the health-care domain. Gior-
gio Leonardi, Silvana Quaglini et al. from the University
of Pavia have used YAWL to build a careflow manage-
ment system for outpatients [21]. However, they did not
use task descriptions, EUCs, and CWNs. Instead they
directly implemented the system in YAWL [1].

UML allows a designer to model many different per-
spectives of a system. There are different types of dia-

12 Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System

Fig. 7. Screenshot of the YAWL worklist and the form associated to task register patient

Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System 13

grams covering different perspectives. For example, the
activity diagram and the statechart diagrams focus on
the dynamical aspects, while the class diagrams focus
on structure and data. Clearly, our approach could be
complemented by these aspects. Since the end result of
our approach is a running workflow system and not any
arbitrary software system, we can limit ourselves to only
use the types of models that we have presented in this
paper.

7 Conclusions

In this paper, we realized a small careflow system using
the four-step approach depicted in Figure 1 and moti-
vated the added value of each of the three transforma-
tion steps in our approach. Obviously, the system made
using YAWL is not the full EPR for Fyn County. It
is just a prototype illustrating the viability of our ap-
proach. To come from an extensive and detailed set of
task descriptions — as the seven task descriptions we
have been considering — to their implementation re-
quires large amounts of work and extensive involvements
of the stakeholders. A weakness of the work presented in
this paper is the unavailability of stakeholders in coming
from the task descriptions to the EUC, the CWN, and
the YAWL implementation, i.e., the stakeholders have
been extensively involved in the development of the task
descriptions but e.g. have not evaluated the YAWL im-
plementation.

We believe that less time needs to be spent on testing
the resulting system of our development process in the
ideal case where the design has been validated and veri-
fied earlier in the EUC. Also, the system is more likely to
be accepted by the end-users, since the work processes
that they saw and approved in the EUC, reoccur in the
final system. It is difficult to empirically prove this. In
[27] we report on a study where we measured the effects
of introducing workflow technology for 16 processes in
six organizations. This study shows how difficult it is to
empirically measure the effects of new approaches and
systems in business process management.

CPN is the language we used both for Executable
Use Cases (EUCs) and Colored Workflow Nets (CWNs).
For the actual realization of the system we used YAWL
which can be seen as a superset of CWNs (extended with
OR-joins and cancellation sets [1]) dedicated towards the
implementation of workflows. The state-based nature of
these modeling languages fits well with task descriptions,
i.e., in a given state it is possible to enable multiple tasks
and let the environment select one of these tasks. In
many workflow systems, this is not possible, because the
systems selects the next step to be executed.

An interesting topic for further research is the con-
sistency between the various models shown Figure 1. In
the paper, we assumed that one would go from left to

right. However, we are not proposing the waterfall de-
velopment process and envision that multiple iterations
are needed. Moreover, it could be that after some time
the system needs to be revised because of new require-
ments. In such a situation, one would manually need to
keep all models consistent. As a result, it is possible that
the ECU and CWN are thrown away and that just the
YAWL model is updated. To avoid this, it would be good
to support the relations and consistency checking among
the various artifacts.

Although CPNs and YAWL allow for more flexibility
than classical workflow management systems, we would
like to argue that in the health-care domain more flexi-
bility is needed than what is provided by YAWL as it has
been used in this paper. Work on computer-interpretable
guidelines [23] shows that classical workflow languages
tend to be too restrictive. Health-care workers should
be allowed to deviate and select alternative pathways if
needed.

To conclude this paper, we would like to discuss four
such extensions to allow for more flexibility.

– Dynamic change. The basic idea of dynamic change
is to allow for changes while cases are being handled
[28]. A change may affect one case (e.g., changing
the standard treatment for an individual patient) or
many cases (e.g., a new virus forcing a hospital to de-
viate from standard procedures). Although this ap-
proach is very flexible, it requires end-users to be able
and willing to change process models.

– Case handling. Case handling [6] comprises a set of
concepts to enable more flexibility without the need
for adapting processes. The basic idea is that there
are several mechanisms to deviate from the standard
flow, e.g., unless explicitly disabled people can skip
and roll-back tasks. Moreover, the control-flow per-
spective is no longer dominating, i.e., based on the
available data the state is constantly re-evaluated
and the collection and visualization of data is no
longer bound to specific tasks.

– Worklets. Worklets [7] allow for the late binding of
process fragments, e.g., based on the condition of a
patient the appropriate treatment is selected. YAWL
supports the uses of worklets, i.e., based on ripple-
down rules an appropriate subprocess is selected. The
set of ripple-down rules and the repertoire of worklets
can be extended on-the-fly thus allowing for a limited
form or dynamic change.

– Declarative languages. Another way to allow for
more flexibility is to use a declarative languages like
ConDec [24] or DecSerFlow [4]. Classical workflow
languages (graphical and textual) tend to be very
procedural, i.e., after each step in the process it is
explicitly specified what the next step will be. As a
result, the designer tends to over-specify the process
leading to all kinds of exceptions and changes. By
using more declarative language one tends to under-

14 Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System

specify the process thus providing workers with more
space to maneuver.

Each of these approaches can be combined with the four-
step approach depicted in Figure 1. However, further
work is needed to develop EUCs and CWNs that can
capture the degree of required flexibility and link this
to concrete workflow languages allowing for more flexi-
bility. Currently, even the most innovative systems sup-
port only one form of flexibility. For example, Adept [28]
only supports dynamic change, FLOWer [6] only sup-
ports case handling, YAWL [7] only supports worklets,
and Declare only supports declarative languages [4,24].
Hence, future work will aim at an analysis of the var-
ious forms of flexibility in the context of the approach
presented in this paper.

Acknowledgements

We thank Søren Lauesen for permission to use the task
descriptions for the Fyn County EPR as basis for this
paper. We also thank Søren for fruitful discussions and
feedback on this paper.

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL:
Yet Another Workflow Language. Information Systems,
30(4):245–275, 2005.

2. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kie-
puszewski, and A.P. Barros. Workflow Patterns. Dis-
tributed and Parallel Databases, 14(1):5–51, 2003.

3. W.M.P. van der Aalst, J.B. Jørgensen, and K.B. Lassen.
Let’s Go All the Way: From Requirements via Colored
Workflow Nets to a BPEL Implementation of a New
Bank System. In Proc. of 13th International Coopera-
tive Information Systems Conf., volume 3760 of LNCS,
pages 22–39, Agia Napa, Cyprus, 2005. Springer.

4. W.M.P. van der Aalst and M. Pesic. DecSerFlow: To-
wards a Truly Declarative Service Flow Language. In
M. Bravetti, M. Nunez, and G. Zavattaro, editors, Inter-
national Conference on Web Services and Formal Meth-
ods (WS-FM 2006), volume 4184 of Lecture Notes in
Computer Science, pages 1–23. Springer-Verlag, Berlin,
2006.

5. W.M.P. van der Aalst and K. van Hee. Workflow Man-
agement: Models, Methods, and Systems. MIT Press,
2002.

6. W.M.P. van der Aalst, M. Weske, and D. Grünbauer.
Case Handling: A New Paradigm for Business Process
Support. Data and Knowledge Engineering, 53(2):129–
162, 2005.

7. M. Adams, A.H.M. ter Hofstede, D. Edmond, and
W.M.P. van der Aalst. Facilitating Flexibility and Dy-
namic Exception Handling in Workflows. In O. Belo,
J. Eder, O. Pastor, and J. Falcao e Cunha, editors, Pro-
ceedings of the CAiSE’05 Forum, pages 45–50. FEUP,
Porto, Portugal, 2005.

8. T. Andrews, F. Curbera, H. Dholakia, Y. Goland,
J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith,
S. Thatte, I. Trickovic, and S. Weerawarana. Business
Process Execution Language for Web Services, Version
1.1. Standards proposal by BEA Systems, International
Business Machines Corporation, and Microsoft Corpora-
tion, 2003.

9. C. Bossen and J.B. Jørgensen. Context-descriptive Pro-
totypes and Their Application to Medicine Administra-
tion. In Proc. of Designing Interactive Systems (DIS)
2004, pages 297–306, Cambridge, Massachusetts, 2004.
ACM Press.

10. A. Cockburn. Writing Effective Use Cases. Addison-
Wesley, 2000.

11. Krav til Fyns Amts EPJ-system (udkast) — Require-
ments to Fyn County’s EPR System (Draft). Fyns Amt,
2003.

12. P. Grünbacher, A. Egyed, and N. Medvidovic. Rec-
onciling software requirements and architectures with
intermediate models. Software and Systems Modeling,
3(3):235–253, 2004. Springer.

13. D. Harel. Statecharts: A Visual Formalism for Complex
Systems. Science of Computer Programming, 8:231–274,
1987.

14. M. Jackson. Problem Frames — Analyzing and Struc-
turing Software Development Problems. Addison-Wesley,
2001.

15. K. Jensen. Coloured Petri Nets – Basic Concepts, Anal-
ysis Methods and Practical Use. Vol. 1, Basic Con-
cepts. Monographs in Theoretical Computer Science. An
EATCS Series. Springer, 1992.

16. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri
Nets and CPN Tools for Modelling and Validation of
Concurrent Systems. International Journal on Software
Tools for Technology Transfer, 9(3-4):213–254, 2007.

17. J.B. Jørgensen and C. Bossen. Executable Use Cases as
Links Between Application Domain Requirements and
Machine Specifications. In Proc. of 3rd International
Workshop on Scenarios and State Machines (at ICSE
2004), pages 8–13, Edinburgh, Scotland, 2004. IEE.

18. J.B. Jørgensen and C. Bossen. Executable Use Cases:
Requirements for a Pervasive Health Care System. IEEE
Software, 21(2):34–41, 2004.

19. S. Lauesen. Software Requirements — Styles and Tech-
niques. Addison-Wesley, 2002.

20. S. Lauesen. Task Descriptions as Functional Require-
ments. IEEE Software, 20(2):58–65, 2003.

21. G. Leonardi, S. Panzarasa, S. Quaglini, M. Stefanelli,
and W.M.P. van der Aalst. Interacting Agents through
a Web-based Health Serviceflow Management System.
Journal of Biomedical Informatics, 2007.

22. OMG Unified Modeling Language Specification, Version
2.0. Object Management Group (OMG); UML Revision
Taskforce, 2006.

23. M. Peleg and et al. Comparing Computer-interpretable
Guideline Models: A Case-study Approach. Journal of
the American Medical Informatics Association, 10(1):52–
68, 2003.

24. M. Pesic and W.M.P. van der Aalst. A Declarative
Approach for Flexible Business Processes. In J. Eder
and S. Dustdar, editors, Business Process Management
Workshops, Workshop on Dynamic Process Management

Jørgensen et al.: Towards an Implementation of a New Electronic Patient Record Workflow System 15

(DPM 2006), volume 4103 of Lecture Notes in Computer
Science, pages 169–180. Springer-Verlag, Berlin, 2006.

25. S. Quaglini, M. Stefanelli, A. Cavallini, G. Micieli,
C. Fassino, and C. Mossa. Guideline-based Careflow
Systems. Artificial Intelligence in Medicine, 20(1):5–22,
2000.

26. S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and
S. Panzarasa. Flexible Guideline-based Patient Careflow
Systems. Artificial Intelligence in Medicine, 22(1):65–80,
2001.

27. H.A. Reijers and W.M.P. van der Aalst. The Effective-
ness of Workflow Management Systems: Predictions and
Lessons Learned. International Journal of Information
Management, 25(5):458–472, 2005.

28. S. Rinderle, M. Reichert, and P. Dadam. Correctness
Criteria For Dynamic Changes in Workflow Systems: A
Survey. Data and Knowledge Engineering, 50(1):9–34,
2004.

29. I. Sommerville. Software Engineering — Seventh Edi-
tion. Addison-Wesley, 2004.

30. T. Wendler, K. Meetz, and J Schmidt. Workflow Au-
tomation in Radiology. In H.U. Lemke, editor, Pro-
ceedings of Computer Assisted Radiology and Surgery
(CAR98), pages 364–369. Elsevier, 1998.

31. Michael Westergaard and Kristian Bisgaard Lassen.
Building and Deploying Visualizations of Coloured Petri
Net Models Using BRITNeY animation and CPN Tools.
In Kurt Jensen, editor, Procedings of the Sixth CPN
Workshop, volume PB-576 of DAIMI, pages 119–136,
Arhus, Denmark, October 2005.

32. Michael Westergaard and Kristian Bisgaard Lassen. The
BRITNeY Suite Animation Tool. In Susanna Donatelli
and P.S. Thiagarajan, editors, Proceedings of the 27th
International Conference on Application and Theory of
Petri Nets and Other Models Of Councurrency, vol-
ume 4042, pages 331–340, Turku, Finland, June 2006.
Springer-Verlag Berlin Heidelberg 2006.

33. CPN Tools. www.daimi.au.dk/CPNTools.

