
Conformance Checking of Service Behavior

WIL M.P. VAN DER AALST

Eindhoven University of Technology and Queensland University of Technology

MARLON DUMAS and CHUN OUYANG

Queensland University of Technology

and

ANNE ROZINAT and ERIC VERBEEK

Eindhoven University of Technology

A service-oriented system is composed of independent software units, namely services, that interact
with one another exclusively through message exchanges. The proper functioning of such system
depends on whether or not each individual service behaves as the other services expect it to behave.
Since services may be developed and operated independently, it is unrealistic to assume that this
is always the case. This paper addresses the problem of checking and quantifying how much the
actual behavior of a service, as recorded in message logs, conforms to the expected behavior as
specified in a process model. We consider the case where the expected behavior is defined using the
BPEL industry standard (Business Process Execution Language for Web Services). BPEL process
definitions are translated into Petri nets and Petri net-based conformance checking techniques are
applied to derive two complementary indicators of conformance: fitness and appropriateness.
The approach has been implemented in a toolset for business process analysis and mining, namely
ProM, and has been tested in an environment comprising multiple Oracle BPEL servers.

Categories and Subject Descriptors: D.2.5 [Software Engineering]: Testing and Debugging—
Diagnostics; Distributed Debugging ; Monitors; H.4.1 [Information Systems Applications]:
Office Automation—Workflow Management; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software—Distributed Systems; Information Networks

General Terms: Languages, Measurement, Theory, Verification

Additional Key Words and Phrases: Web services, Conformance, BPEL, Petri nets, ProM

1. INTRODUCTION

A service-oriented system is composed of software services that interact with one
another for a given purpose. To ensure that this purpose is attained, designers

Corresponding author’s address: W.M.P. van der Aalst, Department of Mathematics & Com-
puter Science, Eindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The
Netherlands.
E-mail addresses of authors: {w.m.p.v.d.aalst,a.rozinat,h.m.w.verbeek}@tue.nl and

{c.ouyang,m.dumas}@qut.edu.au.
The development of ProM is supported by EIT, NWO-EW, the Technology Foundation STW,
and the IOP program of the Dutch Ministry of Economic Affairs. This work was also funded by
an Australian Research Council (ARC) Discovery Grant (DP0451092).
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0000-0000/20YY/0000-0001 $5.00

ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1–29.

2 · Wil M.P. van der Aalst et al.

specify these interactions and their dependencies in some form. In principle, the
participating services are implemented, adapted, or configured to comply with this
specification. However, services may be developed, operated, and evolved by inde-
pendent teams or organizations. Thus, there is no guarantee that once a system
is under operation, some services will not deviate from the specification. For ex-
ample, after sending a request, a service may receive a reply of the wrong type,
a service may reject a message sent by another service, messages may be received
out of order, etc. Furthermore, each of these unexpected behaviors may cascade
into other deviations. In general terms, service independence raises the question of
conformance: “Do all services in a service-oriented system operate as expected?”.

This paper addresses the following question: Given an expected service behavior
captured as one or several process models, and an observed behavior as registered
in a message log, does the observed behavior conform to the expected behavior?

We use the term service choreography to refer to a specification of the expected
behavior of an individual service or collection of services. Choreographies may be
captured in a number of languages. In this paper, we consider a standard language
for service behavior specification, namely the Business Process Execution Language
for Web Services (BPEL) [Jordan et al. 2006], but the results can well be applied to
other languages. Also, the paper assumes that messages are represented according
to the XML and SOAP standards [Box et al. 2000], but the proposed techniques
could be applied to other message formats. Finally, the paper focuses on checking
the fulfillment of control flow dependencies captured in the choreography. We do
not consider the issue of checking that each individual message conforms to its
expected message type as this is a well-understood problem.

When a choreography and a message log do not conform, two scenarios are pos-
sible. First of all, the model may be assumed to be correct because it represents
the way partners should work, and the question is whether the events in the log
are consistent with the process model. For example, the log may contain event
sequences that are not possible according to the model. This may indicate viola-
tions of the choreography. Second, the event log may be assumed to be “correct”
because it is what really happened. In the latter case the question is whether the
choreography that has been agreed upon is no longer valid and should be modified.
In this paper, we provide techniques for addressing both of the above scenarios.

The following examples illustrate the need for conformance checking of service
behavior by comparing (service) choreographies with message logs.

—To manage its interactions with suppliers and carriers, a large retail company
(LRC) has set up a number of logistics services. One of these services is respon-
sible for tracking shipments. This service is activated when a supplier sends a
“request for routing instructions” for a particular replenishment order. The ser-
vice gathers details from a human operator, and responds to the supplier with
the corresponding “routing instructions” indicating which carrier should be used
and where should the products be shipped. Subsequently, the supplier interacts
with the nominated carrier. Once the shipment has been picked up by the carrier
from the supplier’s premises, the supplier is expected to send an “Advanced Ship-
ment Notification” (ASN) to LRC’s shipment tracking service. Subsequently, the
carrier may send a number of “shipment status notifications” to LRC. Normally,

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 3

such status notifications would only be received by LRC after a corresponding
ASN has been received. However, some suppliers may be late in sending their
ASN or may fail to send it altogether, or messages may come out of order. By
checking the conformance of the actual message logs with the “ideal choreogra-
phy”, LRC may detect and quantify such deviations.

—Consider a supplier’s order management service and the corresponding procure-
ment service on the customer’s end. The customer starts an interaction by placing
an order. The supplier acknowledges through an initial order response, possibly
followed by one or several order updates. The customer can change or cancel the
order under some circumstances. However, requests for changes or cancellations
to an order cannot be accepted once the supplier has issued an “order confir-
mation”. Also, the supplier expects that the customer will not send requests for
changes or cancellations for orders which have not yet been acknowledged through
an initial order response. By using conformance checking, the buyer and/or the
supplier may find out if their services actually follow this agreed-upon choreog-
raphy. Later in the paper, we will consider a variant of this example to illustrate
our approach and its corresponding tools.

The above examples hint to a possible link between Service Level Agreements
(SLAs) and Quality of Service (QoS) monitoring on the one hand, and confor-
mance checking on the other. However, SLAs and QoS metrics typically focus on
performance indicators such as time, failure rate or cost of activities and processes
[Cardoso et al. 2004]. Such indicators assume that the process conforms to some
predefined model. Thus, conformance checking of service behavior is complemen-
tary to SLA and QoS monitoring.

This paper addresses the problem of choreography conformance checking by
building on earlier work on checking the conformance of a formal model (e.g., a
Petri net) with respect to a set of traces. To link this work to the technologies
currently used in service-oriented systems, we provide a mapping from BPEL to
Petri nets and a mapping from SOAP messages to event logs.

Figure 1 illustrates the contributions and the structure of the paper. Section 2
gives an overview of the approach used in this paper. Section 3 elaborates on the
notion of conformance and introduces the ProM Conformance Checker. Then, in
Section 4, we discuss the mapping of BPEL onto WF-nets [Ouyang et al. 2005a;
Ouyang et al. 2005b], a subclass of Petri nets. Section 5 discusses ways of extracting
high-level event logs from SOAP message logs. Section 6 describes a case study
demonstrating the feasibility of our approach and the tools we have developed.
Related work is discussed in Section 7 and Section 8 concludes the paper.

2. OVERVIEW OF APPROACH

The goal of choreography conformance checking is to verify that all parties be-
have as expected, i.e., to answer the question “Does the service behavior match
the service specification?”. Both the service behavior and the service specification
refer to occurrences of activities. Hence, choreography conformance checking sug-
gests capabilities with respect to observing activities. Depending on the setting,
the activities themselves may be recorded or it is just possible to see the mes-
sages being exchanged. Middleware products such as IBM’s Websphere, Oracle

ACM Journal Name, Vol. V, No. N, Month 20YY.

4 · Wil M.P. van der Aalst et al.

service

specification

(abstract

BPEL)

service

behavior

(SOAP

messages)

formal

process

model

(Petri nets)

event log

(MXML)

conformance?

Section 4
(Mapping BPEL onto WF-nets)

Section 3
(Conformance checking based

on Petri nets)

Section 5
(Monitoring and correlating

messages)

JDeveloper Oracle BPEL

servers

BPEL2PNML

WofBPEL

ProM

TCP Tunneling

ProMimport

Fig. 1. Outline of the paper showing the role of the core sections of the paper and the tools used.

BPEL, and Colombo, maintain detailed logs of activities. However, in many cases
only SOAP messages can be observed. Fortunately, it is typically possible to link
SOAP messages to activities and implicitly derive activity occurrences. Message
exchanges and activity occurrences may be seen from the perspective of a global
observer or from that of a local observer. The global observer sees activities and/or
messages at the process level, i.e., involving multiple services. A local observer
only sees the activities and/or messages related to a single service. Based on these
two viewpoints (activities/messages and global/local) at least four possible settings
for choreography conformance checking can be derived: (a) relevant messages ex-
changed between all services involved in a choreography are visible, (b) relevant
activities executed inside all services involved in a choreography are visible, (c)
relevant messages sent or received by a single service are visible, and (d) relevant
activities executed within a single service are visible. In this paper, we will focus
on the third setting (observing messages locally). Moreover, we assume that the
service specification is expressed in terms of abstract BPEL [Jordan et al. 2006].
However, our ideas and techniques are applicable to all four settings and do not
depend on the use of BPEL.

Figure 2 describes the approach proposed in this paper. Based on a process
model described as an abstract BPEL process (i.e., the service specification), we
generate a Petri net [Desel et al. 2004]. We use a translation described in [Ouyang
et al. 2005a; Ouyang et al. 2005b] and implemented in a tool called BPEL2PNML1.
We also propose an approach to monitor and to correlate SOAP messages in or-
der to construct events logs. Conformance checking is performed by comparing
the obtained event logs with the Petri net. The reason for using Petri nets as a
intermediate step is that it is simpler to check the conformance of a simple formal
model than checking the conformance of a complicated language like BPEL.

The paper considers two notions of conformance: fitness and appropriateness.

1Documentation and software available from www.bpm.fit.qut.edu.au/projects/babel/tools/.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 5

<receive …
createInstance=”YES”>
<correlations/>
</receive>

<invoke …
inputVariable = …
outputVariable = ...>
<correlations/>
</invoke>

<invoke …
inputVariable = … >
<correlations/>
</invoke>

<receive …
variable = … >
<correlations/>
</receive>

(MT,PI)

<reply … >
variable = …
</receive>

a
bs

tr
a

ct
 B

P
E

L

S
O

A
P

 M
e

ss
a

ge
s

S
O

A
P

 M
o

n
ito

r/
C

o
rr

el
a

to
r

(MT,PI)
(MT,PI)
(MT,PI)
(MT,PI)
(MT,PI)

...

Event log

A

E

G

D

H I

J

K

M

L

C

B

G

F

(MT,PI)

(MT,PI)

(MT,PI)

Petri net

Conformance checking!

In
fo

rm
a

tio
n

 S
ys

te
m

Conformance?

Fig. 2. Overview of the approach. The top level shows the process model in BPEL and the recorded
behavior in the form of SOAP messages. The BPEL specification is mapped onto Petri nets and
the SOAP messages are put in an event log. Finally, both are compared using conformance
checking.

An event log and a Petri net fit if the Petri net can generate each trace in the log.
In other words, the Petri net describing the choreography should be able to “parse”
every event sequence extracted from the message logs. In [Rozinat and Aalst 2006]
it is shown that it is possible to quantify fitness, e.g., an event log and Petri net may
have a fitness of 0.66 indicating that 66 percent of the events in the log are possible

ACM Journal Name, Vol. V, No. N, Month 20YY.

6 · Wil M.P. van der Aalst et al.

according to the model. Unfortunately, high fitness does not imply conformance:
It is easy to construct Petri nets that are able to parse any event log. Although
such Petri nets have a fitness of 1.0, they do not provide meaningful information
about the service’s behavior. This is why we consider a second dimension, namely
appropriateness. Appropriateness captures the idea of Occam’s razor : “one should
not increase, beyond what is necessary, the number of entities required to explain
anything”. A model is appropriate if it is the “simplest” one explaining the observed
behavior. Thus, overfitting and underfitting models are avoided.

The techniques proposed in this paper are implemented in a tool called Confor-
mance Checker. This tool is integrated into the ProM framework2. Although ProM
offers a wide range of tools related to process mining [Aalst et al. 2003] (e.g., LTL
checking, process discovery, verification, etc.), in this paper we focus on ProM’s
Conformance Checker and its application to monitoring services.

For conformance checking, it is crucial that each event recorded in the log can
be linked to (i) a process instance (also called a case) and (ii) a process model
element (e.g., an activity in BPEL terms or a transition in Petri-net terms).3 In
Figure 2 this is indicated by the pairs (MT,PI). PI refers to a specific process
instance, i.e., a unique identifier of the case being processed. Examples of a PI
are a customer id, customer order reference, a social security number, a patient id,
etc. MT is the message type that can be linked to some activity AT. Examples
of an MT are “request for information”, “approval message”, and “decline offer”.
Note that, depending on the setting, it may be possible to directly capture activity
occurrences and have events of the form (AT,PI) where AT refers to an activity.
When middleware products such as IBM’s Websphere and Oracle BPEL are being
used this is realistic. Otherwise, it is likely that only messages can be intercepted
and events are of the form (MT,PI). In this paper we focus on the latter situation.

It may seem trivial to capture events of the form (MT,PI) or (AT,PI). In the pres-
ence of process-aware information systems such as workflow management systems
(e.g., Staffware, Filenet, FLOWer, etc.) and dedicated middleware products (e.g.,
MQSeries and Oracle BPEL) it is indeed easy to extract the desired information.
However, in many other situations this turns out to be much more complicated.
Section 5 discusses different ways of extracting event logs from SOAP message logs.

In an ideal situation the abstract BPEL process and the observed messages con-
form (a precise definition will be given in the next section). However, there may
be discrepancies between the actual service behavior recorded in the event log and
the service specification represented in BPEL. There are two possible causes for
non-conformance: (1) the service implements a process different from the specifica-
tion given by the abstract BPEL process; and (2) the environment behaves different
from what could be expected based on the specification given by the abstract BPEL
process. In the remainder, we will show that it is indeed possible to measure con-
formance and track down discrepancies between the abstract BPEL process and the
observed message exchanges. Although, we have implemented this in the context of
BPEL, other languages for service interaction specification could be used. The only

2Documentation and software available from www.processmining.org.
3This requirement is also found in process mining techniques [Aalst et al. 2003] (e.g., the α

algorithm [Aalst et al. 2004]).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 7

requirement is that these languages should be suitable for describing all message
exchanges between the services involved in the choreography, and there should be
a mapping from the control-flow subset of that language to Petri nets.

As shown earlier in Figure 1, the next three sections present how conformance
checking can be applied to service behavior. First, we present an approach to do
conformance checking given a Petri net and an event log (Section 3). Then we show
a mapping from abstract BPEL to Petri nets (Section 4) and discuss the various
ways in which service behavior (e.g., SOAP messages) can be captured and mapped
onto a format suitable for conformance checking (Section 5).

3. CONFORMANCE CHECKING BASED ON PETRI NETS

The starting point for conformance checking is the presence of both an explicit
process model, describing how some business process should be executed, and some
kind of event log, giving insight into how it was actually carried out. Clearly, it
is interesting to know whether they conform to each other. In [Rozinat and Aalst
2006] this question has been explored using Petri nets to represent process models
[Desel et al. 2004], and assuming some abstract event log where log events are
only expected to (i) refer to an activity from the business process, (ii) refer to a
case (i.e., a process instance), and (iii) be totally ordered. As indicated before, we
assume that messages can be associated to activities and cases. Moreover, there is
no interaction among cases. Therefore, we can assume that an event log is simply
a multiset of activity traces, i.e., each case refers to a sequence of activities and
a log is simply a collection of such sequences. By mapping BPEL onto Petri nets
and SOAP messages onto multisets of traces, we can focus on the core idea of
conformance checking.

We have identified two dimensions of conformance, fitness and appropriateness
[Rozinat and Aalst 2006]. Fitness relates to the question whether the observed
process behavior complies with the control flow specified by the process model,
while appropriateness can be used to evaluate whether the model describes the
observed process in a suitable way (cf. Occam’s razor as discussed in Section 1).

To illustrate both dimensions of conformance we use the example process shown
in Figure 3(a). The process is represented as a Petri net [Desel et al. 2004]. The
squares in Figure 3(a) are transitions and represent activities. The circles are
places and represent pre- and post-conditions (i.e., partial states). In a Petri net,
places may hold tokens. The marking of a Petri net is the distribution of tokens
over places (i.e., the state). The network structure is static while the number of
tokens and their location may change. A transition is enabled if there is a token
on each of its input places. A transition may fire if it is enabled. Firing implies
removing tokens from the input places and producing tokens for the output places.
In Figure 3(a), transition A is enabled. Firing A implies moving a token from place
Start to place c1, etc. Note that there are two transitions bearing the same label
“Set Checkpoint”. Each of these two transitions represents an activity that can
be thought of as an automatic backup action within the context of a transactional
system, i.e., activity A is carried out at the beginning to define a rollback point
enabling atomicity of the whole process, and at the end to ensure durability of the
results. Then, the actual business process is started with the distinction of low-value

ACM Journal Name, Vol. V, No. N, Month 20YY.

8 · Wil M.P. van der Aalst et al.

(a) Simplified model of processing a liability claim

(b) Event Log L1 (c) Event Log L2 (d) Event Log L3

(e) “underfitting”
process model

(f) “overfitting”
process model

No. of Instances Log Traces

4070
245
56

ABDEA
ACDGHFA
ACGDHFA

No. of Instances Log Traces

1207
145
56
23
28

ABDEA
ACDGHFA
ACGDHFA
ACHDFA
ACDHFA

No. of Instances Log Traces

24
7

15
6
1
8

BDE
AABHF

CHF
ADBE

ACBGDFAA
ABEDA

100 % fitness
less than
100 % fitness

much less
than 100 % fitness

100 % fitness
but not sufficiently specific from
behavioral point of view

100 % fitness
but not represented in

structurally suitable way

Fig. 3. Two dimensions of conformance: fitness and appropriateness.

claims and high-value claims, which get registered differently (B or C). The policy
of the client is always checked (D) but in the case of a high-value claim, additionally,
the consultation of an expert takes place (G), and then the filed liability claim is
being checked in more detail (H). Finally, the claim is completed according to the
former choice between B and C (i.e., E or F).

Figures 3(b)-(d) show three example logs for the process described in Figure 3(a)
at an aggregate level. This means that process instances exhibiting the same event
sequence are combined as a logical log trace while recording the number of in-
stances to weigh the importance of that trace. Note that each of the logs shown
in Figures 3 represents a multiset of traces, e.g., log L1 contains 4070 occurrences
of (A, B, D, E, A), 245 occurrences of (A, C, D, G, H, F, A), and 56 occurrences of
(A, C, G, D, H, F, A). An event log can be viewed as a multiset of traces since only
the control flow perspective is considered here. In a different setting like, e.g., min-
ing social networks, the resources performing an activity would distinguish those
instances from each other.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 9

Event log L1 completely fits the model in Figure 3(a) as every log trace can be
associated with a valid path from Start to End. In contrast, event log L2 does
not match completely as the traces ACHDFA and ACDHFA lack the execution of
activity G, while event log L3 does not contain any trace corresponding to the
specified behavior.

Now consider the two process models shown in Figure 3(e)-(f). Although event
log L2 fits both models quantitatively, i.e., the event streams of the log and the
model can be matched perfectly, they do not seem to be appropriate in describ-
ing the observed behavior. The first one is much too generic (“underfitting”) as
it covers a lot of extra behavior, allowing for arbitrary sequences containing the
activities A, B, C, D, E, F, G, or H, while the latter—although it does not allow
for more sequences than those that were observed in the log—only lists the possible
behavior instead of expressing it in a meaningful way (“overfitting”). Note that
such underfitting and overfitting models could be constructed for any log, e.g., also
L1 and L3 in Figure 3. Therefore, these extremes do not offer a better understand-
ing than can be obtained by just looking at the aggregated log. So, there is also a
qualitative dimension and we claim that a “good” process model should somehow
be minimal in structure to clearly reflect the described behavior (i.e., structural
appropriateness), and minimal in behavior to represent as closely as possible what
actually takes place (i.e., behavioral appropriateness).

Conformance checking aims at both quantifying the respective dimension of con-
formance and locating the mismatch, if any. We have developed metrics for measur-
ing the fitness and the behavioral and structural appropriateness of a given process
model and event log [Rozinat and Aalst 2006]. But we also seek for suitable visu-
alizations of the results as this is crucial to understand the sources of mismatches.

For example, we can quantify fitness by replaying the log in the model. For this,
the replay of every log trace starts with marking the initial place in the model and
then the transitions that belong to the logged events in the trace are fired one after
another. While doing so, one counts the number of tokens that had to be created
artificially (i.e., the transition belonging to the logged event was not enabled and
therefore could not be successfully executed) and the number of tokens that were
left in the model (they indicate that the process has not properly completed). Only
if there were neither tokens left nor missing, the fitness measure evaluates to 1.0,
which indicates 100% fitness.

B

A

C

D
Start c1 c2

E

F

c3

A
c4 End

G H

c5

c8

+51 -51

c6 c7

Remained
enabled

Failed
execution

Fig. 4. Example process model after replay of event log L2.

Figure 4 shows that the places of missing and remaining tokens during log replay
can also be used to provide insight into the location of error. Because of the

ACM Journal Name, Vol. V, No. N, Month 20YY.

10 · Wil M.P. van der Aalst et al.

remaining tokens (whose amount is indicated by a + sign) in place c6 transition G
has remained enabled, and as there were tokens missing (indicated by a − sign) in
place c7 transition H has failed seamless execution. This suggests that the expert
consultation (activity G) did not take place for all the treated cases, and possible
alignment actions would be to either enforce the specified process or to introduce
the possibility to skip activity G in the model.

Both dimensions of conformance, i.e., fitness and appropriateness, have been im-
plemented in the ProM Conformance Checker [Rozinat and Aalst 2006]. Note that
the checker supports duplicate activities, e.g., in Figure 3(a) there are two activities
with label A. This is important because multiple activities in a BPEL specifica-
tion can exchange messages of a given type and are therefore indistinguishable.
Similarly, it is important that the Conformance Checker supports silent steps, i.e.,
activities that are not logged. Note that the presence of silent activities makes it
necessary to construct parts of the state space to find the most likely path.

4. MAPPING BPEL ONTO WF-NETS

To provide tool support for conformance checking of BPEL processes we rely on
two tools developed by the authors of this paper: BPEL2PNML and WofBPEL.
BPEL2PNML translates BPEL process definitions into Petri nets represented in the
Petri Net Markup Language (PNML). WofBPEL, built using Woflan [Verbeek et al.
2001], applies static analysis and transformation techniques on the output produced
by BPEL2PNML. For the purpose of conformance checking, WofBPEL is used to:
(i) simplify the Petri net produced by BPEL2PNML by removing unnecessary silent
transitions, and (ii) convert the Petri net into a so-called WorkFlow net (WF-net),
which has certain properties that simplify the analysis phase and is the input format
required by the ProM Conformance Checker.

Below, we discuss the mapping from BPEL to WF-nets and illustrate it using a
BPEL process definition of a supplier service that we will use as a running example
in the remainder of this paper.

4.1 The Supplier Service

Figure 5 provides an overview of a process definition capturing the behavior of a
“Supplier Service”. This figure uses a visual notation reflecting the syntax of BPEL.
This service provides a purchase order and change order service for customers, where
the purchase order that has been placed may be changed once.

The Supplier process is initiated upon receiving a purchase order that contains
one or several line items. The supplier may accept or reject any ordered item,
possibly suggesting alternative products, quantities or delivery dates in the latter
case. The supplier replies to the purchase order either with a single response listing
the outcome for all items, or with multiple responses corresponding to subsets of
the items. The rationale for having multiple responses is that the supplier may
be unable to determine outright if it can accept a line item. In this case, the
supplier sends a first response listing the items of which the outcomes have been
determined. Additional responses are then sent as information becomes available.
After receiving an order response, the customer may request to change the previous
purchase order because of some item(s) being rejected. A change order is an up-
dated purchase order that overrides the previous one. Similarly to the processing

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 11

 process “Supplier”

 sequence “main”

 scope “cancellationScope”

catch fault “orderChange”
(main activity) (fault/event handlers)

invoke
“orderChangeResponse”

while pendingChangedItems >0

invoke
“orderChangeResponse”

onevent “change”

throw fault
“orderChange”

whilependingOrderItems >0

invoke
“orderResponse”

invoke
“orderResponse”

receive
“order”

Fig. 5. An abstract view of the Supplier process.

of a purchase order, the supplier may reply with a single response or with multiple
responses to a change order.

For the readers that want to see the actual definitions of the Supplier service both
as an abstract and as an executable BPEL process, we refer to a technical report
where we include the full BPEL specifications [Aalst et al. 2005].4 An abstract
process is defined at the level of abstraction required to capture public aspects
of the service (i.e., message exchanges with the environment). In the working
example, the abstract process specifies that the service receives orders and change
orders and sends order responses and change order responses, and captures the
control dependencies between these messages. Meanwhile, an executable process
represents a possible implementation of the abstract process. However, services are
not always coded as BPEL executable processes.

4.2 Mapping BPEL to Petri Nets

We first map BPEL processes to Petri nets, which can be then converted to WF-
nets. When using Petri nets to capture the formal semantics of BPEL, we allow
the usage of both labeled and unlabeled transitions. The labeled transitions model
events and basic activities. The unlabeled transitions (τ -transitions, also known as
silent steps) represent internal actions that cannot be observed by external users.
This section presents only selected parts of the mapping. A complete version of the
formal specification of the mapping can be found in [Ouyang et al. 2005b].

4.2.1 Activities. We start with the mapping of a basic activity (X) shown in
Figure 6, which also illustrates our mapping approach for structured activities.
The net is divided into two parts: one (drawn in solid lines) models the normal
processing of X, the other (drawn using dashed lines) models the skipping of X.

In the normal processing part, the four places are used to capture four possible
states for the execution of activity X: rX for “ready” state, sX for “started” state, cX

for “completed” state, and fX for “finished” state. The transition labeled X models

4This report can be downloaded from BPMcenter.org.

ACM Journal Name, Vol. V, No. N, Month 20YY.

12 · Wil M.P. van der Aalst et al.

rX

sX

skippedX

Y

cX

fX

X
to_skipX

"skip"

Y

X

Fig. 6. A Basic activity.

the action to be performed. This is an abstract way of modeling basic activities,
where the core of each activity is considered as an atomic action. Two τ -transitions
(drawn as solid bars) model silent steps, i.e., internal actions for checking pre-
conditions or evaluating post-conditions for activities. In the mapping of BPEL
to Petri nets, we will introduce many silent steps to model the ”logical wiring”
among transitions representing the actual activities. The skip path in Figure 6 is
mainly used to facilitate the mapping of control links. Note that the to skip and
skipped places are respectively decorated by two patterns (a letter Y and its upside-
down image) so that they can be graphically identified. In Figure 6, hiding the
subnet enclosed in the box labeled X yields an abstract graphic representation of
the mapping for activities. This is used in the rest of the paper.

Figure 7 depicts the mapping of structured activities. Next to the mapping
of each activity is a BPEL snippet of the activity. More τ -transitions (drawn as
hollow bars) are introduced for the mapping of routing constructs. In Figure 7 and
subsequent figures, the skip path of the mapping is not shown if it is not used.
A detailed description of the mapping [Ouyang et al. 2005b] is outside the scope
of this paper. However, to give some insight into the mapping, we describe the
mappings of while and scope activities in some detail.

A while activity supports structured loops. In Figure 7(e), activity X has a sub-
activity A that is performed multiple times as long as the while condition (z) holds
and the loop construct ends if the condition does not hold anymore (∼z).

A scope provides event and fault handling. It has a main activity that defines
its “normal” behavior. To map fault handling, we define four flags for a scope,
each represented by a Petri net place, as shown in Figure 7(f). These flags are:
to continue, indicating the execution of the scope is in progress and no exception
has occurred; to stop, signaling an error has occurred and all active activities nested
in the scope need to stop; snapshot, capturing the scope snapshot defined in [Jor-
dan et al. 2006] which refers to the preserved state of a successfully completed
uncompensated scope; and no snapshot, indicating the absence of a scope snapshot.
Specifically, if a fault occurs during the execution of the normal behavior associ-
ated to a scope, it will be caught by one of the fault handlers defined for the scope,
and the scope switches from normal “processing” mode to “fault handling” mode.
These two modes are represented by places to continue and to stop. A scope in
which a fault has occurred is considered to have ended abnormally and thus cannot
be compensated, even if the fault has been caught and handled successfully. This
is represented by places snapshot and no snapshot. For space reasons, we do not

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 13

(c) switch

(f) scope(d) pick

(b) flow(a) sequence

(e) while

A

fA

rX

B

rB

fB

cX

f X

X

activity A
activity B

name="X">
<sequence

</sequence>

rX

f X

sX

cX

e1 e2

rA

fA

rB

fB

X

A

Y

B

Y

Y Y

e1

e2

</onMessage>

</onAlarm>
</pick>

<onMessage

<onAlarm

>

<pick
name="X">

activity A

activity B
>

z1

z2

name="X">
<switch

<case>
<condition>

</condition>
activity A

</case>
<case>

<condition>

</condition>
activity B

</case>
</switch>

rX

f X

cX

fA

rA

fB

rB

"z "1

sX

"~z1

v

2z "

A B

Y Y

Y Y

X

fQ

cQ

Qr

sQ

A

rA

fA

Q

!

to_continue Q

to_stopQ

snapshotQ

no_snapshotQ

C

X

:)

name="Q">
activity A

<scope

</scope>

f X

rX

sX

cX

A

rA

fA

B

rB

fB

X

</flow>
activity B
activity A

name="X">
<flow

s

z
</condition>

activity A

<while

</while>

name="X">

sX

rX

f X

cX

A

rA

fA

"~z" "z"

X

<condition>

X

A

r

Fig. 7. Mapping structured activities.

describe fault handlers and other advanced constructs. Full details, including a for-
mal definition of the mapping, can be found in a separate technical report [Ouyang
et al. 2005b].

4.2.2 Event Handlers. A scope can provide event handlers that are responsible
for handling normal events (i.e., message or alarm events) that occur concurrently
when the scope is running. Figure 8 depicts the mapping of a scope (Q) with an
event handler (EH). The four flags associated with the scope are omitted. The
subnet enclosed in the box labeled EH specifies the mapping of EH. As soon as
scope Q starts, it is ready to invoke EH. Event enormal is enabled and may occur
upon an environment or a system trigger. When enormal occurs, an instance of EH is
created, in which activity HE (“handling event”) is executed. EH remains active as
long as Q is active. Finally, event enormal becomes disabled once the normal process
(i.e., main activity A) of Q is finished. However, if a new instance of EH has
already started before enormal is disabled, it is allowed to complete. The completion
of the scope as a whole is delayed until all active instances of event handlers have
completed.

4.2.3 Example: Mapping of the Supplier Process. Figure 9 depicts the mapping
of the Supplier process shown in Figure 5. The complete mapping of the Supplier
process, as obtained using BPEL2PNML, is summarized in Figure 9. This figure
sketches the top-level structure including the top-level scope, the fault handler and

ACM Journal Name, Vol. V, No. N, Month 20YY.

14 · Wil M.P. van der Aalst et al.

enormal<onAlarm >

<scope name="Q">
<eventHandlers>

activity HE
</onAlarm>

</eventHandlers>
activity A

</scope>

Example BPEL code 2:

enormal<onMessage >

<scope name="Q">
<eventHandlers>

</onMessage>
</eventHandlers>

activity HE

activity A
</scope>

Example BPEL code 1:

cQ

fQ

rA

fA

...
cA

A

Qr

sQ

enormal

rHE

fHE

HE

to_invokeEH

��
��
��

��
��
��

enabled

EH

Q

Fig. 8. Mapping event handlers.

the event handler in the process. For illustration purposes, some net details (e.g.,
those associated to the process scope and the skip paths) are omitted. Also, for the
sake of readability the following conventions are used: place to continue is labeled
by a “C”, to stop by an “X”, snapshot by a “smiley face” and no snapshot by an
exclamation mark. The reader does not need to understand this diagram in detail.
What is important to retain is that any abstract BPEL specification can be mapped
onto a Petri net, but in this mapping process a large number of silent steps (i.e.,
transitions with label τ) are introduced. Next we will show how to remove these
and simplify the Petri net prior to performing conformance checking.

4.3 From Petri nets to WF-nets

The ProM Conformance Checker takes a WF-net [Aalst 1998] and an MXML log
as input. A WF-net is a Petri net which models a workflow process definition.
It has exactly one input place (called source place) and one output place (sink
place). A token in the source place corresponds to a case (i.e., process instance)
which needs to be handled, and a token in the sink place corresponds to a case
which has been handled. Also, in a WF-net there are no dangling tasks and/or
conditions. Tasks are modeled by transitions and conditions by places. Therefore,
every transition/place should be located on a path from the source place to the
sink place in a WF-net [Aalst 1998].

The Petri net obtained from the automated mapping to Petri nets is generally
not a WF-net. For example, the Petri net sketched in Figure 9 contains four
sink places: one at the bottom of the figure and four along the dotted line labeled
“cancellationScope”. Such additional source and sink places come from the mapping
of constructs that can cause activities to be skipped, namely: control links and fault
handlers attached to scopes. In order to facilitate the mapping of control links and
fault handlers, and to be consistent in the way structured activities are mapped
in BPEL, we have assumed in our mapping that any activity may be skipped. As
a result, a skip path is generated for every activity in BPEL2PNML. However,
not every activity can actually be skipped. A straightforward counter example is
the root activity (i.e., the top-level process scope). By removing these idle skip

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 15

cancellationScope

throwFault
[Note]: The concrete action of ‘‘throwFault’’ is modelled by one transition, which is graphically represented

by two transitions to avoid arc crossing.

...

...

...

cCS

f

mainf

fprocess

cancellationScope

C

:)!

change

..

...

.
throwFault

TFf

TFr

to_invoke EH

EH

enabled
...

...

...

.

.

.

...

...

...

...

...
order

...

...
OrderResponse

r

f

OR

OR

...

...
OrderChangeResponse

rOCR

OCRf

throwFaultX

invokedFH

FHto_invoke

...
while2r

...

...

rOCR

fOCR

..

.

...
f

wh2c

while2

process

r

OR

order
Response

wh1

OR

f

c

s

r

s

OR

OR

cancellationScoper

sCS

while1f

while1

cwh1

f

r

r

r

main

process

O

O

FH

Response

swh2

orderChange

Fig. 9. Mapping of the Supplier process shown in Figure 5.

ACM Journal Name, Vol. V, No. N, Month 20YY.

16 · Wil M.P. van der Aalst et al.

fragments, the Petri net obtained from the initial phase of the mapping can be
converted to a WF-net.

We use WofBPEL to convert the Petri nets returned by BPEL2PNML to WF-
nets. WofBPEL has originally been built to perform analysis on the Petri nets
produced as output from BPEL2PNML. Since it uses Woflan [Verbeek et al. 2001]
and Woflan can only handle WF-nets, WofBPEL first needs to remove the idle skip
fragments to obtain a WF-Net. In addition to this, WofBPEL also applies behavior
preserving reduction rules based on the ones given by Murata [Murata 1989]. This
way, the size of the net can be significantly reduced by removing unnecessary silent
transitions and redundant places. Note that there is a difference between the rules
given by Murata and the rules used in WofBPEL. The explanation for this difference
is that in our case the non-silent transitions (represented by labeled transitions)
should never be removed.

Figure 10 shows the reduction rules used in WofBPEL, where only silent transi-
tions (τ -transitions) can be removed. The first rule shows that a (silent) transition
connecting two places may be removed by merging the two places, provided that
tokens in the first place can only move to the second place. The second rule shows
that multiple alternative silent transitions can be reduced to a single one. Note
that after applying the second rule one may be able to apply the first rule provided
that the first place has only one remaining output arc (see Figure 10). The third
rule shows that self-loops can be removed if the transition involved is silent. When
applying the rules one should clearly differentiate between silent and non-silent
transitions. For example, in the fourth and fifth rule at least one of the transi-
tions should be silent, otherwise the rule should not be applied (as indicated). In
the fourth rule the execution of y is inevitable once the silent transition has been
executed. Therefore, it is only possible to postpone its occurrence. In the fifth
rule the execution of x is always followed by the silent transition. Note that the
silent transition cannot have any additional inputs. Therefore, it is only possible
to postpone its occurrence. The two last rules do not remove any transitions but
remove places. Transitions X and Y may be or may not be silent. The reduction
rules shown in Figure 10 do not preserve the moment of choice and therefore assume
trace semantics rather than branching or weak bisimulation semantics [Glabbeek
and Weijland 1996].

Based on the above, Figure 11 depicts the WF-net automatically generated from
the Supplier BPEL process of Figure 5 using first BPEL2PNML to obtain a Petri
net and then WofBPEL to remove idle skip paths and reduce the size of the net.
For reference, the Petri net generated by BPEL2PNML for the Supplier process
contains 96 places and 84 transitions, while the reduced WF-net contains 27 places
and 27 transitions.

5. MONITORING AND CORRELATING MESSAGES

In order to perform conformance checking, we assume that messages sent and re-
ceived by a service are logged. The resulting logs should be ordered chronologically
and should contain for each message, an indication of whether the message is in-
bound or outbound, as well as the message headers (e.g., HTTP and/or SOAP
headers). The message payload is not relevant as we focus on behavioral rather

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 17

Fig. 10. Behavior preserving reduction rules used in WofBPEL.

than structural conformance.
Given such a message log and a BPEL abstract process definition that is presup-

posed to correspond to the message log, we need to extract log traces such as those
depicted in Figures 3(b)-(d).5 The labels in these log traces should correspond to
labels in the Petri net obtained from the BPEL abstract process definition. These
labels must allow one to determine the direction of messages and their message
type. Thus, for each message we must determine:

—Its corresponding BPEL abstract process instance (herewith called its service
instance). This is required because the event log needs to be structured as a set
of log traces, each corresponding to one execution of the process capturing the
expected behavior of the service.

—A label denoting the BPEL communication action in the abstract process defin-
ition to which the production or consumption of the message is attributed.

5Note that we will extract more information but this is the bare minimum for conformance check-
ing. The MXML format also allows for the logging of timestamps, data, resources, and transac-
tional aspects.

ACM Journal Name, Vol. V, No. N, Month 20YY.

18 · Wil M.P. van der Aalst et al.

τ

τ

τττ τ

τ

order

orderResponse

orderResponse

change

τ

ττ

τ

exit

τ

τ

τ

throwFault

τ

τ

τ

τ

τ

orderChangeResponse

orderChangeResponse

Fig. 11. The WF-net for the Supplier process.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 19

In the remainder of this section we discuss both issues in detail.

5.1 Grouping messages into log traces

In order to apply the proposed conformance checking technique, messages need to
be grouped into log traces each representing one execution of the service, i.e., each
message needs to be associated to a process instance. If the service is implemented
as an executable BPEL process, this grouping of messages is trivial. The process is
executed by an engine that generates logs associating each communication action
(and thus the message consumed or produced by that action) to a process instance.
All messages consumed or produced by a process instance can then be grouped into
a log trace.

If no executable BPEL process is available, we need to group messages into log
traces just by looking at their contents. Current web service standards do not make
a provision for messages to include a “service instance identifier”, so assuming the
existence of such identifier may be unrealistic in some situations. Other monitor-
ing approaches in the field of web services have recognized this problem and have
addressed it in different ways, but they usually end up relying on very specific and
sometimes proprietary approaches. For example the Web Services Navigator [Pauw
et al. 2005] uses IBM’s Data Collector to log both the contents and context of SOAP
messages. But to enable correlation, the Data Collector inserts a proprietary SOAP
header element into messages.

In order to avoid relying on proprietary SOAP extensions, we use a generic group-
ing mechanism that we term chained correlation. The idea of chained correlation
is that every message, except for the first message of a service instance, refers to at
least one previous message belonging to the same service instance. In the context of
contemporary web service standards and middleware this correlation information
can be obtained in at least two ways:

—When using SOAP in conjunction with WS-Addressing, each message contains
an identifier (messageID header) and may refer to a previous message through
the relatesTo header. If we assume that these addressing headers are used to
relate messages belonging to the same service instance in a chained manner, it
becomes possible to group a raw service log containing all the messages sent or
received by a service into log traces corresponding to service instances. This is
the method used in our case study and more details will be given in Section 6.
The method is applicable when using Oracle BPEL as well as various other web
service middleware supporting the WS-Addressing standard. Note however web
service middleware supporting WS-Addressing may use the replyTo header to
correlate messages as opposed to the relatesTo. Specifically, the replyTo header
of a given message (say M) may contain a URI uniquely identifying the message in
question. Subsequently, when another message M ′ of the opposite directionality
is observed that has the same URI in the To header, M and M ′ can be correlated.

—The second method is based on the identification of properties that a message
has in common with another message belonging to the same service instance. In
BPEL, properties shared by messages belonging to the same service instance are
captured as correlation sets. A correlation set can be seen as a function that
maps a message to a value of some type. Correlation sets are associated with

ACM Journal Name, Vol. V, No. N, Month 20YY.

20 · Wil M.P. van der Aalst et al.

communication actions. When a message is received which has the same value
for a correlation set as the value of a message previously sent by a running service
instance, the message in question is associated with this instance. This allows one
to map messages to service instances, except for those messages that initialize a
correlation set, that is, those messages that start a new instance. Assuming that
in the BPEL abstract process of a service only the initial actions of the protocol
initialize correlation sets, and all other actions refer to the same correlation sets
as the initial action, each message produced or consumed by the service can
be mapped to a service instance as follows: The full message log is scanned in
chronological order. A message is either related to a new service instance if it
corresponds to a communication action that initializes a correlation set, or related
to a previously identified service instance if the values of its correlation set match
those of a message sent by the previous service instance.

In some cases, neither of the techniques outlined above is applicable. In other
words, there may be no way of defining a function that can determine whether or not
a given message is related to a previously observed message. In this case, techniques
from the area of Web session identification can be employed, but such techniques
are not 100% reliable. This avenue is considered in [Gombotz and Dustdar 2005].

5.2 Abstracting messages as labels

Once the message log has been grouped into log traces corresponding to service
instances, we associate each message in a log trace with a transition label used in
the WF-net obtained from the BPEL abstract process definition. These transition
labels represent communication actions seen at the level of abstraction used for
conformance checking.

BPEL’s communication action types are: invoke, reply, receive, and onMessage
(or onEvent in BPEL 2.0). A receive or an onMessage action consumes one mes-
sage, a reply produces one message, while an invoke can either produce a single
message (simple send) or produce a message and consume another one in that
order (synchronous send-receive). Without loss of generality, we assume that the
BPEL abstract process given to the Conformance Checker does not contain any syn-
chronous send-receive. For the purposes of conformance checking, a synchronous
send-receive can be decomposed into a sequence activity containing a simple send
followed by a receive. Also without loss of generality, we assimilate reply actions to
send actions and onMessage handlers to receive actions, since these elements have
the same effect in terms of message logs.

Thus, for conformance checking purposes, we view communication actions in a
BPEL abstract process as being labeled by a pair 〈D, MT 〉 where D stands for the
direction (inbound or outbound) and MT for message type. All non-communication
actions are given τ -labels since their execution does not manifest itself as message
log entries. Actions with τ -labels in the abstract process get translated to silent
transitions.

Under this labeling scheme, it is possible that two actions in a BPEL process
get the same label. Hence, the Petri net generated from a BPEL abstract process
may have multiple (non-silent) transitions with the same label. Fortunately, this
possibility is supported by the conformance checking technique, e.g., the example

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 21

in Figure 3(a) contains two actions with label A.
Each communication action in a BPEL process definition is linked to a WSDL

operation. A WSDL operation in turn is associated with binding information that
determines how messages related to that operation are encoded and exchanged over
a given communication protocol (e.g., SOAP over HTTP or XML over HTTP). The
structure of an operation’s binding information varies depending on the transport
protocol, but in any case it normally provides a means to identify messages that
pertain to that operation. In the case of SOAP over HTTP, the binding informa-
tion for a WSDL operation maps this operation to a SOAPAction identifier. This
makes it possible to reliably associate a SOAP message with a WSDL operation
by inspecting the SOAPAction field in the HTTP header of the message. In the
case of a communication protocol based on plain XML over HTTP, the binding
information of a given WSDL operation may include a relative URL to be found
in the HTTP headers of every message pertaining to that operation. Again, this
makes it possible to associate a SOAP message to an operation by analyzing the
“request URI” in the message’s HTTP header.

In the general case, however, the SOAPAction header and the mapping between
WSDL operations and SOAPAction identifiers are optional. In the absence of
this information, associating SOAP messages to WSDL operations may require
inspection of the message’s body. Specifically, the top-level element in the SOAP
message body needs to be compared with the message type associated to each
operation supported by the service. This technique is only reliable if operations
map to message types with different top-level elements. Otherwise, the user of
the conformance checker would have to provide a function mapping each SOAP
message in the log to a WSDL operation. This illustrates that the versatility of
SOAP and WSDL make it difficult to achieve a general and reliable solution for the
problem of mapping messages to operations. In some cases, tailor-made solutions
are required.

Despite these potential obstacles, it is realistic to assume that every message pro-
duced or consumed by a service for which a BPEL abstract process is defined, can
be mapped to a WSDL operation. With this information and the message direction,
we can construct log traces such that each entry in the trace can be matched to
a communication action label under the labeling scheme described above. Because
we are able to map a BPEL specification onto a Petri net (cf. Section 4) and we
can associate messages to both process instances and activities (cf. this section),
we can now apply the conformance checking techniques described in Section 3.

6. EXPERIMENTAL APPLICATION OF THE APPROACH

This section discusses the applicability of the approach and tools described in pre-
vious sections using the example from Section 4.1. We focus specifically on the
“local message observer” setting, that is, relevant messages exchanged between all
services involved in the choreography (i.e. Supplier and Customer) are visible.

6.1 Obtaining event logs

To generate SOAP messages, we needed to implement services that would behave,
at least presumably, according to the abstract BPEL processes describing the chore-
ography. We could have used a conventional programming language to implement

ACM Journal Name, Vol. V, No. N, Month 20YY.

22 · Wil M.P. van der Aalst et al.

these services. However, we chose not to do so and implemented an executable
process definition corresponding to the “supplier” role in the working example.
Specifically, we took the abstract BPEL process definition of the supplier role as a
starting point and we added into it manual tasks (e.g. for order entry and process-
ing), data manipulation actions and other details. In this way, we obtained an ex-
ecutable BPEL process definition that we deployed into the Oracle BPEL Process
Manager (version 10.1.2).6.

SOAP messages are typically exchanged between two services, which can both
run on the same server or on different servers. For this reason, we also had to
implement a simple “Customer” executable BPEL process. The Customer process
places an order, waits for an orderResponse, then places a changeOrder, waits for
two orderChangeResponses, and then exits. We deployed the executable BPEL
processes on two different Oracle BPEL servers.

Subsequently, we created instances of the executable BPEL processes and we
executed these instances using the console and worklist handler provided by the
Oracle BPEL platform. This allowed us to generate SOAP messages between two
Oracle BPEL servers (one for the supplier and one for the customer), which we
then altered to introduce different types of deviations.

Unfortunately, we were unable to obtain the SOAP messages directly from Or-
acle BPEL. No option existed to log all SOAP messages sent and/or received
to a file, and they were also not stored in the database underlying the Oracle
BPEL server. As a result, we had to use a TCP Tunneling technique to ob-
tain the SOAP messages. With this technique, it is fairly easy to eavesdrop
on a specific combination of host and port. Typically, incoming messages all
go to the same combination of host and port, but outgoing messages can be
directed to a multitude of combinations of hosts and ports. As a result, it is
more convenient to eavesdrop on the incoming messages on each server. Exam-
ples of collected SOAP message logs from both servers are given in a technical
report [Aalst et al. 2005]. From the SOAP message logs, it is straightforward
to generate a log as shown in Figure 12. Since Oracle BPEL, by default, relies
on WS-Addressing, the first message (the order) contains a unique message id
(e.g. bpel://localhost/default/Customer~1.1/301-BpInv0-BpSeq0.3-3), and
all other related messages refer to this message id.

Both the WF-net corresponding to the abstract Supplier process (cf. Figure 11)
and the log from Figure 12 can be imported by the ProM framework to check their
conformance.

6.2 Conformance checking

Having demonstrated that it is feasible to obtain an event log (such as in Figure 12)
from service executions, we now use conformance checking techniques (see also
Section 3) to validate the supplier service specification for a number of interaction
scenarios. Table I shows five execution sequences which should be valid for the
supplier service as specified in Section 4.1 and eight which should not.

Scenarios 1 – 5 reflect message sequences which should be compliant with the
process specification (note that Scenario 5 corresponds to the example from Fig-

6See: www.oracle.com/technology/products/ias/bpel/.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 23

<?xml version="1.0" encoding="UTF-8"?>

<WorkflowLog>

<Source

program="Oracle BPEL, using TCP Tunneling"

/>

<Process

id="http://services.qut.com/Supplier"

description="Supplier 1.1, using Customer 1.1 as customer stub"

>

<ProcessInstance

id="bpel://localhost/default/Customer~1.1/301-BpInv0-BpSeq0.3-3"

description="Instance 301"

>

<AuditTrailEntry>

<WorkflowModelElement>order</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2005-10-20T11:54:09-00:00</Timestamp>

</AuditTrailEntry>

<AuditTrailEntry>

<WorkflowModelElement>orderResponse</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2005-10-20T11:58:08-00:00</Timestamp>

</AuditTrailEntry>

<AuditTrailEntry>

<WorkflowModelElement>change</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2005-10-20T11:58:20-00:00</Timestamp>

</AuditTrailEntry>

<AuditTrailEntry>

<WorkflowModelElement>orderChangeResponse</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2005-10-20T11:58:35-00:00</Timestamp>

</AuditTrailEntry>

<AuditTrailEntry>

<WorkflowModelElement>orderChangeResponse</WorkflowModelElement>

<EventType>complete</EventType>

<Timestamp>2005-10-20T11:58:43-00:00</Timestamp>

</AuditTrailEntry>

</ProcessInstance>

</Process>

</WorkflowLog>

Fig. 12. A small fragment of a SOAP-based log in MXML format.

ure 12). They all start with an initiating order, followed by one or more orderRe-
sponses, and potentially complete with a change request and one or more order-
ChangeResponses.

Scenarios 6 – 13 represent conceivable settings of misbehavior, whereas 6 – 9 cor-
respond to possible violations by the supplier service and 10 – 13 contain violations
by the client or environment of the service. Both Scenario 6 and 7 show situations

ACM Journal Name, Vol. V, No. N, Month 20YY.

24 · Wil M.P. van der Aalst et al.

Table I. Desirable and undesirable scenarios for the supplier service execution.

Log trace

(order, orderResponse)

(order, orderResponse, orderResponse, orderResponse)

(order, orderResponse, change, orderChangeResponse)
(order, orderResponse, orderResponse, change, orderChangeResponse)

(order, orderResponse, change, orderChangeResponse, orderChangeResponse)

(order)
(order, orderResponse, change)

(orderResponse)

(order, orderResponse, change, orderResponse, orderChangeResponse)
(order, change, orderChangeResponse)

(change)

(order, orderResponse, change, orderChangeResponse, change)

(order, orderResponse, change, change, orderChangeResponse)

Scenario

1

2

3
4

5

6
7

8

9
10

11

12

13

Fitness

1.0

1.0

1.0
1.0

1.0

0.625
0.749

0.905

1.0
0.759

0.0

0.914

0.971

d
e

s
ir

a
b

le

b
e

h
a

v
io

r

u
n

d
e

s
ir

a
b

le

b
e

h
a

v
io

r

where the conversation has not been completed properly as after having received
the order request the service needs to send at least one orderResponse (missing in
Scenario 6), and following a change request at least one orderChangeResponse must
be sent (missing in Scenario 7). In Scenario 8 the supplier service sends an orderRe-
sponse which is not correlated with a previous order, and in Scenario 9 it still sends
another orderResponse although a change request has been received already (and
thus only orderChangeResponses should be sent). Scenario 10 shows the situation
where the environment invokes a change request although the first orderResponse
has not been sent by the service yet. In Scenario 11 a change request is invoked
which is not even related to a previous order. Both Scenario 12 and 13 show a
situation in which a second change is requested by the client, which is not allowed.

In order to verify the given scenarios with respect to the supplier service spec-
ification from Section 4.1 we use the reduced Petri net model generated from the
abstract BPEL process, shown in Figure 11. Having imported it into the ProM
framework, the Conformance Checker [Rozinat and Aalst 2006] is able to replay
the log containing the scenarios in the model. Based on the number of missing
and remaining tokens the fitness measurement is calculated indicating whether a
scenario corresponds to a valid execution sequence for that process. If not, the
depiction of missing and remaining tokens aids in locating the problem.

Consider for example Figure 13(a), in which the Conformance Checker shows a
part of the model after the replay of Scenario 8. In this situation a single orderRe-
sponse was sent without having received any previous order, which is not allowed.
The place in the upper left corner which has no incoming arcs represents the start
place of the whole process (i.e., a token will be put there in order to start the replay
of the scenario). Following the control flow of the model it can be observed that
the order transition is supposed to fire first in order to produce a token in the en-
larged place on the right, which can be consumed by the orderResponse transition
afterwards. However, since the log replay is carried out from a log-based perspec-
tive the missing tokens (indicated by a − sign) are created artificially and the task
belonging to the observed message in the model (i.e., the orderResponse transition)
is executed immediately. The fact that it had been forced to do so is recorded and
the task is marked as having failed successful execution (i.e., it was not enabled).

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 25

(a) The fitness analysis of scenario No. 8 shows that ‘orderResponse’ was not ready to be executed when
it occurred (tokens were missing), and that ‘order’ was expected to occur but did not happen (tokens were
remaining)

(b) The behavioral appropriateness analysis based on the desirable scenarios reveals that the model
allows for more behavior than expected. Due to intermediate states it is possible to send an
‘orderResponse’ after a ‘change’ request has been received

Fig. 13. The Conformance Checker analyzing the scenarios from Table I.

Furthermore, there are tokens remaining in the enlarged places in the upper and
the lower left corner (indicated by a + sign), which leads to the order transition
remaining enabled after replay has finished. Remaining tasks are visualized with
the help of a shaded rectangle in the background and they point to situations where
a task was expected to be executed but did not occur.

Now reconsider Table I, where the Fitness column indicates for each scenario
whether it corresponds to a valid execution sequence for our supplier service (i.e.,
during replay there were neither tokens missing nor remaining and therefore fitness
= 1.0) or not (i.e., fitness < 1.0). As it shows 100% fitness for Scenario 1 – 5 the
abstract BPEL process has been proven to be a valid specification with respect to
the “well-behaving” conversation scenarios we thought of. However, it also allows

ACM Journal Name, Vol. V, No. N, Month 20YY.

26 · Wil M.P. van der Aalst et al.

for an execution sequence that we have classified as undesirable behavior, namely
Scenario 9: Although another orderResponse is sent after a change request has been
received already (and thus only orderChangeResponses should be sent) the scenario
proved to comply with the given abstract BPEL process specification. This is an
interesting result as it makes us aware of the fact that—due to a number of interme-
diate states—the chosen fault/event handler construct does not completely capture
the intended constraint. The same conclusion can be drawn from the behavioral
appropriateness analysis with the Conformance Checker based on the five desirable
scenarios only, where a screenshot of the result is depicted in Figure 13(b). The dis-
played part visualizes that, although according to the model a change request could
be followed by an orderResponse, this never happened in the log (as the analysis is
based on scenarios 1 – 5).

The small case study presented in this section demonstrates that conformance
checking not only helps to detect deviations in terms of violations of the specified
control-flow, but can also point to undesirable behavior which is captured by the
model.

7. RELATED WORK

Several attempts have been made to capture the semantics of BPEL by means of
translations into formal languages. Some have defined translations from BPEL to
finite state machines [Fisteus et al. 2004], others to process algebra [Ferrara 2004],
abstract state machines [Fahland and Reisig 2005] or Petri nets [Ouyang et al.
2005a; Ouyang et al. 2005b; Hinz et al. 2005]. This paper uses the translation to
Petri nets presented in [Ouyang et al. 2005b] which is very detailed in terms of its
coverage of control-flow constructs.

This paper builds on earlier work on process mining, i.e., the extraction of knowl-
edge from event logs (e.g., process models or social networks). For example, the
α-algorithm [Aalst et al. 2004] can derive a Petri net from an event log. For an
overview of process mining techniques, the reader is referred to [Aalst et al. 2003].

In this paper we use the conformance checking techniques described in prelim-
inary form in [Rozinat and Aalst 2006] and implemented in the ProM framework
[Dongen et al. 2005]. The notion of conformance has also been discussed in the
context of security [Aalst and Medeiros 2004], business alignment [Aalst 2005], and
genetic mining [Medeiros et al. 2006].

The need for monitoring web services has been raised by other researchers. For
example, several research groups have been experimenting with adding monitor
facilities via SOAP monitors in Axis (ws.apache.org/axis/). [Lazovik et al. 2004]
introduces an assertion language for expressing business rules and a framework to
plan and monitor the execution of these rules. [Baresi et al. 2004] uses a monitoring
approach based on BPEL. Monitors are defined as additional services and linked to
the original service composition. Another framework for monitoring the compliance
of systems composed of web-services is proposed in [Mahbub and Spanoudakis
2004]. This approach uses event calculus to specify requirements. [Ludwig et al.
2004] is an approach based on WS-Agreement defining the Crona framework for the
creation and monitoring of agreements. In [Gombotz and Dustdar 2005; Dustdar
et al. 2004], Dustdar et al. discuss the concept of web services mining and envision

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 27

various levels (web service operations, interactions, and workflows) and approaches.
Our approach fits in their framework and shows that web services mining is indeed
possible. In [Pauw et al. 2005] a tool named the Web Service Navigator is presented
to visualize the execution of web services based on SOAP messages. The authors use
Message Sequence Charts (MSCs) and graph-based representations of the system
topology. Our work differs from these papers in two ways. First of all, we use a
process model to check conformance rather than visualizing and analyzing frequent
interaction patterns (i.e. scenarios). Typically, it is easier to specify a process
rather than a complete set of scenarios, although scenarios can help in designing
and analyzing a process. Moreover, a process specification enables a more intuitive
visualization of the problem areas such as deviations from the intended behavior.
Second, we consider the problem of correlation in more detail than these papers.

8. CONCLUSION

Service-oriented systems are composed of relatively autonomous entities (i.e., ser-
vices). Unlike many classical systems there is not one entity controlling a monolithic
system. Therefore, it is essential that each of the services involved in such a system
behaves as the other services expect it to behave. In this paper we demonstrated the
feasibility of conformance checking of service behavior, that is, comparing message
logs with service behavior specifications to detect and to quantify deviations.

Although conformance checking of service behavior can be applied to a wide va-
riety of settings, we focused on a particular usage scenario involving (1) abstract
BPEL as the specification language of a single service and (2) SOAP messages
exchanged between this service and other services. We demonstrated that specifi-
cations in terms of abstract BPEL can be mapped onto Petri nets and the SOAP
messages exchanged between the various services can be mapped onto the MXML
log format. Given a set of messages and an abstract BPEL specification we can
then measure fitness and appropriateness. Moreover, if the observed behavior does
not match the specified behavior, the deviations can be shown in both the log
and the model. Using a case study utilizing Oracle BPEL as a process engine, we
demonstrated that our approach is indeed applicable using current technology. We
have implemented three tools to achieve this: (1) BPEL2PNML (for the mapping
from BPEL to PNML), (2) WofBPEL (for process verification and cleaning up the
automatically generated Petri net), and (3) the ProM Conformance Checker.

Although this paper focused on abstract BPEL, other languages could also be
supported by replacing BPEL2PNML by a component providing the mapping onto
Petri nets for the selected alternative language. In fact, we consider languages
such as BPEL and WS-CDL not really suitable for the specification of services.
They tend to describe things at a too low level, i.e., a level suitable for execution
but less suitable for describing what the different services need to agree upon.
Hence future research will aim at conformance checking in the context of more
declarative languages such as DecSerFlow [Aalst and Pesic 2006] and Let’s Dance
[Zaha et al. 2006]. Moreover, we would like to apply our approach to more real-life
case studies. One of the problems we are facing is that at this point in time only few
organizations use BPEL and can provide us with SOAP logs. Clearly, conformance
checking can be applied in many domains ranging from auditing (cf. the Sarbanes-

ACM Journal Name, Vol. V, No. N, Month 20YY.

28 · Wil M.P. van der Aalst et al.

Oxley Act) to software testing. Therefore, we plan to consider a wide variety of
applications and not limit ourselves to web services. Another topic for further
research is the visualization of behavior conformance, for example, by combining
the ideas presented in [Pauw et al. 2005] with our process-oriented approach.

REFERENCES

Aalst, van der W. 1998. The Application of Petri Nets to Workflow Management. The Journal
of Circuits, Systems and Computers 8, 1, 21–66.

Aalst, van der W. 2005. Business Alignment: Using Process Mining as a Tool for Delta Analysis
and Conformance Testing. Requirements Engineering Journal 10, 3, 198–211.

Aalst, van der W., Dumas, M., Ouyang, C., Rozinat, A., and Verbeek, H. 2005. Choreogra-
phy Conformance Checking: An Approach based on BPEL and Petri Nets (extended version).
BPM Center Report BPM-05-25, BPMcenter.org.

Aalst, van der W. and Medeiros, A. 2004. Process Mining and Security: Detecting Anomalous
Process Executions and Checking Process Conformance. In Second International Workshop
on Security Issues with Petri Nets and other Computational Models (WISP 2004), N. Busi,
R. Gorrieri, and F. Martinelli, Eds. STAR, Servizio Tipografico Area della Ricerca, CNR Pisa,
Italy, 69–84.

Aalst, van der W. and Pesic, M. 2006. DecSerFlow: Towards a Truly Declarative Service Flow
Language. In International Conference on Web Services and Formal Methods (WS-FM 2006),
M. Bravetti, M. Nunez, and G. Zavattaro, Eds. Lecture Notes in Computer Science, vol. 4184.
Springer-Verlag, Berlin, 1–23.

Aalst, van der W., Dongen, van B., Herbst, J., Maruster, L., Schimm, G., and Weijters,

A. 2003. Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engi-
neering 47, 2, 237–267.

Aalst, van der W., Weijters, A., and Maruster, L. 2004. Workflow Mining: Discovering
Process Models from Event Logs. IEEE Transactions on Knowledge and Data Engineer-
ing 16, 9, 1128–1142.

Andrews, T., Curbera, F., Dholakia, H., Goland, Y., Klein, J., Leymann, F., Liu, K.,
Roller, D., Smith, D., Thatte, S., Trickovic, I., and Weerawarana, S. 2003. Business
Process Execution Language for Web Services, Version 1.1. Standards proposal by BEA Sys-
tems, International Business Machines Corporation, and Microsoft Corporation.

Jordan, D., Evdemon, J., et al. 2006. Web Services Business Process Execution Language
Version 2.0. Public Review Draft (August 2006), OASIS WS-BPEL Technical Committee.

Baresi, L., Ghezzi, C., and Guinea, S. 2004. Smart Monitors for Composed Services. In ICSOC
’04: Proceedings of the 2nd International Conference on Service Oriented Computing. ACM
Press, New York, NY, USA, 193–202.

Box, D., Ehnebuske, D., Kakivaya, G., Layman, A., Mendelsohn, N., Nielsen, H.,
Thatte, S., and Winer, D. 2000. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR/soap.

Cardoso, J., Sheth, A., Miller, J., Arnold, J., and Kochut, K. 2004. Quality of service for
workflows and web service processes. Journal of Web Semantics 1, 3, 281–308.

Desel, J., Reisig, W., and Rozenberg, G., Eds. 2004. Lectures on Concurrency and Petri Nets.
Lecture Notes in Computer Science, vol. 3098. Springer-Verlag, Berlin.

Dongen, van B., Medeiros, A., Verbeek, H., Weijters, A., and Aalst, van der W. 2005.
The ProM framework: A New Era in Process Mining Tool Support. In Application and Theory
of Petri Nets 2005, G. Ciardo and P. Darondeau, Eds. Lecture Notes in Computer Science, vol.
3536. Springer-Verlag, Berlin, 444–454.

Dustdar, S., Gombotz, R., and Baina, K. 2004. Web Services Interaction Mining. Technical
Report TUV-1841-2004-16, Information Systems Institute, Vienna University of Technology,
Wien, Austria.

ACM Journal Name, Vol. V, No. N, Month 20YY.

Conformance Checking of Service Behavior · 29

Fahland, D. and Reisig, W. 2005. ASM-based semantics for BPEL: The negative control flow.

In Proc. 12th International Workshop on Abstract State Machines, D. Beauquier and E. Börger
and A. Slissenko, Ed. Paris, France, 131–151.

Ferrara, A. 2004. Web services: A process algebra approach. In Proceedings of the 2nd interna-
tional conference on Service oriented computing. ACM Press, New York, NY, USA, 242–251.

Fisteus, J., Fernández, L., and Kloos, C. 2004. Formal verification of BPEL4WS business
collaborations. In Proceedings of the 5th International Conference on Electronic Commerce
and Web Technologies (EC-Web ’04), K. Bauknecht, M. Bichler, and B. Proll, Eds. Lecture
Notes in Computer Science, vol. 3182. Springer-Verlag, Berlin, Zaragoza, Spain, 79–94.

Glabbeek, R. and Weijland, W. 1996. Branching Time and Abstraction in Bisimulation Se-
mantics. Journal of the ACM 43, 3, 555–600.

Gombotz, R. and Dustdar, S. 2005. On Web Services Mining. In BPM 2005 Workshops
(Workshop on Business Process Intelligence), C. Bussler et al., Ed. Lecture Notes in Computer
Science, vol. 3812. Springer-Verlag, Berlin, 216–228.

Hinz, S., Schmidt, K., and Stahl, C. 2005. Transforming BPEL to Petri Nets. In International
Conference on Business Process Management (BPM 2005), W. van der Aalst, A. ter Hofstede,
and M. Weske, Eds. Lecture Notes in Computer Science, vol. 2678. Springer-Verlag, Berlin,
220–235.

Lazovik, A., Aiello, M., and Papazoglou, M. 2004. Associating Assertions with Business
Processes and Monitoring their Execution. In ICSOC ’04: Proceedings of the 2nd International
Conference on Service Oriented Computing. ACM Press, New York, NY, USA, 94–104.

Ludwig, H., Dan, A., and Kearney, R. 2004. Crona: An Architecture and Library for Cre-
ation and Monitoring of WS-agreements. In ICSOC ’04: Proceedings of the 2nd International
Conference on Service Oriented Computing. ACM Press, New York, NY, USA, 65–74.

Mahbub, K. and Spanoudakis, G. 2004. A Framework for Requirents Monitoring of Service
Based Systems. In ICSOC ’04: Proceedings of the 2nd International Conference on Service
Oriented Computing. ACM Press, New York, NY, USA, 84–93.

Medeiros, A., Weijters, A., and Aalst, van der W. 2006. Genetic Process Mining: A Basic
Approach and its Challenges. In BPM 2005 Workshops (Workshop on Business Process Intel-
ligence), C. Bussler et al., Ed. Lecture Notes in Computer Science, vol. 3812. Springer-Verlag,
Berlin, 203–215.

Murata, T. 1989. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE 77, 4 (April), 541–580.

Ouyang, C., Verbeek, H., Aalst, van der W., Breutel, S., Dumas, M., and Hofstede, ter

A. 2005. WofBPEL: A Tool for Automated Analysis of BPEL Processes. In Proceedings of
Service-Oriented Computing (ICSOC 2005), B. Benatallah, F. Casati, and P. Traverso, Eds.
Lecture Notes in Computer Science, vol. 3826. Springer-Verlag, Berlin, 484–489.

Ouyang, C., Aalst, van der W., Breutel, S., Dumas, M., Hofstede, ter A., and Verbeek,

H. 2005. Formal Semantics and Analysis of Control Flow in WS-BPEL (Revised Version). BPM
Center Report BPM-05-15, BPMcenter.org.

Pauw, W., Lei, M., Pring, E., Villard, L., Arnold, M., and Morar, J. 2005. Web Services
Navigator: Visualizing the Execution of Web Services. IBM Systems Journal 44, 4, 821–845.

Rozinat, A. and Aalst, van der W. 2006. Conformance Testing: Measuring the Fit and Ap-
propriateness of Event Logs and Process Models. In BPM 2005 Workshops (Workshop on
Business Process Intelligence), C. Bussler et al., Ed. Lecture Notes in Computer Science, vol.
3812. Springer-Verlag, Berlin, 163–176.

Verbeek, H., Basten, T., and Aalst, van der W. 2001. Diagnosing Workflow Processes using
Woflan. The Computer Journal 44, 4, 246–279.

Zaha, J., Barros, A., Dumas, M., and Hofstede, ter A. 2006. Lets Dance: A Language for
Service Behavior Modeling. In OTM Proceedings, 14th International Conference on Cooperative
Information Systems (CoopIS 2006), R. Meersman and Z. T. et al., Eds. Lecture Notes in
Computer Science, vol. 4275. Springer-Verlag, Berlin, 145–162.

Received October 2005; August 2006; accepted January 2007

ACM Journal Name, Vol. V, No. N, Month 20YY.

