
Fundamenta Informaticae XXI (2001) 1001–1023 1001

IOS Press

Working with the Past: Integrating History in Petri Nets

Kees van Hee, Alexander Serebrenik C, Natalia Sidorova, Wil van der Aalst
Department of Mathematics and Computer Science

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

k.m.v.hee, a.serebrenik, n.sidorova, w.m.p.v.d.aalst@tue.nl

Abstract. Most information systems that are driven by process models (e.g., workflow manage-
ment systems) record events in event logs, also known as transaction logs or audit trails. We con-
sider processes that not only keep track of their history in a log, but also make decisions based on
this log. To model such processes we extend the basic Petri net framework with the notion of his-
tory and add guards to transitions evaluated on the process history. We show that some classes of
history-dependent nets can be automatically converted to classical Petri nets for analysis purposes.
These classes are characterized by the form of the guards (e.g., LTL+Past guards) and sometimes
the additional requirement that the underlying classical Petri net is either bounded or has finite syn-
chronization distances.

1. Introduction

Numerous state-of-the-art enterprize information systems contain a workflow engine, that keeps track of
all events as a part of its basic functionality. In this paper, which is a revised version of [17], we consider
processes that not only record the events but also make choices based on the previous events, i.e. based
on its history. The ability of a system to change its behavior depending on its observed behavior is known
as adaptivity and in this sense this paper is about a special class of adaptive systems.

In classical Petri nets the enabling of a transition depends only on the availability of tokens in the in-
put places of the transition. We extend the model by recording the history of the process and introducing
transition guards evaluated on the history. To illustrate the use of history, we consider a simple example
of two traffic lights on crossing roads.
CCorresponding author

Figure 1. Traffic lights: without restrictions (left) and alternating (right).

a

b

c f

d

e

RedL RedR

GreenL

OrangeL

GreenR

OrangeR

p

q

a

b

c f

d

e

RedL RedR

GreenL

OrangeL

GreenR

OrangeR

#{d}=#{e} and #{b}<#{e}+L

#{a}=#{b} and #{e}<#{b}+R

Figure 2. A history-dependent Petri net with parameters R en L (left) and the history guards replaced according
to Theorem 6.3 for R = 1 en L = 2 (right).

Example 1.1. Figure 1 (left) presents two traffic lights, each modelled by a cycle of three places and
three transitions. The places are modeling the states of each traffic light (red, green and yellow), and the
transitions change the lights from one color to the next color. We assume that in the initial state both
lights are red.

We want the system to be safe and fair, i.e., the traffic lights are never green at the same time, the
right traffic light can become green at most R times more than the left traffic light, and similarly, the
left traffic light can become green at most L times more than the right traffic light. Usually one takes
R = 1 and L = 0, or R = 0 and L = 1 implying alternating behavior of the traffic lights. In order to
obtain the alternating behavior one traditionally adds control places p and q as in the right-hand side of
Figure 1. This figure models the situation with R = 0 and L = 1. Note that it is not easy to generalize
this construction for arbitrary R and L.

Our approach consists in making the guards explicit as shown in left-hand side of Figure 2. To ensure
safety, we require that b can fire only if the right traffic light is red, i.e., transitions d and e have fired the
same number of times. The guard of b is written then as #{d} = #{e}. Similarly, e obtains the guard
#{a} = #{b}. In order to guarantee fairness, we require that in any history, b fires at most L times

more than e, i.e. #{b} ≤ #{e}+ L, and e fires at most R times more than b, i.e., #{e} ≤ #{b}+ R.
To ensure this we add the additional requirement #{b} < #{e}+ L to the guard of b and the additional
requirement #{e} < #{b}+ R to the guard of e. This results in the history dependent Petri net shown
in Figure 2 (left).

Using history we can separate the modeling of the standard process information (switching the traffic
light to the following color) from additional requirements ensuring the desired behavior. Hence, we
believe that introducing history-dependent guards amounts to enhanced modeling comfort. Observe also
that global access to the history allows to ease modeling of synchronous choices. Assume that at a certain
point a choice has to be made between transitions a and b. Assume further that the only impact of this
choice is somewhere later in the process: a′ has to be chosen if a has been chosen and b′ has to be chosen
if b has been chosen. A classical solution of this problem involves creating two places pa and pb with the
only incoming arc coming from a (b) and the only outgoing arc leading to a′ (b′). Rather than cluttering
our model with additional places, we set the guard of a′ (b′) to demand that a (b) has been chosen before.

In this paper we consider two approaches to introduce history into the Petri net model: (1) token
history, where each individual token carries its own history, i.e., history can be seen as special kind
of color, and (2) global history, where there is a single centralized history and every transition guard is
evaluated on it (like in our traffic lights example). Token history can be used in distributed settings where
different components do not have information about the actions of other components. Global history is
in fact a special case of token history for transparent systems where all components are aware of the
actions of other components.

By introducing history-dependent guards, we increase the expressive power. On the traffic lights
example, we can easily see that we can check the emptiness of a place using history: RedR is empty if
and only if #{e} − #{d} = 1. Hence, we can model inhibitor arcs and consequently our formalism
is Turing complete. Since, we are interested not only in modeling but also in verification, we identify a
number of important classes of global history nets (e.g. nets with LTL guards) that can be transformed
to bisimilar classical Petri nets and provide corresponding transformations. For instance, the history-
dependent net one the left-hand side of Figure 2 can be automatically transformed to the classical net on
the right-hand side (we took R = 1 and L = 2).

Due to the Turing completeness, not every history-dependent net can be represented by a classical
Petri net. We are still interested in simulation and validation of history-dependent nets. Simulation and
validation are however complicated by the fact that the representation of the current state of the system
requires in general an unbounded amount of memory, due to the growth of the history. We solve this
problem for a Turing complete subclass of global history nets (in which we use event counting, but not
event precedence in the guards) by defining a transformation to bisimilar inhibitor nets. Inhibitor nets,
though being Turing complete, have a state representation of a fixed length (a marking), which makes
the simulation and validation feasible.

The remainder of the paper is organized as follows. After some preliminary remarks in Section 2,
we introduce the notion of event history together with a history logic in Section 3. Section 4 introduces
token history nets and Section 5 introduces global history nets. In Section 6 we show how to map several
subclasses of global history nets with counting formulas as guards to classical Petri nets or inhibitor
Petri nets, and in Section 7 we describe a transformation of global history nets with LTL+Past guards to
classical Petri nets. Finally, we review the related work and conclude the paper.

2. Preliminaries

N denotes the set of natural numbers and Z the set of integers.
Let P be a set. A bag (multiset) m over P is a mapping m : P → N. We identify a bag with all

elements occurring only once with the set containing the elements of the bag. The set of all bags over P
is denoted by NP . We use + and − for the sum and the difference of two bags and =, <, >,≤ and ≥ for
the comparison of bags, which are defined in a standard way. We overload the set notation, writing ∅ for
the empty bag and ∈ for the element inclusion. We write e.g. m = 2[p]+ [q] for a bag m with m(p) = 2,
m(q) = 1, and m(x) = 0 for all x 6∈ {p, q}. As usual, |m| and |S| stand for the number of elements in
bag m and in set S, respectively.

For (finite) sequences of elements over a set P we use the following notation: The empty sequence is
denoted with ε; a non-empty sequence can be given by listing its elements. The set of all finite sequences
of elements over P is denoted P ∗. For a given sequence σ over P the Parikh vector σ : P → N maps
every element of σ to the number of its occurrences in σ.

A transition system is a tuple E = 〈S,Act , T 〉 where S is a set of states, Act is a finite set of action
names and T ⊆ S × Act × S is a transition relation. We say that E is finite if S is finite. A process
is a pair (E, s0) where E is a transition system and s0 ∈ S an initial state. We denote (s1, a, s2) ∈ T
as s1

a−→E s2, and we say that a leads from s1 to s2 in E. We omit E and write s
a−→ s′ whenever

no ambiguity can arise. For a sequence of action names σ = a1 . . . an we write s1
σ−→ s2 when

s1 = s0 a1−→ s1 a2−→ . . .
an−→ sn = s2. Next, s1

∗−→ s2 means that there exists a sequence σ ∈ T ∗ such
that s1

σ−→ s2. We say that s2 is reachable from s1 if and only if s1
∗−→ s2. Finally, the language of a

process (E, s0), denoted L(E, s0), is defined as {σ | σ ∈ T ∗, ∃s : s0
σ−→ s}.

Definition 2.1. Let E1 = 〈S1,Act , T1〉, E2 = 〈S2,Act , T2〉 be transition systems. A relation R ⊆
S1 × S2 is a simulation if and only if for all s1, s

′
1 ∈ S1, s2 ∈ S2, s1

a−→E1 s′1 implies that s2
a−→E2 s′2

and s′1 R s′2 for some s′2 ∈ S2.
E1 and E2 are bisimilar if there exists a relation R ⊆ S1 × S2 such that both R and R−1 are

simulations. Two processes (E1, s1) and (E2, s2) are bisimilar if there exists a relation R ⊆ S1 × S2

such that both R and R−1 are simulations, and s1 R s2.

Next we introduce a number of notions related to Petri nets.

Definition 2.2. A Petri net N over a fixed set of labels Σ is a tuple 〈P, T, F,Λ〉, where: (1) P and T
are two disjoint non-empty finite sets of places and transitions respectively; we call the elements of the
set P ∪ T nodes of N ; (2) F : (P × T) ∪ (T × P) → N is a flow relation mapping pairs of places
and transitions to the naturals; (3) Λ : T → Σ is a labeling function that maps transitions of T to action
labels from Σ.

An inhibitor net is a tuple 〈P, T, F,Λ, I〉 such that 〈P, T, F,Λ〉 is a Petri net and I ⊆ P × T is a set
of inhibitor arcs.

We present nets with the usual graphical notation. For any pair of nodes x, y with F (x, y) ≥ 1, we
say that (x, y) is an arc with weight F (x, y).

Given a transition t ∈ T , the preset •t and the postset t• of t are the bags of places where every p ∈ P
occurs F (p, t) times in •t and F (t, p) times in t•. Analogously we write •p, p• for pre- and postsets of
places.

A marking m of N is a bag over P ; markings are states (configurations) of a net. A pair (N, m)
is called a marked Petri net. A transition t ∈ T is enabled in marking m if and only if •t ≤ m and
moreover, for inhibitor nets, m(p) = 0 for any p such that (p, t) ∈ I . An enabled transition t may fire.
This results in a new marking m′ defined by m′ def= m − •t + t•. We interpret a labeled Petri net N
as a transition system/process 〈NP , Λ(T),−→〉 / (〈NP , Λ(T),−→〉,m0) respectively, where markings
play the role of states and labels of the firing transitions play the role of action names. The notion of
reachability for Petri nets is inherited from the transition systems. We denote the set of all markings
reachable in net N from marking m as RN (m). We will drop N and write R(m) when no ambiguity
can arise. A marked net (N,m0) is called bounded if its reachability set is finite.

Finally, the notion of bisimilarity for marked Petri nets is also inherited from processes.

3. Event History and History Logic

In this section we present the general notion of event history. In the coming sections we investigate two
kinds of nets that use event history: token history nets and global history nets.

One might expect an event history to be a totally ordered series of events. However, information
on relative order of events registered by different components might be missing. Therefore, we define a
history as a partial order.

Definition 3.1. Given a set of action labels Σ, a history is a labeled poset, i.e., a triple 〈E,≺, λ〉, where
E is a set of events coming from a fixed universe E ,≺ is a partial order on E and λ : E → Σ is a labeling
function. If E = ∅ the corresponding history is called the empty history and denoted by ε.

Two histories 〈E1,≺1, λ1〉 and 〈E2,≺2, λ2〉 are consistent if and only if the transitive closure of
≺1 ∪ ≺2 is a partial order for E1 ∪ E2 and λ1(e) coincides with λ2(e) for any e ∈ E1 ∩ E2.

The class of all histories over the given set of action labels Σ is denoted HΣ.
We define two operations to create a new history out of existing histories: extension and union.

Definition 3.2. The extension 〈E,≺, λ〉 :: ` of a history 〈E,≺, λ〉 with an event labeled by ` is the
history 〈E ∪ {e},≺`, λ`〉, where e is a new event,1 ≺` is defined as ≺ ∪{(x, e) | x ∈ E} and λ` maps e
to ` and coincides with λ on E.

The union 〈E1,≺1, λ1〉 ∪ 〈E2,≺2, λ2〉 of consistent histories is defined as 〈E1 ∪ E2,≺, λ1 ∪ λ2〉,
where ≺ is the transitive closure of ≺1 ∪ ≺2.

These operations will be used in the next sections on token history and global history for Petri nets.
In global history nets each firing of a transition extends the global history. In token history nets, tokens
created by a transition firing carry the union of histories of the consumed tokens extended with the firing
event.

Next we present a language of history-dependent predicates that will be used in the guards of history-
dependent nets. From here on we assume a countable set Var of variables to be given.

1Note that it is essential that e is a “fresh” identifier not present in E but also not used in any “known” history.

Definition 3.3. Given a set Σ of labels and x ∈ Var, we define a formula ϕ, a term q and a label
expression l over Σ as follows:

ϕ ::= false | ϕ ⇒ ϕ | x ¹ x | q < q | l == l

q ::= N | (#Var : ϕ) | (q + q)
l ::= Σ | λ(x)

Sets of formulas, terms and label expressions over Σ are denoted as FΣ, QΣ and LΣ, respectively.

Using the definition above we can define the following short-hand notations in the standard way:
true, ¬, ∧, ∨, >, ≥, ≤, = (comparisons of terms). We omit brackets if this does not introduces ambigu-
ities. The counting operator # is powerful enough to express the standard quantifiers: We write ∃x : ϕ
for (#x : ϕ) > 0 and ∀x : ϕ for (#x : ϕ) = (#x : true). For a finite set of labels S = {s1, . . . , sn},
` ∈ S stands for (` == s1∨ . . .∨ ` == sn) and #S stands for (#x : λ(x) ∈ S). Finally e1 ≺ e2 means
that (e1 ¹ e2) ∧ ¬(e2 ¹ e1).

In order to define the semantics we introduce the notion of an assignment defined as a mapping of
variables from Var to events from E. Given a variable x, an event e and an assignment ν, ν[x → e]
denotes the assignment that coincides with ν for all variables except for x which is mapped to e.

Definition 3.4. Given a history H = 〈E,≺, λ〉 and an assignment ν, the evaluation eval and the truth
value of a formula are defined by mutual structural induction. The evaluation function eval maps a term
q to N as follows:

eval(H, ν, q) =

q if q ∈ N;∣∣{e ∈ E | 〈H, ν[x → e]〉 |= ϕ}∣∣ if q is #x : ϕ;
eval(H, ν, q1) + eval(H, ν, q2) if q is q1 + q2.

Similarly, eval maps a label expression l to Σ:

eval(H, ν, l) =

{
l if l ∈ Σ;
λ(ν(x)) if l is λ(x).

Finally, the truth value of a formula is defined as follows:

• 〈H, ν〉 |= false is always false;

• 〈H, ν〉 |= ϕ1 ⇒ ϕ2 if not 〈H, ν〉 |= ϕ1 or 〈H, ν〉 |= ϕ2;

• 〈H, ν〉 |= x1 ¹ x2 if ν(x1) ≺ ν(x2) or ν(x1) coincides with ν(x2);

• 〈H, ν〉 |= q1 < q2 if eval(H, ν, q1) < eval(H, ν, q2) (< is the standard order on the naturals);

• 〈H, ν〉 |= l1 == l2 if eval(H, ν, l1) coincides with eval(H, ν, l2).

One can show that for closed terms and formulas, i.e., terms and formulas where all variables appear
in the scope of #, the result of the evaluation does not depend on ν. Therefore, for a closed term q we

also write eval(H, q) and for a closed formula ϕ we also write H |= ϕ. The set of closed formulas over
Σ is denoted CFΣ.

To illustrate our language, we return to the traffic light example from Figure 2. The guards of tran-
sitions are formulated as in Definition 3.3. For the case R = 0, L = 1 the guard of the transition b can
alternatively be formulated with the use of the precedence operator≺ as ∀x : (λ(x) = b ⇒ ∃y : (λ(y) =
e ∧ x ≺ y)).

4. Token History Nets

In this section we introduce token history nets as a special class of colored Petri nets [18] with history as
color. The tokens of an initial marking have an empty history and every firing of a transition t produces
tokens carrying the union of the histories of the consumed tokens extended with the last event, namely
the firing of transition t labeled by Λ(t).

Definition 4.1. A token history net N is a tuple 〈P, T, F,Λ, g〉 such that NP = 〈P, T, F,Λ〉 is a labeled
Petri net and g : T → CFΛ(T) defines the transition guards.
The semantics of a token history net is given by the transition system defined as follows:

Color is the set of possible histories 〈E,≺, λ〉 over the label set Λ(T). A state m of a token history
net N is a bag of tokens with histories as token colors, i.e., a marking m : (P × Color) → N.

The transition relation is specified by: m
a−→ m′ if and only if there exist a transition t with

Λ(t) = a, a history H and two bags cons and prod of tokens such that:

• H =
⋃

(p,c)∈cons c (H is the unified history),

• cons ≤ m (tokens from cons are present in m),

• ∑
(p,c)∈cons [p] = •t (sufficiently many tokens are consumed from the right places),

• prod =
∑

p∈t• [(p,H :: Λ(t))] (prod is the bag of tokens to be produced),

• m′ = m− cons + prod , and

• H |= g(t) (i.e., the guard evaluates to true given the unified history H).

A token history net is thus defined by attaching a guard to all transitions of a classical Petri net. A
transition guard is evaluated on the union H of histories of consumed tokens. Recall that the union of
two histories is defined for consistent histories only. We will call a marking consistent if the union of
all its token histories is defined. The following lemma states that consistency of markings is an invariant
property (observe that a transition firing cannot destroy consistency).

Lemma 4.1. Let m be a consistent marking and m
∗−→ m′ for some marking m′. Then m′ is consistent.

Proof:
Assume for the sake of contradiction that m

a−→ m′, m is consistent and m′ is not. Then, the only
history produced by the firing is H :: a, where H is the union of the histories of the tokens consumed.
Let H ′ = 〈E′,≺′, λ′〉 be a history of token in m′ such that H :: a and H ′ are not consistent. Let H :: a

b

c

a

p

q

d

#{a}=1

Figure 3. A token history net.

be 〈E,≺, λ〉. Then, either the transitive closure of≺ ∪ ≺′ is not a partial order on E∪E′, or there exists
e ∈ E ∩ E′ such that λ(e) does not coincide with λ′(e). However, semantics of the extension operation
implies in both cases that H and H ′ are also inconsistent. However, H ′ is a color of a token in m and
H is a union of histories of tokens in m. Hence, by Definition 4.1 m is inconsistent, contradicting the
assumption. ut

To conclude this section we illustrate the semantics of token history nets.

Example 4.1. Consider the token history net in Figure 3. Firings of transition d are are allowed if and
only if there is only one event labeled by a in the union of the histories of tokens consumed from places
p and q, i.e. tokens on p and q originate from the same initial token. Let the sequence abcabc fire
from the initial marking, which results in the marking m = [(p,H1)] + [(p,H2)] + [(q, H3)] + [(q,H4)]
with H1 = 〈{e1, e2}, {e1 ≺ e2}, {(e1, a), (e2, b)}〉, H2 = 〈{e4, e5}, {e4 ≺ e5}, {(e4, a), (e5, b)}〉,
H3 = 〈{e1, e3}, {e1 ≺ e3}, {(e1, a), (e3, c)}〉 and H4 = 〈{e4, e6}, {e4 ≺ e6}, {(e4, a), (e6, c)}〉. The
transition labeled d can fire consuming tokens [(p,H1)] and [(q, H3)] since the tokens share event e1

in their history. The produced token is [(s,H5)] with H5 = 〈{e1, e2, e3, e7}, {e1 ≺ e2, e1 ≺ e3, e1 ≺
e7, e2 ≺ e7, e3 ≺ e7}, {(e1, a), (e2, b), (e3, c), (e7, d)}〉. This transition cannot fire on e.g. [(p,H1)] and
[(q, H4)] since the union H1 ∪H4 contains two events (e1 and e4) labeled by a while the guard specifies
that the number of a events should be one (#{a} = 1). Token history allows thus distinguishing between
tokens originating from different firings of the same transition, i.e., mimicking another popular color,
namely case identifiers.

5. Global History Nets

In this section we introduce global history nets, where history is a separate object accessible when the
guards of transitions are evaluated.

Definition 5.1. A global history net N is a tuple 〈P, T, F,Λ, g〉 such that NP = 〈P, T, F,Λ〉 is a labeled
Petri net and g : T → CFΛ(T) defines the transition guards.
The semantics of global history nets is defined as follows:

A state of N is a pair (m,H) where m is a marking of NP and H is a history over Λ(T). The
transition relation is specified by: (m,H) a−→ (m′,H ′) if and only if there exists t ∈ T such that
λ(t) = a, •t ≤ m, H |= g(t), m′ = m− •t + t• and H ′ is H :: Λ(t).

Given a global history net N we denote by S(N) the set of all states of the net. Analogously to
marked Petri nets we consider marked global history nets being pairs (N, (m,H)) such that N is a
global history net and (m,H) ∈ S(N). The set of states reachable from (m,H) in N is denoted
RN ((m,H)); the set of states reachable from an initial state (m0, ε) is thusRN ((m0, ε)). We denote by
HN the set of histories reachable from (m0, ε), i.e., {H|∃m (m,H) ∈ RN ((m0, ε))}. Elements of HN

are linearly-ordered finite sets of labeled events.
The interleaving semantics results in the following property:

Proposition 5.1. Let N = 〈P, T, F,Λ, g〉 be a global history net and (m, 〈E,≺, λ〉) ∈ RN ((m0, ε)).
Then ≺ is a total order on E.

Note that history does not contain information which transitions exactly have fired, but labels of
those transitions only. Therefore, knowing the initial marking and the history, we cannot reconstruct the
current marking in general. However, it can easily be seen that if Λ is injective the current marking can
be derived from the initial marking an history.

Proposition 5.2. Let N = 〈P, T, F,Λ, g〉 be a global history net such that Λ is injective. Then, for a
given H: (m1,H), (m2,H) ∈ RN ((m0, ε)) implies m1 = m2.

This proposition implies that by using global history nets with injective labeling we are able to ex-
press conditions on the marking. To illustrate this, we introduce #•p as a shorthand for

∑
t∈•p #{Λ(t)}

for some place p, i.e., #•p is the number of tokens produced to the place p. Similarly, #p• denotes∑
t∈p• #{Λ(t)}, i.e., the number tokens consumed from p according to the history. (Note that the sum

is taken over a bag.) Now, let m0 be the initial marking of a global history net N where Λ is injective,
and assume (m,H) ∈ RN ((m0, ε)). Clearly, m(p) = m0(p) −#p• + #•p for any p ∈ P . Hence, in
transition guards we can express any condition on the current state. For example, by adding the condition
m0(p) − #p• + #•p = 0 we can simulate inhibitor arcs. Since inhibitor nets are known to be Turing
complete (cf. [26]), global history nets with unique labels are Turing complete as well.

Corollary 5.1. Global history nets N = 〈P, T, F,Λ, g〉 are Turing complete.

Next we discuss the implications of Corollary 5.1 on the expressive power of token history nets.

5.1. Token history vs. global history

Observe that in general it is impossible to derive the corresponding token histories from the history of
a global history net. Consider the net from Figure 3 as a global history net and suppose that its global
history is aabc. One cannot derive whether the tokens on places p and q will share the history event
labeled by a or not. On the other hand, in general it is impossible to reconstruct the corresponding global
history from a given a marking of a token history net, since no information is available on the order of
truly concurrent firings. So marking m from Example 4.1 can be obtained as a result of firing sequences
abcabc, aabbcc, abacbc, etc. and have the corresponding global history. We can however mimic a global
history net with a token history net.

The key idea behind our construction is adding a new place p∗ with one initial token, connected to all
transitions. Since the token in p∗ is updated at each firing, it will keep a global log. Since all transitions

are connected to p∗, their guards will be evaluated on the same history as in the original global history
net. We formalize this intuition in the following definition.

Definition 5.2. Let N = 〈P, T, F,Λ, g〉 be a global history net with initial marking m0. A token history
net N ′ = 〈P ′, T, F ′, Λ, g〉 with initial marking m′

0 is called the log extension of N if P ′ = P ∪ {p∗}
(with p∗ 6∈ P being the new place), F ′(n1, n2) = F (n1, n2) for (n1, n2) ∈ (P × T) ∪ (T × P)
and F ′(n1, n2) = 1 for (n1, n2) ∈ ({p∗} × T) ∪ (T × {p∗}), and ∀p ∈ P : m′

0((p, ε)) = m0(p),
m′

0((p
∗, ε)) = 1 and m′

0((p, x)) = 0 in all other cases.

It is easy to show that N and N ′ are indeed bisimilar.

Lemma 5.1. (N, (m0, ε)) and (N ′, m′
0) as above are bisimilar.

Proof:
Recall that we interpret marked Petri nets as processes, i.e., we need to show that (〈NP , Λ(T),−→
〉, (m0, ε)) and (〈NP∪{p∗}, Λ(T), =⇒〉, m′

0) are bisimilar. As a simulation relation we choose: (m,H) R m′

if and only if (p∗,H) ∈ m′ ∧ ∀p ∈ P : m(p) = #{x|(p, x) ∈ m′}. By definition of m′
0, (m0, ε) R m′

0.
Let m1, m2,m

′
1 and H1,H2 be such that (m1,H1) R m′

1 and (m1,H1)
a−→ (m2,H2). Since

a ∈ Λ(T) there exists t ∈ T , enabled in (m1,H1) with Λ(t) = a. However, t is enabled in (m1,H1) if
and only if m1 ≥ •t and H1 |= g(t). Since (m1, H1) R m′

1, m′
1(p

∗) = [H1] and for all p ∈ P there exists
x such that m′

1((p, x)) = m1(p). Hence, t is enabled in m′
1 as well. Let m′

2 be such that m′
1

a=⇒ m′
2.

By definition of the firing relation for global history nets, m2 = m1 − •t + t• and H2 = H1 :: a.
Definition of the firing relation for token history nets implies therefore that (m2,H2) R m′

2. Hence R
is a simulation relation. Similarly, one can show that R−1 is a simulation relation as well, implying that
the nets are bisimilar. ut

Corollary 5.2. Token history nets are Turing complete.

Proof:
By Lemma 5.1 and Corollary 5.1. ut

It is easy to map both a token history net and a global history net onto a colored Petri net with token
values being histories. Figure 4 shows a screenshot of CPN Tools simulating the two traffic lights from
Example 1.1 controlled by history. Note that we added place p∗ to store the global history.

The remainder of this paper focuses on global history nets.

6. Global History Nets with Counting Formulas Guards

In this section we consider global history nets with guards being counting formulas, i.e., formulas that
do not explore the precedence of events ≺. Formally, a counting formula ϕ is defined as

ϕ ::= false | ϕ ⇒ ϕ | q < q | l == l

where q and l are terms and label expressions as in Definition 3.3.

Figure 4. The history-dependent Petri net with parameters R en L and using a global place to record history
simulated using CPN Tools.

Note that global history nets with counting formulas guards are Turing complete since they allow
zero testing on the marking of a place. To facilitate simulation and validation of these nets, we show that
every global history net with counting formulas guards can be transformed into a bisimilar inhibitor net.
Furthermore, we identify conditions on the global history net implying that the net can be translated to a
bisimilar classical Petri net.

6.1. Nets with counting formulas as guards vs. inhibitor nets

We start with the simplest form of counting formulas, namely (#A) ρ (#B + k) for some A, B ⊆ Σ,
ρ ∈ {≥,≤} and k ∈ N. For the sake of brevity we call these expressions basic counting formulas (over
A and B). Note that taking B equal to ∅ we obtain (#A) ρ k (since #∅ = 0).

Lemma 6.1. Let (N, m0) be a marked global history net with N = 〈P, T, F,Λ, g〉 such that for any
t ∈ T , g(t) is a basic counting formula. There exists a marked inhibitor net (N ′,m′

0) bisimilar to
(N,m0).

a

s'

b'

a'

s

b

t

(b) g(t) = #A ≤ #B+k removed

A

...

B

...

...

...

A’

B’

t

a

b

A

...

B

...

invariant:

max{0,#B-#A+k+1}

g(t)

invariant:

max{0, #A-#B-k-1}

a

s

b'

a'

s’

b

t

A

...

B

...

...

...

A’

B’

invariant:

max{0,#B-#A-1}
initial:

1

(a) Transition with guard g(t)

k+1

initial:

k+1

invariant:

max{0, #A-#B+1}

(c) g(t) = #A ≥ #B+k removed

Figure 5. Replace the guard by places s and s′, duplicate transitions, and inhibitor arcs.

Proof:
We apply to the net (N,m0) an iterative process of guard elimination resulting in (N ′,m′

0). At every
iteration step we will replace one of the transition guards of the current net by true, adding some places
and transitions to preserve the net behavior. The process terminates when all guards are true, i.e. we
obtained a regular inhibitor net.

Let t be a transition whose guard we eliminate at the next step and let g(t) be #A ρ #B+k for some
A,B ⊆ Σ, ρ ∈ {≥,≤} and k ∈ N. We can assume that A and B are disjoint, since (#A) ρ (#B + k)
if and only if (#(A \B)) ρ (#(B \A) + k).

Figure 5 shows the basic idea of the eliminating a transition with guard g(t). Consider, for example
the case ρ equals≤. Figure 5(a) sketches the relevant features of the initial net and Figure 5(b) shows the
net where guard g(t) = (#A ≤ #B +k) is eliminated. Note that A and B refer to the sets of transitions
having a label from A respectively B. For the purpose of illustration, we show a transition with label
a ∈ A and a transition with label b ∈ B (note that may not be such transitions).

In order to mimic the guard g(t), we add places s and s′, where s will contain max{0, #B −#A +
k+1} tokens while s′ will contain max{0, #A−#B−k−1} tokens. Note that g(t) = (#A ≤ #B+k)
evaluates to true if and only if there is at least one token in s, therefore we add a bidirectional arc between
s and t. In the initial marking m0(s) = k + 1 and m0(s′) = 0.

To support the computations on s and s′, we need to duplicate all transitions with a label in A ∪ B,
i.e., for every v such that Λ(v) ∈ A or Λ(v) ∈ B we add a transition v′ with •v′ = •v, v′• = v•, and
Λ(v′) = Λ(v). The resulting sets of transitions are referred to as A′ and B′ in Figure 5(b). It is essential
to note that the transitions are mutually exclusive in terms of enabling, i.e., for any marking m and any
transition v such that Λ(v) ∈ A or Λ(v) ∈ B either m enables v or m enables v′. Moreover, s and s′ are
non-blocking, i.e., if v ∈ T was enabled in the original net, then either v or v′ is enabled in the net with
inhibitors.

The construction for ρ equal to ≥ is similar as shown in Figure 5(c). Note that the initial marking
has been updated and that t now tests for the presence of k + 1 tokens in s where s always contains
max{0,#A−#B + 1} tokens.

As mentioned above, the transformation is repeatedly applied until no guarded transition is left. The
bisimilarity of (N, m0) and (N ′,m′

0) can be trivially proven by induction. ut

Our interest in transitions with basic counting formulas as guards is motivated by the fact that any
non-trivial counting formula is equivalent to a disjunction of conjunctions of basic counting formulas.

Lemma 6.2. Any counting formula ϕ can be written in disjunctive normal form where the literals are
positive basic counting formula (i.e. without negations), so ϕ ≡ true or ϕ ≡ false or ϕ ≡ ∨

i(
∧

j ψi,j)
and each ψi,j is a basic counting formula.

Theorem 6.1. Let (N, m) be a marked global history net with N = 〈P, T, F,Λ, g〉 such that for any
t ∈ T , g(t) is a counting formula. There exists a marked inhibitor net (N ′,m′) bisimilar to (N,m).

Proof:
By Lemma 6.2 we consider only disjunctions of conjunctions of basic counting formulas. First we
transform our net to a net where all guards are conjunctions of basic counting formulas by applying the
following construction: Every transition t with a guard ϕ∨ψ is replaced by transitions tϕ with the guard
ϕ, and tψ with the guard ψ, where •tϕ = •tψ = •t, t•ϕ = t•ψ = t• and Λ(tϕ) = Λ(tψ) = Λ(t).

At the next step we eliminate conjuncts from the guards one by one by applying the construction
depicted in Figure 5. The only difference is that we apply the construction to a transition t with a guard
(#A ρ #B + k) ∧ ϕ, and the guard of t in the resulting net is then ϕ. ut

6.2. Boundedness and analyzability of global history nets with counting formulas as
guards

Although the construction referred to in the proof of Theorem 6.1 is applicable to any global history
net with counting formulas as guards, the resulting net contains inhibitor arcs and therefore, cannot be
analyzed easily because of Turing completeness. However, it is well-known that inhibitor arcs can be
eliminated in bounded inhibitor nets. Boundedness of classical or inhibitor Petri nets is in principle
finiteness of its state space. Hence it is interesting to explore “finiteness notions” for global history nets.

Finiteness of RN ((m0, ε)) for a global history net N = 〈P, T, F,Λ, g〉 does not imply boundedness
of the underlying Petri net (〈P, T, F,Λ〉,m0) and vice versa. In Figure 6 we see two global history nets.
The underlying Petri net shown in Figure 6(a) is unbounded, while the global history net has a finite state
space due to the transition guard. The underlying Petri net shown in Figure 6(b) is bounded, while the
global history net has an infinite state space just because it has an unbounded history. Still, the behavior

Figure 6. Bounded and unbounded nets

of this net is clearly analyzable, since it is possible to construct a classical Petri net bisimilar to it. The
latter observation motivates why we are interested in the existence of a classical Petri net bisimilar to the
global history net.

In the two following subsections we discuss sufficient conditions for the existence of a bisimilar Petri
net (without history).

6.2.1. Guards depending on the marking only

In this subsection we give conditions on the guards that allow for a transformation into an equivalent
bounded Petri net. So global history nets satisfying these conditions will accept regular languages. We
consider here guards that depend only on the marking. As stated by Proposition 5.2 if transitions have
unique labels, then a marking is uniquely determined by the history.

Definition 6.1. Given a global history net N = 〈P, T, F,Λ, g〉 with Λ being injective, we say that a
formula ϕ is a marking formula if there exists a formula ψ, ϕ ≡ ψ, such that ψ is a counting formulas
and every basic counting formula in ψ is of the form (#•p) ρ (#p• + k) or (#•p + k) ρ (#p•), for
p ∈ P , k ∈ N and ρ ∈ {≤,≥}.

Theorem 6.2. Let N = 〈P, T, F,Λ, g〉 be a global history net with injective Λ such that for any t ∈ T ,
g(t) is a marking formula. If the underlying Petri net (〈P, T, F,Λ〉,m0) is bounded, then there exists a
bounded marked Petri net bisimilar to (N, (m0, ε)).

Proof:
We construct a N ′′ = 〈P ′, T ′, F ′′, Λ〉 and a marking m′′

0 such that (N ′′,m′′
0) bisimilar to (N,m0). We

start by adding a duplicate place p′ for every place p ∈ P such that •p′ = p• and p′• = •p. Since
the underlying Petri net is bounded, there exists b ∈ N such that for any reachable marking m and
any place p, m(p) ≤ b. We take n larger than the sum of b and the maximum of all constants in the
guards. We define m′

0 for N ′ as follows: ∀p ∈ P : m′
0(p) = m0(p) ∧m′

0(p
′) = n −m0(p). Observe

that m(p) + m(p′) = n for any reachable marking m. Moreover, by construction, #•p = #p′• and
#p• = #•p′ for any place p.

Without loss of generality we assume that transition guards are conjunctions of the form (#•p) ρ (#p•+
k) with k ≥ 0 and ρ ∈ {≤,≥}. Indeed, first, proof of Theorem 6.1 shows how general counting for-
mulas can be reduced to basic counting formula. Second, if the guard is of the form (#•p + k) ρ #p•,
by the previous observation, we obtain (#p′• + k) ρ #•p′, i.e., (#•p′) ρ′ (#p′• + k) with ρ′ being the

comparison dual to ρ, i.e. ρ′ ∈ {≤,≥} \ {ρ}. We denote the resulting net N ′ = 〈P ′, T ′, F ′, Λ〉. Next
we are going to add arcs depending on the guards of N .

We distinguish between two cases. Let g(t) be (#•p) ≤ (#p• + k). Then t may fire only if
the number of tokens consumed from p does not exceed the number of tokens produced to p by more
than k, i.e., the number of tokens produced to p′ does not exceed the number of tokens consumed from
p′ by more than k. In other words, m′

0(p
′) has at least k tokens. Moreover, if t ∈ •p′ then t may

fire only if p′ contains at least F ′(p, t) tokens. Therefore, we add an arc between p′ and t: F ′′(p′, t) =
max{F ′(p′, t),m′

0(p
′)−k}, i.e., max{F (t, p), n−k−m0(p)}. To complete the transformation, observe

that we are not allowed to change the behavior of the original net. Thus, we need to return tokens to p′.
To this end we add an arc between t and p′: F ′′(t, p′) = F ′(t, p′) + max{0,m′

0(p)− k−F ′(p′, t)}, i.e.,
F (p, t) + max{0, n− k −m0(p)− F (t, p)}.

Observe that this case also covers the situation when g(t) is (#•p) ≥ (#p• + k) and k = 0.
Therefore, we assume in the second case ((#•p) ≥ (#p•+k)) that k > 0. Similarly to the previous case,
we add two arcs between p and t: F ′′(p, t) = max{F ′(p, t), k+m′

0(p)}, i.e., max{F (p, t), k+m0(p)},
and F ′′(t, p) = F ′(t, p) + max{0, k + m′

0(p)−F ′(p, t)}, i.e., F (t, p) + max{0, k + m0(p)−F (p, t)}.
In both cases t can fire if and only if the guard holds and the firing does not change the behavior of

the original net. ut

6.2.2. Counting formulas with bounded synchronization distance

In this subsection we consider a condition on guards that allows to transform a global history net to a
bisimilar Petri net, which is not necessarily bounded. We use here an important concept in Petri nets
introduced by Carl Adam Petri: synchronization distance [9, 12, 22]. We use a generalization of this
notion, the so-called y-distance [25].

Definition 6.2. Let (N, m0) be a Petri net and n be the number of transitions in N . For a weight vector
y ∈ Zn the y-distance of (N,m0) is defined by

D((N, m0), y) = sup
σ∈∆

yT · σ,

where yT is the transpose of y, σ is the Parikh vector of σ and ∆ the set of all executable finite firing
sequences. The synchronization set is

Sync((N, m0)) = {y ∈ Zn | D((N,m0), y) < ∞}.

In the right-hand net of Figure 6 transitions b and c can fire infinitely often. If we take the underlying
classical Petri net, the transitions are completely independent of each other and the y-distance is ∞ for
any weight vector with at least one positive component. If we consider the global history net instead,
the number of the firings of c never exceeds the number of the firings of b by more then 11. Hence the
y-distance with y = 〈−1, 1〉 is 11. On the other hand, the number of firings of b is not restricted by the
number of the firings of c, and the y-distance for y = 〈1,−1〉 is ∞.

For two label sets A and B, the characteristic weight vector for (A,B), denoted y(A,B), is the weight
vector with components equal to 1 for transitions with labels in A, −1 for transitions with labels in B
and 0 for all other vector components (recall that we may safely assume that A and B are disjoint).
We denote the y(A,B)-distance by d(A,B) and we call it the characteristic distance (A,B). In [25], an

a

s

b

t

(a) g(t) = #A ≤ #B+k removed

A
...

B
...

invariant:
max{0,#B-#A+u}

a

s

b

t

A
...

B
...

invariant:
max{0,#A-#B+u}

u+k

initial: u

(b) g(t) = #A ≥ #B+k removed

initial: u

u-k

Figure 7. Transforming nets with synchronization distance restrictions

algorithm is given to decide whether y ∈ Sync((n,m0)) and to determine the y-distance by examining
a finite set of vectors.

Theorem 6.3. Let N = 〈P, T, F,Λ, g〉 be a global history net with initial marking m0 such that for
any t ∈ T , g(t) is a disjunction of conjunctions of counting formulas of the form #A ρ #B + k with
ρ ∈ {<,≤, >,≥}, for each of which the following property holds: if ρ is ≤ then d(A,B) < ∞ and if ρ
is ≥ then d(B,A) < ∞ in the underlying Petri net (〈P, T, F,Λ〉,m0). Then there exists a marked Petri
net (N ′,m′

0) bisimilar to (N, m0).

Proof:
The proof is done by construction. Disjunctions and conjunctions are taken care of as in Theorem 6.1.
Therefore, we restrict our attention to the following special case: the guard of transition t is a basic
counting formula of the form #A ρ #B + k.

For the first case, where ρ is ≤, we set u = max{k, d(A,B)} + 1. Note that u ≤ k implies that
the guard of t will always be evaluated to true, and thus may be trivially removed. So we assume
that u > k. We apply the construction shown at the left-hand side of Figure 7. A new place s is
added with F (b, s) = 1 for all b such that Λ(b) ∈ B, F (s, a) = 1 for all a such that Λ(a) ∈ A, and
F (s, t) = F (t, s) = u − k. Furthermore, the initial marking is m′

0(s) = u. Transition t can fire if and
only if s contains at least u− k tokens. Note that u− k > 0 and that for any reachable state (m,H) we
have m′(s) = u + #B −#A ≥ u− d(A,B) > 0. Therefore t can fire only if #B − #A ≥ −k and
the transitions with labels in A or B are thus not restricted in their firings.

The second case, displayed in the right-hand net of Figure 7, is similar: u = max{k, d(B, A)}+ 1,
the arcs are reversed, F (s, t) = F (t, s) = u + k and m′

0(s) = u. ut

Applying Theorem 6.3 to the global history net one the left-hand side of Figure 2, one obtains the
classical net on the right-hand side of the figure (we took R = 1 and L = 2).

7. Global History Nets with Temporal Logic Formulas as Guards

In this section we take a complementary approach: while in the previous section we considered count-
ing formulas, i.e., excluded ordering of the events ≺, here we consider temporal formulas, i.e., restrict

counting to express ∃ and ∀. Hence, we allow the guards to be first order logic formulas over a finite
linearly-ordered set of events. It is well-known that the first order logics on linear traces coincides with
LTL+Past [19, 7], where LTL+Past formulas are defined by φ ::= false | φ ⇒ φ | φ XU φ | φ YS φ |A,
A ⊆ Σ, XU is the temporal operator neXt-Until, and YS is the temporal operator Yesterday-
Since [6, 7]. Semantics of the temporal operators can be expressed in terms of CFΣ. Let N be a
global history net, 〈E,≺, λ〉 ∈ HN and e ∈ E. We define A(e) as (λ(e) ∈ A), (φ XU ξ)(e)
as ∃e′ : ((e ≺ e′) ∧ ξ(e′) ∧ ∀e′′ : ((e ≺ e′′) ∧ (e′′ ≺ e′)) ⇒ φ(e′′)) and (φ YS ξ)(e) as
∃e′ : ((e′ ≺ e) ∧ ξ(e′) ∧ ∀e′′ : ((e′ ≺ e′′) ∧ (e′′ ≺ e)) ⇒ φ(e′′)). We call a formula involving
XU but not YS a pure future formula, a formula involving YS but not XU is a pure past formula
and a formula not involving temporal operators a pure present formula.

Traditional temporal operators X (“next”), Y (“yesterday”), U (“until”), S (“since”), ♦ (“eventu-
ally”), ♦- (“once”), ¤- (“always in the past”) and ¤ (“always”) can be defined based on XU and
YS in a usual way, e.g., Xφ := false XU φ, φ Uψ := ψ ∨ (φ ∧ (φ XU ψ)), ♦φ := true Uφ,
¤φ := ¬(♦¬φ). Using this notation we can express properties such as “every request submitted in the
past was eventually granted” ¤- (request ⇒ ♦grant) and “every future grant should be preceded by a
request” ¤(grant ⇒ ♦- request).

While standard LTL+Past works on infinite traces, our history is always finite. Therefore, we interpret
formulas on a trace we observed so far. We evaluate the formulas with respect to the most recent event
of a given history. Recall that in this section we restrict our attention to histories produced by firings of
global history nets, which are linearly-ordered finite sets of labeled events, the most recent event of a
given history is always unique.

The following lemma states that for finite traces one can restrict attention to boolean combinations
of pure past and pure present formulas. For the sake of brevity we call such combinations no-future
formulas.

Lemma 7.1. Let φ be an LTL+Past formula. Then, there exists an LTL+Past formula ψ such that: (1) ψ
is a no-future formula, and (2) for any global history net N , and for any H ∈ HN , H |= φ if and only if
H |= ψ.

Proof:
By the separation theorem [6, 7, 8] there exists a boolean combination of pure past formulas, pure future
formulas and pure present formulas ξ equivalent to φ, i.e., evaluated to the same value on all infinite
traces. Since we restrict our attention to finite traces and evaluate the formulas on the most recent event
of the given history, the pure future formulas participating in ξ are evaluated to false. Therefore, we take
ξ with all pure future formulas replaced by false as ψ. ut

To illustrate the separation theorem consider the following example.

Example 7.1. Let φ be ¤- (request ⇒ ♦grant). First of all, we replace the temporal operators used by
XU and YS :

((request ⇒ grant) ∨ (true XU grant)) ∨ ¬(true YS (¬(request ⇒ grant) ∧ ¬(true XU grant)))

The “only part” of the formula that has to be rewritten is (true YS ¬(request ⇒ grant∨(true XU grant)).

Applying the rewrite rules of [7] to true YS ¬(request ⇒ grant ∨ (true XU grant)) obtain

(((true ∧ ¬grant) YS ¬(request ⇒ grant)) ∧ ¬grant ∧ ¬(true XU grant))
∨

(¬grant ∧ ¬true ∧ ((¬grant ∧ true) YS ¬(request ⇒ grant)))
∨

(true YS (¬grant ∧ ¬true ∧ true ∧ ((¬grant ∧ true) YS ¬(request ⇒ grant))))

The second and the third disjuncts are false . Hence φ is equivalent to

((request ⇒ grant) ∨ (true XU grant))
∨¬((¬grant YS ¬(request ⇒ grant)) ∧ ¬grant ∧ ¬(true XU grant)). (1)

As explained in the proof of Lemma 7.1 we replace pure future formulas of (1) by false. Hence, the
following formula is obtained:

(request ⇒ grant) ∨ ¬((¬grant YS ¬(request ⇒ grant)) ∧ ¬grant). (2)

We can further simplify formula (2) using the following observation. While standard LTL+Past
assumes atomic properties, our atomic properties are occurrences of events. Hence, no two events can
occur at the same time in a history obtained by firings of a global history net. This means that formulas
can be further simplified: a ∧ b can be replaced by false, a ⇒ b by b, etc. Hence, (2) can be simplified
to ¬request ∨ ¬((¬grant YS request) ∧ ¬grant), i.e., to

¬request ∨ ¬(¬grant YS request) ∨ grant. (3)

7.1. Global history nets with no-future guards

In this subsection we discuss a translation for global history nets with no-future formulas as guards. In
order to translate such a global history net to a classical Petri net, we first translate it to a colored Petri
nets over a finite set of colors, which can be translated to a classical Petri net [18].

The intuition behind the translation is that one does not need an unbounded number of values to
compute the value of a formula. For instance, the value of ¤- a on a history H = 〈{e1 . . . en},≺, λ〉 with
ei ≺ ej if and only if i < j, can be computed from the value of ¤- a on H ′ = 〈{e1 . . . en−1},≺, λ〉 and
a(en), i.e., H |= ¤- a can be determined as (H ′ |= ¤- a) ∧ a(en). This means that in order to compute ¤- a
one should have one extra place with a token recording the value of ¤- a on H ′. The next lemma states
that the value of any formula can be computed by using finitely many of such places.

To state the lemma we need an auxiliary notion of the set of subformulas of a given formula. Given
a formula φ we define the set of subformulas sub(φ) as follows: sub(A) = {A}, sub(false) = {false},
sub(Y ψ) = {Y ψ} ∪ sub(ψ), sub(ψ Sξ) = {ψ Sξ} ∪ sub(ψ) ∪ sub(ξ) and sub(ψ ⇒ ξ) = {ψ ⇒
ξ} ∪ sub(ψ) ∪ sub(ξ).

Lemma 7.2. Let φ be an no-future formula. Then, there exist functions init : sub(φ) → {false, true}
and a function update : Σ × (sub(φ) → {false, true}) → (sub(φ) → {false, true}) such that ε |= α
evaluates to init(α), and H |= α evaluates to update(λ(e), (H ′ |= φ))(α) for any α ∈ sub(φ), H =
〈E,≺, λ〉, where e ∈ E is the most recent event of H , i.e., ∀e′((e′ ∈ E) ⇒ (e′ ¹ e)), H ′ = 〈E \{e},≺′
, λ′〉, ≺′=≺ \{(e′, e) | e′ ∈ E} and λ′ restricts λ to E \ {e}.

Proof:
We prove the lemma by induction on the structure of φ. At each step we construct init and update
assuming that the corresponding functions are available for sub(φ) \ φ.

If φ is A then init(A) is false, and update(`, v)(A) is true if ` ∈ A, and false, otherwise. If φ is false ,
we take init(false) = false and update(`, v)(false) to be false. If φ is ψ ⇒ ξ we define init(ψ ⇒ ξ)
as init(ψ) ⇒ init(ξ), and update(`, v)(ψ ⇒ ξ) as update(`, v)(ψ) ⇒ update(`, v)(ξ). Observe that the
update functions are defined since ψ, ξ ∈ sub(φ).

For Yesterday-Since we first observe ψ YS ξ evaluates to false on the empty history. Hence,
init(ψ YS ξ) = false. To define update observe (ψ YS ξ)(e) = ξ(e′) ∨ (ψ(e′) ∧ (ψ YS ξ)(e′)),
where e′ is the event preceding e (i.e., e′ ≺ e and for any e′′ differing from e′, e′′ ≺ e implies e′′ ≺ e′).
Therefore, update(`, v)(ψ YS ξ) = v(ξ) ∨ (v(ψ) ∧ v(ψ YS ξ)). ut

To illustrate the construction proposed above consider the following example:

Example 7.2. We proceed with the running example and define init and update for (3). For the sake of
brevity we denote ¬request ∨ ¬(¬grant YS request) ∨ grant by ψ:

init(request) = false
update(`, v)(request) = ` ∈ {request}
init(grant) = false
update(`, v)(grant) = ` ∈ {grant}
init(¬grant) = true
update(`, v)(¬grant) = ¬(update(`, v)(grant))
init(¬grant YS request) = false
update(`, v)(¬grant YS request) = v(request) ∨ (v(¬grant) ∧ v(¬grant YS request))
init(¬(¬grant YS request)) = true
update(`, v)(¬(¬grant YS request)) = ¬(update(`, v)(¬grant YS request))
init(¬request) = true
update(`, v)(¬request) = ¬(update(`, v)(request))
init(ψ) = true
update(`, v)(ψ) = update(`, v)(¬request)∨

update(`, v)(¬(¬grant YS request))∨
update(`, v)(grant)

Corollary 7.1. Every no-future formula can be represented by finitely many init and update functions.

Proof:
Every no-future formula can be represented as suggested in Lemma 7.2. Observe that for every α ∈
sub(φ) we defined two functions, init and update. Since sub(φ) is finite, every φ is therefore represented
by finitely many functions. ut

Let N = 〈P, T, F, λ, g〉 be a global history net, N ′ = 〈P ′, T, F ′, λ, g〉 be the log extension of N (cf.
Definition 5.2) and k =

∑
t∈T |sub(g(t))|. Then, we evaluate N ′ as a colored Petri net over the following

color set: {•} ∪ {false, true}k, i.e., black tokens and boolean vectors of k dimensions. Intuitively, the
token at p∗ records the values of the functions needed to evaluate the guards, while other places may
contain only black tokens (•). Construction proposed in Lemma 7.2 implies that the value of the token
at p∗ can be initialized using init and updated using update.

Formally, we redefine the semantics of a log extension as follows:

Definition 7.1. Let N ′ = 〈P ∪ {p∗}, T, F ′, λ, g〉 be the log extension of a global history net N =
〈P, T, F, λ, g〉. Color is the set {•} ∪ {false, true}k, for k =

∑
t∈T |sub(g(t))|. A state m of N ′ is

a bag of colored tokens, such that all tokens residing on places from P are black, and tokens at p∗ are
boolean vectors, i.e., a marking m : (P × {•} ∪ {p∗} × {false, true}k) → N.

The transition relation is specified by: m
a99K m′ if and only if there exist a transition t with λ(t) = a,

and two bags cons and prod of black tokens such that:

• v(g(t)) is true, where boolean vector v seen as a function is such that m(p∗, v) > 0;

• cons(p) ≤ m(p) for any p ∈ P ;

• ∑
(p,•)∈cons [p] = •t;

• prod =
∑

p∈t• [(p, •)];
• m′ = m− cons − (p∗, v) + prod + (p∗, update(a, v)), where update is defined in Lemma 7.2.

Furthermore, for a given marking m0 of N = 〈P, T, F,Λ, g〉 we define the corresponding marking
m′

0 of the log extension N ′ of N as follows: m′
0((p, •)) = m0((p, •)) for all p ∈ P and m′

0((p
∗, init)) =

1 where init :
⋃

t∈T sub(g(t)) → {false, true} is defined in Lemma 7.2.

Theorem 7.1. Let (N, (m0, ε)) with N = 〈P, T, F,Λ, g〉 be a marked global history net, and (N ′,m′
0)

be such that N ′ = 〈P ′, T, F ′, Λ, g〉 is the log extension of N and m′
0 is as above. Then, (NP , Λ(T),−→

,m0) and (NP ′ , Λ(T), 99K,m′
0) are bisimilar.

Proof:
Follows from Lemma 7.2. ut

Since N ′ is evaluated over the finite set of colors it can either be translated into a classical Petri
net [18] or the corresponding state space can be computed explicitly.

8. Related Work

Histories and related notions such as event systems [28] and pomsets [13, 5] have been used in the past
to provide causality-preserving semantics for Petri nets. Unlike our approach, these works did not aim at
restricting the firings by means of history-dependent guards. Baldan et al. [4] use two different notions
of history. First of all, they consider semi-weighted nets, i.e., nets where every token can be uniquely
identified by means of tokens used to produce it, transition that produces it and the name of the place

where it resides. This idea is similar in spirit to our token history. However, the authors do not make this
notion of history explicit nor do they discuss additional operations that can be performed on histories.
Neither this notion, nor history as configuration used by the authors in study of causality, can be used to
restrict firings of transitions by means of guards as suggested in our approach.

History-dependent automata [21] extend states and transitions of an automaton with sets of local
names: each transition can refer to the names associated to its source state but can also generate new
names which can then appear in the destination state. This notion of history implies that one cannot
refer to firings of other transitions but by means of shared names. We believe that the ability to express
dependencies on previous firings explicitly is the principal advantage of our approach.

Operations on pomsets similar to our union and intersection appeared under different names in [11,
23, 27]. The major distinction is due to unimportance of the events’ identities in these approaches.
Therefore, these operations make use of disjoint sum to define a union and bijectively rename the events
to define an intersection. Therefore, these operations are defined for any pomsets. Unlike the existing
approaches, we take the identities of the events into account. This guarantees that common parts of
histories appear only once in their union, and only truly common events appear in the intersection.

y-distance and related notions were studied starting from [9, 12, 22, 25]. Silva and Murata [24] intro-
duced group-B-fairness, where they extend the synchronization distance notion from single transitions
to the groups of transitions, like we do in Subsection 6.2.2. The focus of Silva and Murata’s paper
is however on group-B-fair nets, i.e., nets such that any pair of transition sets from a given transition
covering is in a group-B-fair relation. Unlike their work, Theorem 6.3 demands being in a group-B-fair
relation only for sets of transitions corresponding to sets of labels used in the guards.

Our transformation of no-future LTL+Past formulas discussed in Section 7.1 is related to verification
of LTL formulas on finite traces [10, 14], however, none of these approaches considered both future and
past temporal operators. Moreover, while Giannakopoulou and Havelund [10] exclude the “next” opera-
tor, we do include the corresponding past counterpart. A subsequent paper by Havelund and Ruşu [15]
generates an efficient dynamic programming algorithm from a Past LTL formula. However, the semantics
of the operator “yesterday” considered by the authors differs from the one used above. For a one-element
trace s they interpret s |= Y φ as true if and only if s |= φ evaluates to true, i.e., a trace consisting of
exactly one state is considered like a stationary infinite trace containing only this state. We believe that
assuming s |= Y φ to be false for a one-event history s is more natural in the context of global history
nets.

9. Conclusion

In this paper we emphasize the importance of taking history into account while modelling processes. His-
torical information is present in most state-of-the-art enterprise information systems. Moreover, it allows
to separate process information from safety constraints, improving the readability and maintainability of
models.

We have provided means to model history-dependent processes by extending the classical Petri nets
model and considered two ways of incorporating history: token history nets and global history nets.
To provide analysis, simulation and validation facilities, we have put a link from global history nets to
classical and inhibitor Petri nets. Namely, we have identified several subclasses of global history nets
that can be automatically transformed to classical Petri nets. For the class of global history nets with

counting formulas as guards we have defined a transformation to inhibitor nets. Finally, observe that
global history nets are readily implemented in CPN Tools [1].

Future work For the future work we plan to adapt our token net framework for modelling component-
based systems. We intend to extend the language of operations on histories by adding projection in order
to allow information hiding and intersection to check disjointness/presence of common parts in token
histories. The guard language will allow to evaluate conditions both on separate tokens and on their
combinations.

We are going to develop a method for transforming broader subclasses of global history nets to
classical and inhibitor Petri nets, e.g., we would like to consider global history nets with guards being
formulas from temporal logics other than Past+LTL such as FTL [3] and LogLogics [16].

Acknowledgement We are grateful to Jan Hidders and Jan Paredaens for a number of fruitful discus-
sions at the early stages of this research.

References

[1] CPN Tools. http://wiki.daimi.au.dk/cpntools/cpntools.wiki.

[2] 16th IEEE International Conference on Automated Software Engineering (ASE 2001), 26-29 November 2001,
Coronado Island, San Diego, CA, USA. IEEE Computer Society, 2001.

[3] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim, E. Singerman,
A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The forspec temporal logic: A new temporal property-specification
language. In Katoen and Stevens [20], pages 296–211.

[4] P. Baldan, N. Busi, A. Corradini, and G. M. Pinna. Domain and event structure semantics for Petri nets with
read and inhibitor arcs. Theoretical Computer Science, 323(1-3):129–189, 2004.

[5] E. Best and R. R. Devillers. Sequential and concurrent behaviour in Petri net theory. Theoretical Computer
Science, 55(1):87–136, 1987.

[6] V. Diekert and P. Gastin. First-order definable languages. In J. Flum, E. Grädel, and T. Wilke, editors, Logic
and Automata: History and Perspective, Texts in Logic and Games, pages 261–306. Amsterdam University
Press, 2008.

[7] D. M. Gabbay. The declarative past and imperative future: Executable temporal logic for interactive systems.
In B. Banieqbal, H. Barringer, and A. Pnueli, editors, Temporal Logic in Specification, volume 398 of Lecture
Notes in Computer Science, pages 409–448. Springer, 1987.

[8] D. M. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. On the temporal basis of fairness. In POPL, pages 163–173,
1980.

[9] H. J. Genrich, K. Lautenbach, and P. S. Thiagarajan. Elements of general net theory. In Proceedings of
the Advanced Course on General Net Theory of Processes and Systems, pages 21–163, London, UK, 1980.
Springer-Verlag.

[10] D. Giannakopoulou and K. Havelund. Automata-based verification of temporal properties on running pro-
grams. In ASE [2], pages 412–416. Full version available as a technical report.

[11] J. L. Gischer. The equational theory of pomsets. Theoretical Computer Science, 61:199–224, 1988.

[12] U. Goltz and W. Reisig. Weighted Synchronic Distances. In C. Girault and W. Reisig, editors, Selected Papers
from the First and the Second European Workshop on Application and Theory of Petri Nets, volume 52 of
Informatik-Fachberichte, pages 289–300. Springer Verlag, 1981.

[13] U. Goltz and W. Reisig. The non-sequential behavior of Petri nets. Information and Control, 57(2/3):125–
147, 1983.

[14] K. Havelund and G. Roşu. Monitoring programs using rewriting. In ASE [2], pages 135–143.

[15] K. Havelund and G. Roşu. Synthesizing monitors for safety properties. In Katoen and Stevens [20], pages
342–356.

[16] K. van Hee, O. Oanea, A. Serebrenik, N. Sidorova, and M. Voorhoeve. LogLogics: A logic for history-
dependent business processes. Sci. Comput. Program., 65(1):30–40, 2007.

[17] K. van Hee, A. Serebrenik, N. Sidorova, and W. M. P. van der Aalst. History-Dependent Petri Nets. In
J. Kleijn and A. Yakovlev, editors, ICATPN, volume 4546 of Lecture Notes in Computer Science, pages
164–183. Springer, 2007.

[18] K. Jensen. Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Monographs in
Theoretical Computer Science. Springer-Verlag, 1997.

[19] J. A. W. Kamp. Tense Logic and the Theory of Linear Order. PhD in Philosophy, University of California at
Los Angeles, 1968.

[20] J.-P. Katoen and P. Stevens, editors. Tools and Algorithms for the Construction and Analysis of Systems,
8th International Conference, TACAS 2002, Held as Part of the Joint European Conference on Theory and
Practice of Software, ETAPS 2002, Grenoble, France, April 8-12, 2002, Proceedings, volume 2280 of Lecture
Notes in Computer Science. Springer, 2002.

[21] U. Montanari and M. Pistore. History-dependent automata: An introduction. In M. Bernardo and A. Bogliolo,
editors, SFM, volume 3465 of Lecture Notes in Computer Science, pages 1–28. Springer, 2005.

[22] C. A. Petri. Interpretations of net theory. Technical Report ISF-Report 75.07, 1975.

[23] V. R. Pratt. Some constructions for order-theoretic models of concurrency. In R. Parikh, editor, Logic of
Programs, volume 193 of Lecture Notes in Computer Science, pages 269–283. Springer, 1985.

[24] M. Silva and T. Murata. B-fairness and structural B-fairness in Petri net models of concurrent systems. J.
Comput. Syst. Sci., 44(3):447–477, 1992.

[25] I. Suzuki and T. Kasami. Three measures for synchronic dependence in Petri nets. Acta Inf., 19:325–338,
1983.

[26] R. Valk. On the computational power of extended Petri nets. In J. Winkowski, editor, MFCS, volume 64 of
Lecture Notes in Computer Science, pages 526–535. Springer, 1978.

[27] H. Wimmel and L. Priese. Algebraic characterization of Petri net pomset semantics. In A. W. Mazurkiewicz
and J. Winkowski, editors, CONCUR, volume 1243 of Lecture Notes in Computer Science, pages 406–420.
Springer, 1997.

[28] G. Winskel. Event structures. In W. Brauer, W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets,
volume 255 of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

