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Abstract. A typical question for people dealing with administrative
processes is: “When will my case be finished?”. In this paper, we show
how this question can be answered, using historic information in the form
of event logs of the systems supporting these administrative processes.
Many information systems record information about activities performed
for past cases in logs. Hence, to provide insights into the remaining cycle
time of a case, the current case can be compared to all past ones.

The most trivial way of estimating the remaining cycle time of a case is
by looking at the average cycle time and deducting the already past time
of the case under consideration. However, in this paper we show how to
compute the remaining cycle time using non-parametric regression on
the data recorded in event logs. An experiment is presented that demon-
strates that our techniques perform well on logs taken from practice.

1 Introduction

An often heard complaint about administrative processes is that no insights are
given in the time needed to handle a case. A customer filing a claim with an
insurance company will probably hear in the beginning that the claim will be
handled in approximately 4 to 6 weeks. When s/he calls to ask about the status
after a couple of weeks, the answer is usually still that the handling will take 4
to 6 weeks in total, i.e. the average cycle time is 5 weeks.

The estimate given to the customer over the phone is not just an arbitrary
number. Instead, this is usually the average cycle time of a case, combined with
a certain margin of error. Obviously, at the time when a new claim (or case in
a more general setting) is entered into the system of the insurance company,
the best estimate of the remaining cycle time is indeed the average cycle time.
However, as soon as the case has been entered into the system, it is annotated
with all kinds of information that might influence the remaining cycle time. For
example, claims filed by customers filing claims more often, are more likely to
be checked for fraud, whereas claims that do not exceed a certain amount are
never checked for fraud. Since such a check costs time, knowing whether it will
or will not be performed obviously has an influence on the cycle time.

As a case progresses in the process, i.e. as more and more activities are
performed, the amount of information relating to the remaining cycle time of the



case is increasing. If, for example, fraud is expected, a case might be deferred to
a different part of the organization, which significantly delays the handling. Such
delays heavily influence the cycle time of a single case, but they also influence
the average cycle time of all cases. Therefore, especially for cases in the middle
of their handling, the quality of the average cycle time as an estimator is poor.

Rules such as the one stating that claims under a certain amount are never
checked for fraud, are not likely to be made public. People working with a system
handling a case generally do not have to know that such rules exist. Hence these
people may not be able to give a better estimate of the remaining cycle time
than the average cycle time.

Fortunately, information systems used in the handling of large administrative
processes, store all kinds of information related to current and past cases in event
logs. These event logs are typically annotated with information relevant to the
remaining cycle time of a case.

In this paper, we focus on the issue of remaining cycle time. We consider
event logs as a basis on which we predict, what the remaining cycle time of a
specific partial case is, e.g. we accurately answer the question of the customer
about the time needed to handle his/her claim. We use non-parametric regression
[6] as opposed to other methods for prediction, mainly because non-parametric
regression is most suitable in situations with little or no precedents are available.

The paper is organized as follows. First, in Section 2, we introduce some
notations and we formally define the regression techniques used. In Section 3,
we present five different predictors for the remaining cycle time and in Section 4
we present a case study where these predictors were put to the test on a real-life
dataset. We conclude the paper with a section on the implementation (Section 5)
and some conclusions.

2 Preliminaries

In this section, we introduce some basic concepts needed for prediction. We
introduce logs, as well as the ideas behind non-parametric regression.

Let S be a set. The powerset of S is denoted by P(S) = {S ′|S′ ⊆ S}. A bag
(multiset) m over S is a function S → IN, where IN = {0, 1, 2, . . .} denotes the set
of natural numbers. The set of all bags over S is denoted by INS . We identify a
bag with all elements occurring only once with the set containing these elements,
and vice versa. We use + and − for the sum and difference of two bags, and
=, <, >,≤,≥ for the comparison of two bags, which are defined in a standard
way. We use ∅ for the empty bag, and ∈ for the element inclusion. We write
e.g. m = [p2, q] for a bag m with m(p) = 2, m(q) = 1 and m(x) = 0, for all
x 6∈ {p, q}. We use the standard notation |m| and |S| to denote the number of
elements in bags and sets.

A sequence over S of length n is a function σ : {0, . . . , n− 1} → S. If σ(0) =
a0, . . . , σ(n−1) = an−1, we write σ = 〈a0, . . . , an−1〉, and σi for σ(i). The length
of a sequence is denoted by |σ|. The sequence of length 0 is called the empty
sequence, and is denoted by 〈〉. The set of finite sequences over S is denoted
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by S∗. Let υ, τ ∈ S∗ be two sequences. Concatenation, denoted by σ = υ · τ is
defined as σ : {0, . . . , |υ| + |τ | − 1} → S, such that for 0 ≤ i < |υ|, σ(i) = υ(i),
and for |υ| ≤ i < |σ|, σ(i) = τ(i − |υ|).

Furthermore, we define the prefix from index i to j on sequences by τ ′ =↓i,j

(τ), such that if i ≥ j, then τ ′ = 〈〉, otherwise τ ′ = 〈τi, . . . , τj−1〉, i.e. for all
sequences τ holds that ↓0,|τ | (τ) = τ .

We use ~P(x) to denote column vectors and for a sequence σ ∈ S∗, the Parikh
vector ~σ : S → IN defines the number of occurrences of each element of S in the
sequence, i.e. ~σ(s) = |{i|0 ≤ i < |σ| ∧ σ(i) = s}|, for all s ∈ S.

2.1 Logs

Information systems typically log all kinds of events. Unfortunately, most sys-
tems use their own specific format. Therefore, we formalize the concept of a
log. The basic assumption is that the log contains information about activities
executed for specific cases, as well as their durations. Extensive practical expe-
riences in the context of the process mining framework ProM [1] show that this
assumption is valid in many applications [2].

Definition 2.1. (Case, Log) Let A be a set of activities. σ ∈ A∗ is a case,

consisting of activities. A log W over A is defined as a bag of cases, i.e. W ⊆ INA∗

.

Definition 2.2. (Sequence start, completion, duration) Let A be a set
of activities and σ ∈ A∗ a sequence of activities. We define τs(σ) ∈ IR+ and
τc(σ) ∈ IR+ to represent the start and completion times of the sequence σ. By
definition, we say that τs(〈〉) = τc(〈〉) = 0 and we denote the duration of a
sequence by δ(σ) = τc(σ) − τs(σ).

Note that τs, τc, and δ are not functions, as similar sequences might have
different times attached to them. However, they are total, i.e. they do provide
start, completion times and durations for all sequences.

Finally, if W ⊆ A∗ is a log, then we assume that all σ ∈ W and 0 ≤ i ≤ |σ|
holds that τs|c(↓0,i (σ)) ≤ τs|c(σ), i.e. the activities within each case are ordered
in time.

Besides the minimal information of activity/duration pairs, logs often carry
case-related information, such as the amount of money involved in a claim, or
the data entered in an application form. As the nature of this information is not
known up front, we leave that abstract for now and we define the case data as a
map of key/value pairs.

Definition 2.3. (Sequence data) Let A be a set of activities, σ ∈ A∗ a
sequence over A, K a set of attribute keys and V a set of attribute values. We
denote sequence data by ∆(σ) : K → V , as a function from the keys in K

to their corresponding value in V . The exact nature of these domains is left
abstract for now. Again, ∆ is not a function, but it is total.
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2.2 Regression

Regression is a technique to fit a function to a set of measurements, i.e. to
abstract from these measurements. Basically, there are two types of regression,
namely parametric, where the function is assumed to be of a certain form (e.g.
linear, exponential, quadratic, etc.) and non-parametric, where no assumptions
are made about the function that should fit the measurements [5, 6].

In this paper we use non-parametric regression because, in order to predict
cycle times in any unspecified business process, we cannot assume the cycle time
to have a specific form or distribution, which is needed for parametric regression.
The non-parametric approach only assumes there is some relationship between
the predictor variables and the target variable, the form of this relationship need
not be specified. A method called smoothing or “local averaging” is used in non-
parametric regression to make estimations based the observed data, without a
parameterized model.

At the basis of non-parametric regression lies a list of measurements m =
〈m0, m1, . . . , mn〉 , such that each measurement mi = (~xi, yi) ∈ (X×IR) consists
of a vector of k so-called predictor variables ~xi ∈ X and a target variable (yi ∈
IR). The domain X = X0 × X1 × . . . × Xk−1 are kept abstract for now.

The goal of regression is that, based on the measurements stored in m, the
value of any new vector of predictor variables ~x′ is estimated by a function
γ : X → IR. This function is such that it estimates the corresponding target value
y′, i.e. y′ ≈ γ(~x′). The estimate is such that the values of the target variables of

measurements in m closest to the new vector ~x′ have more influence than those
measurements farther from ~x′, i.e. γ(~x′) is interpolated from measurements in

the larger vicinity of ~x′.
The way the function γ computes the estimated target value is by taking the

weighted average of the target values of the measurements, where the weight of
the k components of the vector ~xi is determined by a parameterized so-called
kernel function φ : (X × X × IRk) → IR+, assigning an inverted weight to

each of the k components representing the distance between ~x′ and ~xi. The
relative importance of each component of the vectors ~x′ and ~xi is denoted by
the bandwidth variable ~λ ∈ IRk. As a result, the function γ, denoted by γ~λ to
show the dependency on the bandwidth, looks as follows:

γ~λ(~x′) =

∑n
i=0 φ(~xi, ~x′, ~λ). yi

∑n
i=0 φ(~xi, ~x′, ~λ)

, for m = 〈(~x0, y0), (~x1, y1), . . . , (~xn, yn)〉 (1)

In Section 3, we elaborate on how to select the right kernel function φ, taking
into account the (so-far abstract) domains of each of the predictor variables.
However, the process of finding the optimal values for the bandwidth variables,
is similar for any particular kernel function.

2.3 Bandwidth Variable Optimization

In order to find the optimum bandwidth, we first define what optimality is. The
goal of regression is to estimate y′ = γ~λ(~x′)+ε such that ε (the error) is minimal.
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As this error depends on the bandwidth variables, the value of each component
of the bandwidth variable ~λ is computed by minimizing n−1

∑n
i=0(γ~λ(~xi)− yi)

2

using only the measurements m. To minimize bias standard cross-validation
techniques are used [6].

In this paper we do not elaborate further on how to find the optimal band-
width. Instead, we refer to [6] for various techniques to find an the optimum
bandwidth efficiently and to [8,10] for details about the implementation used in
our case-study.

So far, we imposed the restriction that the target variable has a continuous
domain. In the remainder of this paper, we use the remaining cycle time of a
case as the target variable, which indeed has a continuous domain.

3 Cycle Time Prediction

Before presenting the results of our case study in Section 4, we first introduce
several methods for estimating the remaining cycle time. First, we show a naive
approach using only the average cycle time over a log. Then, we show three
types of regression-based techniques, using the occurrences of activities, the du-
rations of activities and the case data to base the prediction on. We conclude this
section by showing how to combine the different regression-based techniques.
The regression kernel functions presented in this section were inspired by [9],
which proposes a method for non-parametric regression with both continuous
and (un)ordered categorical variables.

3.1 Average Cycle Time Estimator

As mentioned in the introduction, the average cycle time is often used as an
estimator for the remaining cycle time. Using the start and completion of a
sequence, it is trivial to define the average cycle time of a log, which is just the
sum of the durations of all cases divided by the number of cases.

Definition 3.1. (Average Cycle Time) Let W be a log. The average cycle

time AW of W is defined as AW =
∑

σ∈W δ(σ)

|W | , where |W | denotes the number

of cases in W .

The remaining duration of a partial case under consideration is deducted
from the average cycle time of a log to predict the remaining cycle time of the
case. Since the result might be negative, the estimate is rounded to 0.

Definition 3.2. (Average Cycle Time Predictor) Let A be a set of activities
and W be a log over A. Let AW be the average cycle time over W . Let σ′ ∈ A∗

be a partial case (i.e. a case that has not been completed yet). The average cycle
time predictor of this partial case is defined as ρAV G(σ′) = max(0,AW − δ(σ′)).
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3.2 Activity Occurrence Estimator

The first regression-based estimator we present in this paper considers only the
frequencies of activities within each case. As we have shown in Section 2.2,
regression is based on measurements, which we have to define for logs.

Definition 3.3. (Activity Occurrence Measurement) Let A be a set of
activities, let W be a log over A and let σ ∈ W be a case. We define the list of
case measurements as MAO

σ = 〈m1, . . . , m|σ|〉, where for all 0 < i ≤ |σ| holds

that mi = (~P(↓0,i (σ)), τc(σ) − τc ↓0,i (σ)).
We define the list of activity occurrence measurements MAO

W over W as the
concatenation of the case measurements.

In words, the list of activity occurrence measurements is such that for each
(non-empty) prefix of a case, one measurement is taken, consisting of the number

of occurrences of the elements of A in that prefix (the predictor variables ~P(σ))
and the remaining cycle time of that prefix (the target variable τc(σ) − τc ↓0,i

(σ)), which is defined as the difference between the latest time in the prefix and
the latest time in the entire case. Note that, since the activities within each case
are ordered in time, the remaining cycle time is a continuous variable greater or
equal to 0, i.e. τc(σ) − τc ↓0,i (σ) ∈ IR+.

For a log W , the total number of measurements equals the sum of the lengths
of all cases in the log.

So far, the domains of the measurement variables (denoted by Xi in Sec-
tion 2.2) were kept abstract. For the activity occurrence measurement defined
in Definition 3.3, we can make these domains concrete, since each variable rep-
resents the number of times an activity occurred, we know that all domains
equal IN, which implies that we can define a concrete kernel function for these
variables.

For this purpose, we use a variation of the Aitchison and Aitken’s [3] kernel
which was defined by Jeff Racine and Qi Li [9]. This function is parameterized
by the bandwidth parameters λ ∈ [0..1] ⊂ IR+. If a bandwidth parameter is 0
for a certain activity, then this activity has maximum influence on the remaining
cycle time, whereas a value of 1 implies minimal influence.

Definition 3.4. (Activity Occurrence Kernel Function) Let A be a set of

activities. We define the activity occurrence kernel function φAO : IN|A| × A∗ ×
[0..1]|A| → [0..1], such that

φAO(~x, σ, ~λAO) =
∏

a∈A

(~λAO(a))
|~x(a)−~P(σ)(a)|

with 00 := 1 (2)

Using the activity occurrence kernel function, we now complete our activity
occurrence predictor by substituting it in Equation 1.

Definition 3.5. (Activity Occurrence Predictor) Let A be a set of activi-
ties, let W be a log over A and let MAO

W be the activity occurrence measurements
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over W . Furthermore, let σ ∈ A∗ be a partial case. The expected remaining cy-
cle time, given the bandwidth parameters ~λAO , of this case is estimated by
ρAO : A∗ → IR, as:

ρAO(σ) =

∑

(~x,y)∈MAO
W

φAO(~x, σ, ~λAO). y
∑

(~x,y)∈MAO
W

φAO(~x, σ, ~λAO)
(3)

With Definition 3.5, we have defined a prediction function that estimates the
remaining cycle time of any given sequence, based on the occurrences of activities
recorded in cases in the log. The quality of this prediction function depends on
the bandwidth variable ~λ, which is determined using the procedure described in
Section 2.3.

3.3 Activity Duration Estimator

The second regression-based estimator we present in this paper considers the
duration of each of the activities within cases. As we have shown in Section 2.2,
regression is based on measurements, which we therefore define for our logs.

Definition 3.6. (Activity Duration Measurement) Let A be a set of activ-
ities, let W be a log over A and let σ ∈ W be a case. We define the list of case
measurements as MAD

σ = 〈m1, . . . , m|σ|〉, where for all 0 < i ≤ |σ| holds that
mi = (~xi, τc(σ)−τc(↓0,i (σ))), with ~xi a vector such that for all a ∈ A holds that

~xi(a) =

∑

0<j<i
σj−1=a

δ(↓j−1,j (σ))

~P(↓0,i (σ))(a)
with

0

0
:= 0. (4)

We define the list of activity duration measurements MAD
W over W as the

concatenation of the case measurements.

Definition 3.6 defines the activity duration measurements, such that for each
(non-empty) prefix of a case, the measurement consists of (i) the average dura-
tion of each activity a ∈ A within this case (the sum of the durations of each
occurrence of a divided by the number of occurrences) and (ii) the remaining
cycle time of this case (the target variable).

In contrast to the activity occurrence measurements presented in Section 3.2,
the domains of the measurement variables (denoted by Xi in Section 2.2) are
not the natural numbers, but real numbers, i.e. each measurement is a vector of
semi-positive real numbers, which implies that we can define a concrete kernel
function for these variables.

For this purpose, we use a Gaussian kernel function [6], which is parameter-
ized by the bandwidth parameters λ ∈ IR+ for all activities1. A value close to 0
of the bandwidth parameter means that the influence of this parameter to the

1 For continuous variables, the bandwidth is often denoted by h instead of λ to show
the difference in domains. However, for consistency, we use λ.
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remaining cycle time is maximal. A value of ∞ represents the case where the
duration of an activity has no influence on the remaining cycle time.

We choose to use the Gaussian kernel, as it is the only kernel with infinite
support, other kernels will assign a weight of 0 to cases if their difference is
greater than a certain number, the Gaussian however will assign a calculated
weight to all cases although it might go to 0. In this way a prediction for a
partial case that has few to no precedents will be based on larger set.

Definition 3.7. (Activity Duration Kernel Function) Let A be a set of

activities. We define the activity duration kernel function φAD : IR|A| × A∗ ×
IR|A| → IR+, such that

φAD(~x, σ, ~λAD) =
∏

a∈A

κ
(

~x(a)−~P(σ)(a)
~λAD(a)

)

~λAD(a)
, where κ(u) =

e−u2/2

√
2π

(5)

Using the activity duration kernel function, we now complete our activity
duration predictor by substituting it in Equation 1.

Definition 3.8. (Activity Duration Predictor) Let A be a set of activities,
let W be a log over A and let MAD

W be the activity duration measurements
over W . Furthermore, let σ′ ∈ A∗ be a partial case. The expected remaining
cycle time, given the bandwidth parameters ~λAD , of this case is estimated by
ρAD : A∗ → IR, as:

ρAD(σ) =

∑

(~x,y)∈MAD
W

φAD(~x, σ, ~λAD). y
∑

(~x,y)∈MAD
W

φAD(~x, σ, ~λAD)
(6)

3.4 Case Attribute Estimator

The activity occurrence estimator of Section 3.2 considers the activity occur-
rences as measurements, which are variables from an ordered, ordinal domain
(IN). The duration estimator however uses activity durations as measurements
which are positive continuous variables (IR+). In this subsection, we present the
third type of variables, namely unordered ordinal variables.

Recall that Definition 2.3 presented a way to define arbitrary data attributes
on each case in a log. As we do not assume any knowledge about this data in the
log, we can only consider these data attributes to be unordered ordinal variables.
However, they might still be of influence for the prediction of the remaining cycle
time.

Definition 3.9. (Case Data Measurement) Let A be a set of activities, let
W be a log over A, let K be a set of attribute keys and let σ ∈ W be a case. We
define the list of case data measurements as MCD

σ = 〈m1, . . . , m|σ|〉, where for
all 0 < i ≤ |σ| holds that mi = (~xi, τc(σ) − τc(σp)), with xi a vector, such that
for all k ∈ K holds that xi(k) = ∆(↓0,i (σ))(k).

We define the list of activity occurrence measurements MCD
W over W as the

concatenation of the case measurements.
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In other words, for each non-empty prefix of a case, a measurement is taken
consisting of a vector representing the value of each attribute key for that prefix.
Note that this allows for case data to change during execution, i.e. attributed
might change value after certain activities have been performed.

If unordered ordinal variables are used for measuring, not much can be said
about the distance between two measurements. In fact, only when two variables
take the same value, they can be assumed to be close. Therefore, the kernel
function is a modified version of Definition 3.4.

Definition 3.10. (Case Data Kernel Function) Let A be a set of activities,
K a set of attribute keys and V the set of attribute values. We define the case
data kernel function φCD : V |K| × A∗ × [0..1]|K| → [0..1], such that

φCD(~x, σ, ~λCD) =
∏

k∈K

{

1, if ~x(k) = ∆(σ)(k)
~λ(k), if ~x(k) 6= ∆(σ)(k)

(7)

When comparing Definition 3.10 to Definition 3.4, it becomes clear that the
only difference is in the “distance” of two variables, i.e. when assuming that for
all unordered nominal variables (case data) the distance between different values
equals 1 (i.e. |~x(a) − ~xp(b)| := 1), then these definitions are the same.

Finally, for case data, we define the predictor.

Definition 3.11. (Case Data Predictor) Let A be a set of activities, let W

be a log over A, let K be a set of attribute keys, V the set of attribute values and
let MCD

W be the case data measurements over W . Furthermore, let σ′ ∈ A∗ be a
partial case. The expected remaining cycle time, given the bandwidth parameters
~λCD, of this case is estimated by ρCD : A∗ → IR, as:

ρCD(σ) =

∑

(~x,y)∈MCD
W

φCD(~x, σ, ~λCD). y
∑

(~x,y)∈MCD
W

φCD(~x, σ, ~λCD)
(8)

3.5 Combining Regression Estimators

In the previous subsection, we have presented three regression-based estimators.
The first estimator is based on the occurrences of activities within cases, which
is an ordered ordinal variable. The second is based on activity durations, a con-
tinuous variable and the last on case data, which we considered to be unordered
ordinal variables. All three estimators had the same structure, i.e. they consisted
of a set of measurements, a kernel function and a predictor. In this subsection
we show how to do regression on a mix of different variable types.

In definitions 3.3, 3.6 and 3.9, we presented the measurements for the differ-
ent types of variables. These measurements consisted of two parts, namely the
measurement variables and the target variable. This target variable is defined
the same for all measurements. Furthermore, all lists of measurements have the
same size, i.e. one measurement is taken per non-empty prefix of a case in the
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log. This allows us to easily combine these measurements into one vector con-
taining the activity occurrences, the activity duration and the case data for each
prefix.

For the combined measurements, the kernel function used in the regression
is simply the product of all individual kernel functions, applies to the relevant
measurement variables, i.e., the kernel function of Definition 3.4 is multiplied
with the kernel functions of definitions 3.7 and 3.10, where each of these functions
is applied to the relevant part of the vector of measurement variables.

4 Case Study

We tested our prediction approach on a dataset taken from real-life. In this
section, we present and discuss the results.

4.1 Case Description

For the verification of our approach, we used a dataset called “bezwaar WOZ”
from a Dutch municipality [7,11]. The process described in the log is the process
of handling objections filed against real estate taxes.

From the log that originally contains 1982 cases, we only kept those cases
that were fully contained in the measurement period, i.e. both their first and last
activity were performed in the measurement period. Furthermore, after consult-
ing the process owner, we removed those activities not relating to the main
procedure. This resulted in a log containing 706 cases, which were handled by
the municipality between February 28th 2005 and November 8th 2005 (a period
of 252 days). In total, 9218 events were recorded, relating to the start and com-
pletion of 12 activities. Note that the start events were only used to obtain the
durations of each activity. The complete events were used in the measurements.
Furthermore, all cases and all events were annotated with data attributes, which
we all used in the analysis.

4.2 Experiment Setup

We conducted experiments using five different estimators. The experiments were
set up as 10-fold cross validation experiments, meaning that each time, the origi-
nal log was split into 10 partitions. Then, 9 partitions were used as measurements
and using these measurements, the optimal values of the bandwidth parameters
were computed. For all cases in the remaining partition, estimates of the remain-
ing cycle time were computed using the optimal bandwidth parameters. These
estimates were computed after the occurrence of each activity, except the last.
2 By repeating this procedure 10 times, the remaining cycle time is estimated,
exactly once after completing each activity in the log (except for the last activity
in each case).

The five estimators we used were:
2 The last activity is not considered, as the case is than finished and therefore the

remaining cycle time is known.
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1. The naive approach of Section 3.1, i.e. the average cycle time over the 9
measurement parts minus the already passed time maximized with 0,

2. The estimator of Section 3.2, where only activity occurrences were taken into
account as measurements for the non-parametric regression,

3. The estimator of Section 3.3, where only activity durations were taken into
account as measurements,

4. The estimator of Section 3.4, where only case attributes were taken into
account as measurements,

5. The estimator of Section 3.5, taking into account attributes, as well as ac-
tivity occurrences and durations,

For each of the regression experiments, optimal values for the bandwidth
parameters were calculated using R [8], which uses an internal cross-validation
method for finding the optimal values of the bandwidth parameters. Bandwidth
selection and the computation of the predictions for each partial prefix, were
done using the software package R, running on four dual quad-core 2.66GHz
Intel Xeon CPUs with 16 GB of memory each. This setup allowed us to run
the 10 experiments of the 10-fold cross validation in parallel, as each experiment
uses a single thread. The longest experiment, using the activity durations as
measurements took 5 hours.

4.3 Discussion

Figures 1 to 5 show the results of our analysis. Each figure contains 3 lines,
representing the actual remaining cycle time (in read, with square markers),
the estimated remaining cycle time (in blue, with triangular markers) and the
mean square error of the estimate (in pink, using circular markers), which uses
a different scale. For sake of readability, the last part of each graph is zoomed
out and those points that did not fit on the scale are annotated with their exact
values.

On the x-axis, the time in days since the beginning of each case is depicted,
i.e. the longest case took 252 days to complete, which spans the whole measuring
period. On average, cases completed in 175 days. To get the points depicted in
each graph, measurements were averaged over 7 day periods, i.e. the average
time at which activities are performed within the first week of starting a case is
2.35 days, whereas the average remaining cycle time of those events is 173 days,
thus yielding the first point (2.35, 173) in the actual remaining cycle time graph.

All figures 1 to 5 show the same graph for the actual remaining cycle time.
Interestingly, after approximately 180 days, the actual remaining cycle time stays
constant at an average of 5 days.

Average Estimator: Figure 1 shows the performance of the average estimator.
As expected, this estimate is an almost straight line from an estimate of 175
days at time 0 to an estimate of 0 at 175 days and more. The deviations
from the straight line are caused by the nature of the 10-fold cross validation
experiment, i.e. the average cycle time over 9 partitions deviates from the
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Fig. 1. Estimated values using average estimator.
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Fig. 2. Estimated values using only activity duration.
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Fig. 3. Estimated values using only activity occurrences.
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Fig. 4. Estimated values using only attributes.
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Fig. 5. Estimated values using durations, occurrences and attributes.
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average cycle time over the log. Note that the scale of the mean-square error,
shown on the right-hand side, is different from the scale on the left-hand side.

The MSEs of all estimators are collected in Figure 6 and discussed in more
detail in Subsection 4.4.

Duration Estimator: Figure 2 shows the result of a 10-fold cross validation
experiment using only activity durations as measurements. The estimated
remaining cycle time follows the actual remaining cycle time more closely
than in Figure 1. However, the MSE of this estimator is far bigger. From
98 days after the start of a case, the duration estimator performs slightly
better than the average estimator, which can also be observed in Figure 6.
Nonetheless, it seems that using the durations as measurements does not
provide much insights into the remaining cycle time.

Occurrences Estimator: Figure 3 shows the results when using activity oc-
currences as measurements. Here, the estimator follows the actual remaining
time very closely, with a low value for the MSE. This indicates that using
the activity occurrences as measurements is a good idea when trying to ac-
curately predict the remaining cycle time of a case.

Attribute Estimator: As shown in Figure 4, using only the attribute values
provides an even better estimate. The blue line with triangles in Figure 4,
showing the estimator base on attributed follows the actual remaining cy-
cle time very closely, with an even lower MSE than the occurrences-based
estimator, as shown in Figure 6.

The bandwidth values indicate that the attributes “new queue”, “id”, and
“priority” are the most influential attributes. The “priority” attribute is a
boolean and the name suggests that this attribute indeed should have big
influence on the cycle time of a case.

The attribute “new queue” indicates the next activity to be performed for a
case, therefore this attribute changes as time passes and provides information
about the future which makes it a good attribute to base predictions on. A
fourth attribute that is relatively important is “queue”, which indicates the
activity that was just completed. As the non-parametric regression uses all
variables to compare and select the most relevant cases, the combination
of “queue” and “new queue” provide a good basis for selecting the most
relevant cases from the measurements.

The attribute “id”, indicates the case-identifier. As the cross-validation splits
up the log, it ensures that the measurement of a case is never used to make
a prediction for that same case. Therefore, the weight of this attribute is
irrelevant to the prediction. This shows that it is very difficult to derive
information from the values in the bandwidth.

Combined Estimator: Figure 5 shows the results of the prediction when using
all available information, i.e. attribute values, activity occurrences and ac-
tivity durations. As shown in Figure 6, the combined estimator outperforms
all estimators except the attribute-based one. Especially in the beginning
and end of a case, the combined estimator performs worse.
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Table 1. Mean Square Error of all estimators.

Estimator Mean Square Error
(with 5% confidence interval)

Average Estimator 2687.47 ± 133.69
Durations Estimator 5134.12 ± 320.02
Occurrences Estimator 1754.61 ± 115.38
Attribute Estimator 1532.85 ± 103.25
Combined Estimator 1537.42 ± 106.44

4.4 Error Analysis

In Figure 6, the mean square errors of all four estimators are combined. The fig-
ure shows that overall, the durations-based estimator performs worst, whereas
the attribute-base estimator performs best. This is backed up by Table 1, which
shows the mean square error of all estimates made for each estimator (i.e. not
averaged per week as in Figure 6). It shows what we already concluded from
the figures, i.e. that the durations estimator performs worst, but that the occur-
rences, attribute and combined estimators outperform the average estimator.

The best estimates are provided by attribute-based estimator and the com-
bined estimator, which is not surprising as the attributes contain data relating
to the difficulty of the case. What is interesting however, is that the estima-
tor based on the occurrences of activities performs so well. This indicates that
insights can be gained into the remaining cycle time, without having to con-
sider privacy sensitive data. Especially in administrative processes, this can be
valuable.

5 Implementation

The approach presented in this paper was implemented using the process mining
framework ProM [1]. Figure 7 shows a screenshot of ProM showing the opened
log we used in our case study on the top-right, together with two plugins we
developed, namely the “Prediction Miner” and the “Event Data Attribute Visu-
alizer”. ProM can be downloaded from www.processmining.org and the plugins
mentioned in this paper are available in the nightly builds.

5.1 Prediction Miner

The “Prediction Miner”, shown on the left-hand side of Figure 7, provides a
simple interface to the user for the analysis presented in this paper. It can be
used to connect to our machines running R [8] via TCP/IP [10], but it also
allows users to run R locally. Furthermore, it allows users to select the kernel
functions to be used for different types of variables, as well as to set parameters
not mentioned in this paper.
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Fig. 7. ProM showing the opened log (top-right), the settings of the prediction miner
(left) and the result as a graph (bottom-right).

5.2 Event Data Attribute Visualizer

The prediction miner annotates each “complete” event in the log with attributes
relating to the remaining cycle time. In fact, it always stores (i) the actual
remaining cycle time for each event, (ii) the non-parametric estimate of the
remaining cycle time and (iii) the average estimator of the remaining cycle time.
These attributes can be visualized using the “Event Data Attribute Visualizer”,
which in Figure 7 shows these estimators on the bottom-right. Also settings are
provided for selecting the histogram size, in our case 7 days, i.e. the points in
the graph are averaged over 7 day periods.

6 Conclusion and Future Work

In this paper, we presented a regression-based method for predicting the remain-
ing cycle time of a case in a process. As input, we used an event log of the process
under consideration, where we explicitly used information about the durations
of all activities, the occurrence of all activities and any other case-related data.
Using an example of a real-life process taken from practice, we have shown that
our approach outperforms the naive approach of average cycle time minus the
already spent time.

As a regression technique, we used non-parametric regression, where we as-
sumed that activity durations are continuous variables, activity occurrences are
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ordered ordinal variables and that all other case-data variables are unordered
ordinal variables.

Although our results show that the predictions made under these assump-
tions are accurate, we expect that improvements can be made when case-data
variables are not assumed to be unordered ordinal, but also to be ordered or even
continuous. However, deciding about the type of variable for each data attribute
is a human job, which can typically only be performed by the process owner,
since it requires insights into the process at hand and the semantics of the data
attributes.

To gain a deeper understanding of the situations in which the regression-
based predictions perform well, we are currently conducting simulation exper-
iments. For more information on these experiments and their results, we refer
to [4].

The approach presented in this paper has been implemented in the process
mining framework ProM and is available via www.processmining.org.
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