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Abstract. The application of reduction rules to any Petri net may assist in its
analysis as its reduced version may be significantly smaller while still retaining
the original net’s essential properties. Reset nets extend Petri nets with the con-
cept of a reset arc, allowing one to remove all tokens from a certain place. Such
nets have a natural application in business process modelling where possible can-
cellation of activities need to be modelled explicitly and in workflow management
where such process models with cancellation behaviours should be enacted cor-
rectly. As cancelling the entire workflow or even cancelling certain activities in a
workflow has serious implications during execution (for instance, a workflow can
deadlock because of cancellation), such workflows should be thoroughly tested
before deployment. However, verification of large workflows with cancellation
behaviour is time consuming and can become intractable due to the state space
explosion problem. One way of speeding up verification of workflows based on
reset nets is to apply reduction rules. Even though reduction rules exist for Petri
nets and some of its subclasses and extensions, there are no documented reduc-
tion rules for reset nets. This paper systematically presents such reduction rules.
Because we want to apply the results to the workflow domain, this paper focusses
on Reset Workflow nets (RWF-nets), i.e. a subclass tailored to the modelling of
workflows. The approach has been implemented in the context of the workflow
system YAWL.
Keywords: Reset nets, reduction rules, workflow verification, soundness.

1 Introduction

The analysis of a non-trivial concurrent process is a complicated task. There are a num-
ber of different approaches to deal with this complexity. Reducing a specification, while
preserving its essential properties with respect to a particular analysis problem, is one
such approach. There exists a body of research that addresses the concept of reduction
in the area of Petri nets (see e.g.,[4, 13]) and its various subclasses (see e.g., free choice
nets [6]) and extensions (see e.g., timed petri nets [14]).

Reset nets ([5, 8–11]) extend Petri nets with the concept of a reset arc, a type of arc
that connects a place and a transition and which semantics is to remove all tokens from



that place when the transition fires. The complexity introduced by a reset arc (when
compared with Petri nets in general) is threefold: 1) as the transition removes all tokens
and not just one, place invariants do not hold for such nets, 2) the reset action can be
ineffective if a place does not contain any tokens at the exact time when the transition
fires and the reset action is carried out, and 3) a reset arc can affect any place in the
entire net (i.e., its effect is global), unlike normal arcs of a transition which can only
influence their input and output places (i.e., their effect is local). As a result, the notion
of reachability is undecidable for reset nets with more than two reset arcs [9].

Reset nets form a natural foundation for workflow languages with explicit support
for cancellation. Cancellation is an important concept in workflow management (see
e.g., [3]) where the execution of some activities may lead to the termination of other
activities in certain circumstances. Cancellation can be triggered by either a customer
request (e.g., a customer wishes to withdraw a credit card application) or by exceptions
(e.g., an order cannot be processed due to insufficient stock level). In general, cancel-
lation results in one of two outcomes: disabling some scheduled activities or stopping
currently running activities. The complicating factor is that due to concurrency issues,
the cancellation action may or may not result in cancelling certain activities, i.e., the
process may be in a state before or after the part that is supposed to be cancelled. This
can introduce deadlocks (the state where a business process is stuck and cannot pro-
ceed). As it is important to detect errors in workflows before their deployment, it is
desirable to speed up the analysis of workflows if possible. When this analysis is per-
formed on reset nets, corresponding to the workflows involved, this boils down to being
able to perform efficient reset net analysis. While there are potentially a number of av-
enues that could be explored in order to achieve this, one approach is the application of
reduction rules for reset nets.

When reducing a net it is imperative that certain essential properties are preserved.
In the area of workflow verification, soundness is such a property. Soundness is a cor-
rectness notion of workflows that requires that a workflow can always terminate, that
when termination is signalled no other tokens remain elsewhere in the net, and that it
does not contain any dead tasks [15]. A Reset Workflow net (RWF-net) is a reset net
with three structural restrictions: there is exactly one source node, one sink node and
every node in the graph is on a directed path from the source node to the sink node. See
Figure 1 for an example of a sound RWF-net. In Figure 1, transition t can remove to-
kens from places a, b, and c when it fires (denoted by double-headed arcs). By applying
reduction rules, it is possible to reduce the net while preserving the soundness property
of the net as shown in Figure 2, where transition y corresponds to transition t and its
successors in the original net and place v replaces all three places a, b, and c.
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Fig. 1. An example RWF-net
Fig. 2. Reduced RWF-net for the
net in Figure 1
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In this paper a number of soundness-preserving reduction rules for RWF-nets are
documented and proven correct. They are inspired by reduction rules provided for Petri
nets in [4, 13] and for Free Choice Petri nets provided in [6]. As mentioned before, there
are no documented reduction rules for reset nets that preserve soundness in the current
literature, and as it turns out, one has to be careful in determining the conditions under
which certain types of reductions can be applied. For example, because of the nature
of reset arcs removing all tokens when a transition fires, it is possible that an incorrect
net that does not satisfy the proper completion criterion (i.e. tokens can be left in the
net when it reaches the end) becomes sound when there is a reset arc to remove the
leftover tokens before completion. Another interesting finding is that strict conditions
are necessary for reset net reduction rules (for instance, two places can only be reduced
to one if and only if both places are reset by the same transition). Hence, the presence
of reset arcs does not offer new possibilities for reduction, rather it limits them. Also,
a reset arc can never be abstracted entirely from a reset net. That is, if a net contains
reset arcs, it is not possible to obtain a reduced net without any reset arc. Hence, the
goal of reduction is to reduce the number of reset arcs when these arcs are connected to
more than one place or transition and as a result, to reduce the complexity introduced
by multiple reset arcs.

The contributions of the paper are as follows:

– The set of reset net reduction rules represents a practical contribution to achieve
a more efficient verification of complex workflows with cancellation behaviours.
The rules have been implemented as part of the verification functionality of the
workflow language YAWL1.

– The reduction rules presented in this paper have wider applicability than the area of
workflow verification. They are equally applicable to other business process mod-
elling languages that support cancellation such as the Business Process Modelling
Notation (BPMN), the Business Process Execution Langauge (BPEL) and the Uni-
fied Modelling Language (UML).

– The paper also aims to make a contribution to the body of theory in reset nets.
The set of reduction rules presented in this paper are liveness and boundedness
preserving as well as soundness preserving.

The organisation of the rest of the paper is as follows. Section 2 provides the formal
foundation by introducing reset nets and RWF-nets. Section 3 introduces a simplified
credit card application process with cancellation feature and demonstrates how it can
be modelled as a RWF-net. Section 4 describes a set of reduction rules for RWF-nets.
Section 5 briefly mentions the implementation of the rules in the workflow language
YAWL. Section 6 discusses the related work and Section 7 concludes the paper.

2 Preliminaries

This section contains a number of background definitions to make the paper self-contained.
A reset net is a Petri net with special reset arcs, that can clear the tokens in selected
places, and are represented as doubled-headed arrows (see Figure 3).

1 www.yawl-system.com
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Definition 1 (Reset net [8]). A reset net is a tuple (P, T, F,R) where P is a (non-empty
finite) set of places, T is a set of transitions, P ∩ T = ∅, F ⊆ (P × T ) ∪ (T × P ) is
the set of arcs and R : T → P(P ) provides the reset places for the transitions.

Let N be a reset net and x ∈ (P ∪ T ), we use •x and x• to denote the set of inputs
and outputs. If the net involved cannot be understood from the context, we explicitly
include it in the notation and we write N

• x and x N
• . Relation F implies a function and

F (x, y) evaluates to 1 if (x, y) ∈ F and 0 otherwise. We write F ∗ for the reflexive
transitive closure of F . The notation R(t) for a transition t returns the (possibly empty)
set of places that it resets. We also write R↼(p) for a place p, which returns the set
of transitions that can reset p. A marking is defined as M : P → N and, just as with
ordinary Petri nets, it can be interpreted as a vector, function, or multiset over the set
of places P . IM(N) is used to represent a set of all possible markings of a reset net
N . M(p) returns the number of tokens in a place p if p ∈ dom(M) and 0 otherwise.
M ≤ M ′ iff ∀p∈PM(p) ≤ M ′(p). M > M ′ iff ∀p∈PM(p) ≥ M ′(p) ∧ ∃p∈PM(p) >
M ′(p). M + M ′ are multisets such that ∀p∈P : (M + M ′)(p) = M(p) + M ′(p).
Similarly, M −M ′ are multisets such that ∀p∈P : (M −M ′)(p) = M(p) −M ′(p)
where M(p) ≥M ′(p).

Fig. 3. An example reset net before and after firing transition t

In Figure 3, transition t is enabled at marking p1 + 2p2 + 2p3 + p6 as •t = p1 + p2
and t may fire. When transition t fires, it removes a token each from its input places p1
and p2, removes all tokens from its reset place p3, and puts one token each in its output
places p3, p4, p5, p6, resulting in the marking p2 + p3 + p4 + p5 + 2p6.

Definition 2 (Forward firing). Let N = (P, T, F,R) be a reset net, t ∈ T and
M,M ′ ∈ IM(N). Transition t is enabled at M , denoted as M [t〉, iff for all p ∈ •t :

M(p) ≥ 1. We denote M N,t

→ M ′ iff M [t〉 and

M ′(p) =

{

M(p)− F (p, t) + F (t, p) if p ∈ P \R(t)
F (t, p) if p ∈ R(t).

If there can be no confusion regarding the net, the expression is abbreviated asM t

→M ′

and if the transition is not relevant, it is written as M → M ′. We write M N,σ

→ Mn if
σ = t1t2...tn is an occurrence sequence leading from M to Mn i.e. M

t1→ M1
t2→

...
tn→Mn. The reachability set of the net N from marking M , denoted as N [M〉, is the

minimal set that satisfies the following conditions: (1) M ∈ N [M〉 and (2) if transition
t ∈ T and markings M1,M2 ∈ IM(N) exist such that M1 ∈ N [M〉 and M1

N,t

→ M2,

4



then M2 ∈ N [M〉. Workflow nets (WF-nets) forms a subclass of Petri nets with unique
input and output places, that can be used to represent workflow processes [15]. This
notion can be extended to reset nets.

Definition 3 (WF-net and RWF-net). Let N = (P, T, F ) be a Petri net. The net N is
a WF-net iff the following three conditions hold:(1) there exists exactly one i ∈ P such
that •i = ∅, and (2) there exists exactly one o ∈ P such that o• = ∅, and (3) for all
n ∈ P ∪ T : (i, n) ∈ F ∗ and (n, o) ∈ F ∗. Let N = (P, T, F,R) be a reset net. The net
N is an RWF-net iff (P, T, F ) is a WF-net.

Definition 4 (Soundness). Let N = (P, T, F,R) be an RWF-net and Mi = i, Mo = o

be the initial and end markings2. N is sound iff: (1) for every marking M reach-
able from Mi, there exists an occurrence sequence leading from M to Mo, i.e., for
all M ∈ N [Mi〉 : Mo ∈ N [M〉 (option to complete), and (2) the marking Mo is
the only marking reachable from Mi with at least one token in place o, i.e., for all
M ∈ N [Mi〉 : M ≥ Mo ⇒ M = Mo (proper completion), and (3) for every transi-
tion t ∈ T , there is a marking M reachable from Mi such that t is enabled at M , i.e.,
for all t ∈ T there exists an M ∈ N [Mi〉 such that M [t〉 (no dead transitions).

The soundness definition for an RWF-net is based on the soundness definition for WF-
nets [1]. In this definition, the second requirement follows from the first [12]. The op-
tion to complete requirement states that it should always be possible to complete the
net properly. Suppose we have an RWF-net for which the first item of soundness (op-
tion to complete) holds. Assume that the second does not hold, i.e., that there is some
marking M reachable such that M > Mo. The option to complete guarantees us that
from M we can reach Mo. As the tokens in o cannot enable any transition in the net,
we thus conclude that from marking M −Mo, we can reach the empty marking. As
all transitions have non-empty postsets, the empty marking cannot be reached. Hence,
the second requirement has to hold as well. Therefore, the soundness definition without
the second requirement is sufficient and is equivalent to the original definition. In the
next section, we prove for some of our reduction rules for RWF-nets that soundness is
preserved by showing that the rules preserve the option to complete and no dead transi-
tions criteria. The soundness property of a WF-net without reset arcs can be determined
from its reachability graph and is decidable [1]. Reachability is not decidable for an
arbitrary reset net [9], and soundness has been shown to be undecidable for RWF-nets
as well [16]. Nevertheless, it is still desirable to be able to perform soundness analysis
whenever possible.

3 An Illustrative Example: Credit card application process

In this section, we illustrate a simplified version of a credit card application process
using a RWF-net. To showcase the capability of reset arcs, we assume that an applicant
can request to cancel the credit card application at any point in time until a decision
has been made on the application. We first present the process model using the YAWL

2 Note the overloading of i and o: they are now used to denote a multiset containing one element.
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notation (see Figure 4) and we then present an equivalent RWF-net for the process (see
Figure 5). In Section 4, we use this example to demonstrate step-by-step reduction of
the model using the proposed reduction rules. In Section 5, the analysis results for this
process model using the implementation in YAWL are discussed.

The process starts when an applicant submits a credit card application (with the
proposed amount). Upon receiving an application (ra), a credit clerk checks whether
the submitted application is complete (cc). If not, the clerk requests additional infor-
mation from the applicant (rm) and waits until this information is received (ri) before
proceeding. At the same time a timer is set (to) so that if a certain period elapses be-
fore requested information is received, another request for information is sent again.
For a complete application, the clerk first checks the requested loan amount (cl). It is
then followed by additional checks to validate the applicant’s income and credit history.
Different checks are performed depending on whether the requested loan is large (pl)
or small (ps). The validated application is then passed on to a manager to make a de-
cision (md). In the case of acceptance, the credit card approval activity can start (sa).
The applicant is notified of the decision (na) and at the same time is asked for his/her
preference on any extra features (wx). The applicant can choose extra features such as
rewards program or secondary cardholders (cf) before a credit card is produced and
delivered (dc). This indicates the completion of the approval activity (ca) and the pro-
cess ends. For a rejected application, the applicant is notified of the rejection (nj) and
the process ends. An interesting feature of this process is that an applicant is allowed
to cancel an ongoing application at any time after it was received (ra) and before the
manager is ready to make a decision (md).

receive
more info

request
more info

check for 
completeness

check loan 
amount

make
decision

start
approval

complete
approval

time out

receive
application

process cancel
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waiting

ongoing
application

perform checks 
for small amount

perform checks 
for large amount

notify rejection

want extra 
features

deliver
credit card

choose
features

notify acceptance

yes

large

smallyes

no yes

no

no

Fig. 4. An example credit card application process modelled in YAWL

Figure 4 depicts a YAWL model of the credit card application process. A task in
YAWL is depicted as a rectangle and a place (which represents a state in between tasks)
is depicted as a circle. A YAWL model has a unique start point and a unique end point.
We will not go through every element of the model but select a number of typical exam-
ples for illustration. Firstly, the task check for completeness uses XOR-split to capture
the checking result and XOR-join to capture further check after additional informa-
tion is received. Next, the place waiting models a deferred choice between task receive
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more info and task time out. Thirdly, the place ongoing application models a deferred
choice between task process cancel request and task make decision. Finally, in the pro-
cess model, task process cancel request with its associated cancellation region (shown
within the dotted lines) capture the withdrawal of an ongoing application before ap-
prove/reject decision is made. That is, when task process cancel request is carried out,
all tokens from places in the cancellation region are removed and all tasks that are cur-
rently executing in the cancellation region are stopped.

Figure 5 depicts an equivalent RWF-net of the credit card application process. In
general, a YAWL task is mapped to a start transition and an end transition with a place
in between. For instance, task receive application (ra) is modelled as one start transition
(ras) and one end transition (rae) with an intermediate place to connect the two transi-
tions. The XOR-split and join behaviour of a YAWL task is modelled using a separate
transition for each path. For instance, two possible paths to start task Check for Com-
pleteness is depicted as ccs1 and ccs2 and two possible paths after completing check
for completeness task is shown as cce1 and cce2. If a task has a cancellation region as-
sociated with it, its end transition will have reset arcs (e.g., the end transition of process
cancel request (cne) has reset arcs). If a task is in the cancellation region of another task,
all tokens from its intermediate place is removed (e.g., task check for completeness is
in the cancellation region of task process cancel request and hence, the end transition of
process cancel request (cne) will have a reset arc from the intermediate place between
transitions ccs1 and cce1). If a place in the YAWL model is in the cancellation region of
a task, then its corresponding place in the RWF-net also have a reset arc from that place
to the end transition of the task (e.g., place waiting (wt) has a reset arc to transition cne).
To make the diagram more readable, we use a region instead of drawing separate reset
arcs from every place in the region to transition cne.

rasi rae

on

ccs1 cce1 cls

cle1 pls ple

cle2 pss pse

mde1 sas sae

mds

mde2 nrs nre

cns cne

wxe1 cfs cfe

wxe2

dcs1

wxs

naenas

cas cae o

cce2rms1rmeris wtrieccs2

tos toe rms2

dcs2

dce

Fig. 5. An equivalent RWF-net for credit card application process in Figure 4
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4 Reduction Rules for RWF-nets

In this section, we present seven soundness preserving reduction rules for RWF-nets.
For sake of clarity, we have taken a two-step approach: first the reduction rule for WF-
nets, then the extension for RWF-nets. The style of this section is taken from [6].

The soundness of WF-nets has been shown to correspond to boundedness and live-
ness properties of the short-circuited WF-net [1]. Therefore, if a reduction rule for a
WF-net preserves boundedness and liveness, then it also preserves soundness. We show
that as a reduction rule for a WF-net is boundedness and liveness preserving, it is also
soundness preserving. However, soundness of RWF-nets does not correspond to bound-
edness and liveness. It is possible that an unbounded RWF-net is sound due to the pres-
ence of reset arcs. In Figure 6, place q is an unbounded place and therefore, the net is
unbounded. Transition c resets both preceding places when it fires. As a result, it is not
possible for tokens to be left in either p or q when the net completes. Hence, the net
is sound and we cannot prove that a reduction rule for RWF-nets preserves soundness
by showing that it preserves boundedness and liveness. Therefore, we will show that
reduction rules for RWF-nets preserve soundness by proving that they preserve occur-
rence sequences and hence, preserve the criteria for soundness: the option to complete,
and no dead transitions.

Fig. 6. An example of an unbounded RWF-net which is sound.

Next, we present the first of the seven reduction rules for RWF-nets, the Fusion of
series transitions rule, and prove that the soundness property holds for a WF-net and
then for an RWF-net.

Please note that the presentation of the rest of the reduction rules follow the exact
same structure as the first rule. Our intention is to fully formalise these rules for com-
pleteness, for future reference and to present them in a standardised manner for ease of
understanding. The reader that wishes to concentrate on the essence of the rules can look
at the figures and the conditions and constructions for reset arc extensions of each rule,
while the reader that also wishes to convince themselves of the technical correctness of
these rules can look at the lemmas, the theorems, and the soundness proofs.

4.1 Fusion of series transitions
The Fusion of Series Transitions Rule for WF-nets (φFST) allows for the merging of
two sequential transitions t and u with one place p in between these two transitions
into only one transition v. The rule requires that there is only one input t and output u
for the place p, p is the only input of u, and there are no direct connections between
outputs of t and outputs of u. The last requirement ensures that there will only be one
arc connecting the new transition v to outputs of t in the reduced net. See the example
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in Figure 7 for an application of the φFST rule. Transitions t and u have been merged
into a new transition v in the right net. Note that transitions u and x cannot be merged
as x has two input places (q and r).

p qi u ot x

FST

r

qi ov x

r

Fig. 7. Reduction of a WF-net using the
φFST rule

p

t

u

v

Fig. 8. Fusion of Series Transitions Rule
for RWF-nets: φRFST

Definition 5 (Fusion of Series Transitions Rule for WF-nets: φFST). Let N1 and N2

be two WF-nets, where N1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈ φFST if
there exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩ P2, a place p ∈ P1,
two transitions t, u ∈ T1, and a transition v ∈ T2 \ T1 such that:

Conditions on N1:

1. •p = {t} (t is the only input of p)
2. p• = {u} (u is the only output of p)
3. •u = {p} (p is the only input of u)
4. t•∩u• = ∅ (any output of t is not an output of u and vice versa)

Construction of N2:

5. P2 = P1 \ {p}
6. T2 = (T1 \ {t, u}) ∪ {v}

7. F2 = (F1 ∩ ((P2×T2)∪ (T2×P2)))∪ (
N1

• t×{v})∪ ({v}× ((t
N1

• ∪u
N1

• ) \ {p}))

Theorem 1 (The φFST rule is soundness preserving). Let N1 and N2 be two WF-nets
such that (N1, N2) ∈ φFST. Then N1 is sound iff N2 is sound.

Proof The φFST rule is boundedness and liveness preserving [13]. Soundness of a WF-
net corresponds to boundedness and liveness of the short-circuited WF-net [1].

The Fusion of Series Transitions Rule for RWF-nets (φRFST) extends the φFST rule
by introducing reset arcs. The rule also allows for the merging of two sequential tran-
sitions t and u with one place p in between them into a single transition v. Figure 8
visualises the φRFST rule. Additional requirements (required to allow for reset arcs) are
that place p and output places of u should not be the source of any reset arcs and transi-
tion u should not reset any place. The rule allows reset arcs from transition t and these
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arcs will be assigned to the new transition v in the reduced net. Figure 9(a) shows a
counter-example where p is a reset place: transition sequence tx leads to a deadlock,
which does not exist in the other net. Figure 9(b) shows a counter-example where tran-
sition u has reset arcs: transition sequence tu leads to a deadlock, which does not exist
in the other net. Figure 9(c) shows a counter-example where the postset of u contains
a reset place: transition sequence txu results in two tokens in place r, which is not
possible in the right net. As a result, the left net is not sound whereas the right net is.
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(a) Place p is a reset place. (c) The postset of transition u contains a reset place.(b) Transition u resets a place that
is affected by transition t.

Fig. 9. counter-examples for the φFST rule applied to reset nets

Definition 6 (Fusion of Series Transitions Rule for RWF-nets: φRFST). Let N1 and
N2 be two RWF-nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2). (N1, N2)
∈ φRFST if there exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩P2, a place
p ∈ P1, two transitions t, u ∈ T1, and a transition v ∈ T2 \ T1 such that:

Extension of the φFST rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFST (Note that, by definition, the t, u, v, and p

mentioned in this definition have to coincide with the t, u, v, and p as mentioned in
the definition of φFST.)

Conditions on R1:

2. R↼
1 (p) = ∅ (p is not a reset place)

3. R1(u) = ∅ (u does not reset)
4. for all q ∈ u•: R↼

1 (q) = ∅ (any output place of u is not a reset place)

Construction of R2:

5. R2 = {(z,R1(z))|z ∈ T2 ∩ T1} ∪ {(v,R1(t))}

We now present two lemmas that show that occurrence sequences in N1 and N2 corre-
spond to one another. These lemmas are then used to prove that the φRFST rule preserves
the three criteria of soundness: option to complete, proper completion, and no dead
transitions.
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Lemma 1 (Under the φRFST rule, sequences in N1 correspond to sequences in N2).
Let N1 and N2 be two RWF-nets such that (N1, N2) ∈ φRFST, let σ1 ∈ T ∗

1 and M1 ∈

IM(N1) be such that i
N1,σ1

→ M1, and σ2 = α(σ1), where α ∈ T ∗

1 → T ∗

2 is defined as
follows:

– α(ε) = ε,
– α(tσ) = vα(σ),
– α(uσ) = α(σ), and
– α(xσ) = xα(σ), where x ∈ T1 \ {t, u}.

Thus, α removes every occurrence of u from the sequence, and replaces every occur-

rence of t with v. Then i
N2,σ2

→ M2, where M2(x) = M1(x)+M1(p) for every x ∈ v
N2

•

and M2(x) = M1(x) for every x 6∈ v
N2

• .

Proof By induction on the length of σ1.

Base Assume σ1 = ε. Clearly, i
N1,ε
→ i and also i

N2,ε
→ i.

Step Assume the theorem holds for some σ1, let M1 be such that i
N1,σ1

→ M1, and let

M2 be such that i
N2,α(σ1)
→ M2. We prove that it also holds if we extend σ1 by one

transition.
– First, assume that we extend σ by t. t and v have the same preset, thus we can

extend α(σ) by v. t adds a token to place p, whereas v adds tokens to its postset,
which does not violate the where-clause.

– Second, assume that we extend σ by u. It is obvious that v does not violate the
where-clause.

– Third, assume that we extend σ by x, where x ∈ P1\{t, u}. As all places inN2

contains at least as many tokens as their counterparts in N1 (the where-clause),
we know that x is enabled in N2 as well. Furthermore, x does not violate the
where-clause.

Lemma 2 (Under the φRFST rule, sequences in N2 correspond to sequences in N1).
Let N1 and N2 be two RWF-nets such that (N1, N2) ∈ φRFST, let σ2 ∈ T ∗

2 and M2 ∈

IM(N2) be such that i
N2,σ2

→ M2, and σ1 = β(σ2), where β ∈ T ∗

2 → T ∗

1 is defined as
follows:

– β(ε) = ε,
– β(vσ) = tuβ(σ), and
– β(xσ) = xβ(σ), if x ∈ T2 \ {v}.

Thus, β replaces every occurrence of v with tu. Then i
N1,σ1

→ M1, where M1(p) = 0
and M1(x) = M2(x) for every x ∈ P1 \ {p}.

Proof By induction on the length of σ2.

Base Assume σ2 = ε. Clearly, i
N2,ε
→ i and also i

N1,ε
→ i.

11



Step Assume the theorem holds for some σ2, let M2 be such that i
N2,σ2

→ M2, and let

M1 be such that i
N1,β(σ2)
→ M1. We prove that it also holds if we extend σ2 by one

transition.
– First, assume that we extend σ by v. It is obvious that M1[t〉 in N1, and that

afterwards u is also enabled. Furthermore, the combination tu and v does not
violate the where-clause.

– Second, assume that we extend σ by x such that x ∈ T2 \ {v}. Again it is
obvious that M1[x〉 in N1, and that x does not violate the where clause.

Theorem 2 (The φRFST rule preserves the option to complete). Let N1 and N2 be two
RWF-nets such that (N1, N2) ∈ φRFST. Then N1 has the option to complete iff N2 has
the option to complete.

Proof Let α and β be as defined in lemmas 1 and 2.

⇒ Assume that N2 does not have the option to complete, that is, there exists some

M2 ∈ N2[i〉 such that o 6∈ N2[M2〉. Thus, there exists a σ2 ∈ T ∗

2 such that i
N2,σ2

→

M2 but no σ′2 ∈ T ∗

2 exists such that M2
N2,σ

′

2→ o. As a result, i
N1,β(σ2)
→ M1, for

a well-defined M1. Now assume that N1 does have the option to complete. As a

result, there exists a σ1 such that i
N1,β(σ2)σ1

→ o. But then i
N2,α(β(σ2)σ1)

→ o, which

contradicts the assumption that no σ′2 ∈ T ∗

2 exists such that M2
N2,σ

′

2→ o. Thus, N1

does not have the option to complete.
⇐ Similar to⇒.

Theorem 3 (The φRFST rule preserves dead transitions). LetN1 andN2 be two RWF-
nets such that (N1, N2) ∈ φRFST. Then N1 has proper completion iff N2 has proper
completion.

Proof Let α and β be as defined in lemmas 1 and 2 and the observation that proper
completion follows from the option to complete.

⇒ Assume that N2 contains no dead transitions, that is, for every t2 ∈ T2 there exists
some M2 ∈ N2[i〉 such that M2 ≥

N2

• t. Let t2 be an arbitrary transition from T2,
and let M2 ∈ N2[i〉 be such that M2 ≥

N2

• t2. Then there exists a σ2 ∈ T ∗

2 such that

i
N2,σ2

→ M2. As a result, i
N1,β(σ2)
→ M1 and M1 ≥

N1

• t2. As T2 = T1 ∪ {t}, only
transition t can still be dead. However, t can only be dead if all transitions that mark
p are dead, and these transitions exist (as p 6= i).

⇐ Assume that N1 contains no dead transitions, that is, for every t1 ∈ T1 there exists
some M1 ∈ N1[i〉 such that M1 ≥

N1

• t. Let t1 be an arbitrary transition from T1

excluding t, and let M1 ∈ N1[i〉 be such that M1 ≥
N1

• t1. Then there exists a

σ1 ∈ T ∗

1 such that i
N1,σ1

→ M1. As a result, i
N2,α(σ1)
→ M2 and M2 ≥

N2

• t1. Thus,
N2 contains no dead transitions.

Theorem 4 (The φRFST rule is soundness preserving). Let N1 and N2 be two RWF-
nets such that (N1, N2) ∈ φRFST. N1 is sound iff N2 is sound.

12



Proof Follows from theorems 2 and 3.

In this section, we have shown how the φRFST rule is derived by first listing out the ap-
plication conditions for a WF-net and then proposing additional conditions to deal with
reset arcs in an RWF-net. The φRFST rule has been shown to be soundness preserving by
providing the proofs that the rule preserves the criteria for soundness.

4.2 Fusion of series places

The Fusion of Series Places Rule for WF-nets (φFSP) allows for the merging of two
sequential places p and q with one transition t in between them into a single place r.
The rule requires that there is only one output arc from p to t, exactly one input p and
one output q for t, and that there are no direct connections between inputs of p and
inputs of q. The last requirement ensures that there will only be one arc connecting
inputs of p in the original net to the new place r in the reduced net (no weighted arcs).
Furthermore, the rule is not applicable to places that are either an input place i or an
output place o of the net. See the example in Figure 10 for an application of the φFSP

rule.

FSP

Fig. 10. Reduction of a WF-net using the
φFSP rule

p

t

q

r

Fig. 11. Fusion of Series Places Rule for
RWF-nets: φRFSP

Definition 7 (Fusion of Series Places Rule for WF-nets: φFSP). Let N1 and N2 be
two WF-nets, where N1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈ φFSP

if there exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩ P2, two places
p, q ∈ P1 \ {i, o}, a transition t ∈ T1, and a place r ∈ P2 \ P1 such that:

Conditions on N1:

1. •t = {p} (p is the only input of t)
2. t• = {q} (q is the only output of t)
3. p• = {t} (t is the only output of p)
4. •p∩•q = ∅ (any input of p is not an input of q and vice versa)

13



Construction of N2:

5. P2 = (P1 \ {p, q}) ∪ {r}
6. T2 = T1 \ {t}

7. F2 = (F1 ∩ ((P2×T2)∪ (T2×P2)))∪ (((
N1

• p∪
N1

• q) \ {t})×{r})∪ ({r}× q
N1

• )

The Fusion of Series Places Rule for RWF-nets (φRFSP) extends the φFSP rule by
introducing reset arcs and strengthening the conditions. The rule also allows for the
merging of two sequential places p and q with one transition t in between them into a
single place r. Figure 11 visualises the φRFSP rule. The first additional requirement is that
the transition t should not have any reset arcs. See Figure 12(a) for a counter-example
where t has reset arcs. Transition t can reset place u in the left net but this behaviour
is ignored in the right net. Transition sequence xt leads to a deadlock as t will remove
a token from u when it fires, and u does not exist in the right net. As a result, the left
net is not sound whereas the right net is. The second additional requirement is that the
two places must be reset by the same set of transitions (if any). If p and q are not reset
places, then it is clear that the rule holds. If a transition resets place p, it must also resets
place q as we are interested in merging these two places. See Figure 12(b) for a counter-
example: transition sequence xtyz leads to an unsound net on the left (a leftover token
in q), whereas the right net is sound. If all requirements for the φRFST rule are satisfied,
places p and q are merged into a new place r which takes on the same reset arcs as p
and q.

p

tu

i

z

o

x

q

r

u

i

z

o

x p

tu

v

i

y

z

o

x

q

u

v

i

y

z

o

x

r

(a) Transition t resets place u. (b) Place p is a reset place and 
place q is not a reset place.

Fig. 12. counter-examples for the φFSP rule applied to reset nets

Definition 8 (Fusion of Series Places Rule for RWF-nets: φRFSP). Let N1 and N2 be
two RWF-nets, where N1 = (P1, T1, F1, R1) and N2 = (P2, T2, F2, R2). (N1, N2) ∈
φRFSP if there exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1∩P2, two places
p, q ∈ P1 \ {i, o}, a transition t ∈ T1, and a place r ∈ P2 \ P1 such that:

Extension of the φFSP rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFSP (Note that, by definition, the i, o, p, q, t, and r
mentioned in this definition have to coincide with the i, o, p, q, t, and r as mentioned
in the definition of φFSP.)
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Conditions on R1:

2. R1(t) = ∅ (t does not reset)
3. R↼

1 (p) = R↼
1 (q) (p and q are being reset by the same transitions)

Construction of R2:

4. R2 = {(z,R1(z) ∩ P2)|z ∈ T2 ∩ T1} ⊕ {(z, (R1(z) ∩ P2) ∪ {r})|z ∈ R↼
1 (p)}3.

The φRFSP rule is soundness preserving as the occurrence sequences in the original
net and the reduced net correspond to each other. The proof is similar to the soundness
proof given for φRFST rule.

Next, we show that the φRFSP rule is soundness preserving. We first present two
lemmas that show that occurrence sequences in N1 and N2 correspond to one another.
These lemmas are then used to prove that the φRFSP rule preserves the three criteria of
soundness: the option to complete, proper completion, and dead transitions.

Lemma 3 (Under the φRFSP rule, sequences in N1 correspond to sequences in N2).
Let N1 and N2 be two RWF-nets such that (N1, N2) ∈ φRFSP, let σ1 ∈ T ∗

1 and M1 ∈

IM(N1) be such that i
N1,σ1

→ M1, and σ2 = α(σ1), where α ∈ T ∗

1 → T ∗

2 is defined
as follows: α(ε) = ε, α(tσ) = α(σ), and α(xσ) = xα(σ), where x ∈ T1 \ {t}.

Thus, α removes every occurrence of t from the sequence. Then i
N2,σ2

→ M2, where
M2(r) = M1(p) +M1(q) and M2(x) = M1(x) for every x ∈ P2 \ {r}.

Proof By induction on the length of σ1.

Base Assume σ1 = ε. Clearly, i
N1,ε
→ i and also i

N2,ε
→ i.

Step Assume the theorem holds for some σ1, let M1 be such that i
N1,σ1

→ M1, and let

M2 be such that i
N2,α(σ1)
→ M2. We prove that it also holds if we extend σ1 by one

transition.
First, assume that we extend σ by t. It is easy to see that this extension does not
have any effect on α(σ1). Therefore, we need to prove that firing t does not violate
the where-clause (i.e, M2(r) = M1(p) + M1(q) and M2(x) = M1(x) for every
x ∈ P2 \ {r}). As t moves only one token from p to q and does not reset any place,
this is straightforward.
Second, assume that we extend σ by an x ∈ P1 \ {t}. First, we need to prove that
M2[x〉 in N2. As r contains at least as many tokens as q, and M2(x) = M1(x) for
every x ∈ P2 \{r}, we conclude that this is indeed the case. Next, we need to prove
that firing x in both nets does not violate the where-clause. This is straightforward
as well, as any transition that adds a token to p also adds a token to r and any tran-
sition that removes a token from q also removes a token from r, and the remaining
transitions are identical.

3 ⊕ represents function override where f : A → B and g : A → B, f ⊕ g = {(a, b)|a ∈
dom(g)} ∪ {(a, b)|a ∈ dom(f) \ dom(g)}.
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Lemma 4 (Under the φRFSP rule, sequences in N2 correspond to sequences in N1).
Let N1 and N2 be two RWF-nets such that (N1, N2) ∈ φRFSP, let σ2 ∈ T ∗

2 and M2 ∈

IM(N2) be such that i
N2,σ2

→ M2, and σ1 = β(σ2), where β ∈ T ∗

2 → T ∗

1 is defined as
follows: β(ε) = ε, β(xσ) = xtβ(σ), if p ∈ x

N1

• , and β(xσ) = xβ(σ), if p 6∈ x
N1

• . Thus,
β introduces an extra t whenever place p is marked. As a result, place p is unmarked as

soon as possible. Then i
N1,σ1

→ M1, where M1(p) = 0, M1(q) = M2(r) and M1(x) =
M2(x) for every x ∈ P1 \ {p, q}.

Proof By induction on the length of σ2.

Base Assume σ2 = ε. Clearly, i
N2,ε
→ i and also i

N1,ε
→ i.

Step Assume the theorem holds for some σ2, let M2 be such that i
N2,σ2

→ M2, and let

M1 be such that i
N1,β(σ2)
→ M1. We prove that it also holds if we extend σ2 by one

transition.
First, assume that we extend σ by an x such that p ∈ x

N1

• . It is obvious that M1[x〉
inN1, and that afterwards t is also enabled. Furthermore, both x and t do not violate
the where-clause (i.e., where M1(p) = 0, M1(q) = M2(r) and M1(x) = M2(x)
for every x ∈ P1 \ {p, q}.
Second, assume that we extend σ by an x such that p 6∈ x

N1

• . Again it is obvious
that M1[x〉 in N1, and that x does not violate the where clause.

Theorem 5 (The φRFSP rule is soundness preserving). Let N1 and N2 be two RWF-
nets such that (N1, N2) ∈ φRFSP. N1 is sound iff N2 is sound.

Proof Let α and β be as defined in lemmas 3 and 4.

– The φRFSP rule preserves the option to complete. The proof is similar to the proof of
Theorem 2, but with different α and β.

– The φRFSP rule preserves dead transitions. The proof is similar to the proof of The-
orem 3, but with different α and β.

4.3 Fusion of parallel places

The Fusion of Parallel Places Rule for WF-nets (φFPP) is a generalization of the Fusion
of Parallel Places rule for Petri nets by Murata [13]. The rule allows for the merging of
multiple places (at least two) with the same inputs and outputs into a single place q. See
the example in Figure 13 for an application of the φFPP rule. Places p1 and p2 have the
same input set {t1, t2, t3} and the same output set {x1, x2}. The reduced net contains a
new place q that has the same input and output sets as places p1 and p2.

Definition 9 (Fusion of Parallel Places Rule for WF-nets: φFPP).
Let N1 and N2 be two WF-nets, where N1 = (P1, T1, F1) and N2 = (P2, T2, F2).
(N1, N2) ∈ φFPP if there exists an input place i ∈ P1 ∩ P2, an output place o ∈
P1 ∩ P2, places Q ⊆ P1 where |Q| ≥ 2 and a place q ∈ P2 \ P1 such that:
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Fig. 13. Reduction of a WF-net using the
φFPP rule
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Fig. 14. Fusion of Parallel Places Rule
for RWF-nets: φRFPP

Conditions on N1:

1. for all px, py ∈ Q : •px = •py (input transitions for all places in Q are identical)
2. for all px, py ∈ Q : px• = py• (output transitions for all places in Q are identical)

Construction of N2:

3. P2 = (P1 \Q) ∪ {q}
4. T2 = T1

5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ (
N1

• p× {q}) ∪ ({q} × p
N1

• ) where p ∈ Q

The Fusion of Parallel Places Rule for RWF-nets (φRFPP) extends the φFPP rule by
introducing reset arcs. The rule also allows for the merging of places in Q (i.e., p1 to pL)
that have the same inputs and outputs into a single place q. The additional requirement
is that these places are reset by the same set of transitions. If none of the places are reset
places, then it is obvious that the rule holds. If one is a reset place, then other places
should also be reset by the same set of transitions. Figure 14 visualises the φRFPP rule. As
all places in Q = {p1, ..., pL} have the same input, output and reset arcs, these identical
places can be merged into a single place while preserving the soundness property. Place
q in the reduced net has the same input, output and reset arcs as any place in Q.

Definition 10 (Fusion of Parallel Places Rule for RWF-nets: φRFPP). Let N1 and N2

be two RWF-nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2). (N1, N2) ∈
φRFPP if there exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩ P2, places
Q ⊆ P1 where |Q| ≥ 2 and a place q ∈ P2 \ P1 such that:

Extension of the φFPP rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFPP (Note that, by definition, the i, o, Q, and q

mentioned in this definition have to coincide with the i, o, Q, and q as mentioned in
the definition of φFPP.)

Condition on R1:

2. for all px, py ∈ Q : R↼
1 (px) = R↼

1 (py) (all places in Q are being reset by the
same transitions)
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Construction of R2:

3. R2 = {(z,R1(z)∩P2)|z ∈ T2∩T1}⊕{(z, (R1(z)∩P2)∪{q})|z ∈ R↼
1 (p)∧p ∈ Q}

Theorem 6 (The φRFPP rule is soundness preserving). Let N1 and N2 be two RWF-
nets such that (N1, N2) ∈ φRFPP. N1 is sound iff N2 is sound.

Proof It is easy to see that the state spaces of both nets are identical, except that the
markings differ: A marking in the state space of N1 contains places Q, and every one of
them contains n tokens, whereas a marking in the state space of N2 contains one place
q which contains n tokens.

4.4 Fusion of parallel transitions

The Fusion of Parallel Transitions Rule for WF-nets (φFPT) is a generalization of the
Fusion of Parallel Transitions rule for Petri nets by Murata [13]. The rule allows for
the merging of multiple transitions (at least two) that have the same inputs and outputs
into a single transition. See the example in Figure 15 for an application of the φFPT

rule. Transitions t1 and t2 have the same input set {p1, p2, p3} and the same output set
{x1, x2}. The reduced net contains a new transition v that has the same input and output
sets as t1 and t2.

1

1

2

1

22

3

1

2

1

2

3

FPT

Fig. 15. Reduction of a WF-net using the
φFPT rule

p1

t1 tL

pN

xMx1

p1

v

pN

xMx1

Fig. 16. Fusion of Parallel Transitions
Rule for RWF-nets: φRFPT

Definition 11 (Fusion of Parallel Transitions Rule for WF-nets: φFPT). Let N1 and
N2 be two WF-nets, where N1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈
φFPT if there exists an input place i ∈ P1∩P2, an output place o ∈ P1∩P2, transitions
V ⊆ T1 where |V | ≥ 2, and a transition v ∈ T2 \ T1 such that:

Conditions on N1:

1. for all tx, ty ∈ V : •tx = •ty(input places for all transitions in V are identical)
2. for all tx, ty ∈ V : tx• = ty•(output places for all transitions in V are identical)
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Construction of N2:

3. P2 = P1

4. T2 = (T1 \ V ) ∪ {v}

5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ ({v} ×
N1

• t) ∪ (t
N1

• ×{v}) where t ∈ V

The Fusion of Parallel Transitions Rule for RWF-nets (φRFPT) extends the φFPT

rule by introducing reset arcs. The rule allows for the merging of transitions V (i.e., t1
to tL) that have the same inputs and outputs into a single transition v. The additional
requirement is that these transitions should reset the same set of places (if any). If no
transition has reset arcs, then it is obvious that the rule holds. If one transition resets
a place, then other transitions must also reset the same place. Figure 16 visualises the
φRFPT rule. As all transitions in V = {t1, ..., tL} now have the same input, output
and reset arcs, these identical transitions could be merged into a single transition while
preserving the soundness property. Transition v in the reduced net has the same input,
output and reset arcs as any transition t ∈ V .

Definition 12 (Fusion of Parallel Transitions Rule for RWF-nets: φRFPT). Let N1

and N2 be two RWF-nets, where N1 = (P1, T1, F1, R1) and N2 = (P2, T2, F2, R2).
(N1, N2) ∈ φRFPT if there exists an input place i ∈ P1∩P2, an output place o ∈ P1∩P2,
transitions V ⊆ T1 where |V | ≥ 2, and a transition v ∈ T2 \ T1 such that:

Extension of the φFPT rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFPT (Note that, by definition, the i, o, V , and v

mentioned in this definition have to coincide with the i, o, V , and v as mentioned
in the definition of φFPT.)

Condition on R1:

2. for all tx, ty ∈ V : R1(tx) = R1(ty) (all transitions in V reset the same places)

Construction of R2:

3. R2 = {(z,R1(z))|z ∈ T2 ∩ T1} ∪ {(v,R1(t))}, where t ∈ V

Theorem 7 (The φRFPT rule is soundness preserving.). Let N1 and N2 be two RWF-
nets such that (N1, N2) ∈ φRFPT. N1 is sound iff N2 is sound.

Proof It is obvious that the state spaces of both nets are identical, except that some
edges differ: where the state space of N1 contains edges for transitions t1 up to tL, the
state space of N2 only contains one edge for transition v.
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Fig. 17. Reduction of a WF-net using the
φELT rule

p t p

Fig. 18. Elimination of Self-Loop Transi-
tions Rule for RWF-nets: φRELT

4.5 Elimination of self-loop transitions
The Elimination of Self-Loop Transitions Rule for WF-nets (φELT) rule allows the re-
moval of a self-loop transition. A self-loop transition is one that has one input place
which is also the only output place of the transition. See the example in Figure 17 for
an application of the φELT rule. Transition t has been abstracted from in the reduced
net as p is the only input place and the only output place of t.

Definition 13 (Elimination of Self-Loop Transitions for WF-nets: φELT). Let N1

and N2 be two WF-nets, where N1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈
φELT if there exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩ P2, a place
p ∈ P1 ∩ P2, and a transition t ∈ T1 such that:

Conditions on N1:

1. •t = {p} (p is the only input place of t)
2. t• = {p} (p is the only output place of t)

Construction of N2:

3. P2 = P1

4. T2 = T1 \ {t}
5. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2)))

The Elimination of Self-Loop Transitions Rule for RWF-nets (φRELT) extends the
φELT rule by introducing reset arcs. The rule also allows removal of a transition t which
has a single place as its input and its output. The additional requirement is that transition
t has no reset arcs. Figure 18 visualises the φRELT rule.

Definition 14 (Elimination of Self-Loop Transitions Rule for RWF-nets: φRELT). Let
N1 andN2 be two RWF-nets, whereN1 = (P1, T1, F1, R1) andN2 = (P2, T2, F2, R2).
(N1, N2) ∈ φRELT if there exists an input place i ∈ P1∩P2, an output place o ∈ P1∩P2,
a place p ∈ P1 ∩ P2, and a transition t ∈ T1 such that:

Extension of the φELT rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φELT (Note that, by definition, the i, o, t, and p

mentioned in this definition have to coincide with the i, o, t, and p as mentioned in
the definition of φELT.)
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Condition on R1:

2. R1(t) = ∅ (t does not reset)

Construction of R2:

3. R2 = {(z,R1(z))|z ∈ T2 ∩ T1}

Theorem 8 (The φRELT rule is soundness preserving). Let N1 and N2 be two RWF-
nets such that (N1, N2) ∈ φRELT. N1 is sound iff N2 is sound.

Proof It is obvious that the state spaces of both nets are identical, except that the
state space of N1 contains additional self-edges. Furthermore, it is clear that t can only
be dead if every transition that marks p is dead. Therefore, removing t preserves dead
transitions.

We have presented five reduction rules for RWF-nets based on the reduction rules
defined by Murata [13]. We have omitted the sixth rule, “Elimination of Self-Loop
Places” as this rule requires a place to be marked in an initial marking of a net. For WF-
nets and RWF-nets, this is not possible as the input place i is the only place that could
be marked in an initial marking. By definition, i cannot be a self-loop (i.e., it cannot
have any incoming arcs •i = ∅) and therefore, this rule is not applicable to WF-nets
and RWF-nets. In addition to the “Murata rules” we also present two additional rules.

4.6 Abstraction
The Abstraction Rule for WF-nets (φA) is based on the Abstraction rule from Desel and
Esparza [6]. The rule allows the removal of a place s and a transition t, where s is the
only input of t, t is the only output of s and there is no direct connection between the
inputs of s with the outputs of t. See the example in Figure 19 for an application of
the φA rule. The reduced net abstracts from place s and transition t and provides direct
connections between the inputs of s and the outputs of t.
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Fig. 19. Reduction of a WF-net using the
φA rule
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Fig. 20. Abstraction Rule for RWF-nets:
φRA

Definition 15 (Abstraction Rule for WF-nets: φA). Let N1 and N2 be two WF-nets,
where N1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈ φA if there exists an
input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩ P2, places Q ⊆ P1 ∩ P2, a place
s ∈ P1 \Q, transitions U ⊆ T1 ∩ T2, and a transition t ∈ T1 \ U such that:
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Conditions on N1:

1. •t = {s} (s is the only input of t)
2. s• = {t} (t is the only output of s)
3. •s = U (transitions in U are input transitions for s)
4. t• = Q (transitions in Q are output transitions for t)
5. (•s× t•)∩F = ∅ (any input of s is not connected to an output of t and vice versa)

Construction of N2:

6. P2 = P1 \ {s}
7. T2 = T1 \ {t}

8. F2 = (F1 ∩ ((P2 × T2) ∪ (T2 × P2))) ∪ (
N1

• s× t
N2

• )

The Abstraction Rule for RWF-nets (φRA) extends the φA rule by introducing reset
arcs. The rule allows for the removal of a place s and a transition t, where s is the only
input of t, t is the only output of s and there is no direct connection between the inputs
for s with the outputs for t. Additional requirements are that transition t does not reset
any place, place s is not reset by any transition, and outputs for t are not reset by any
transition. Input transitions for place s can have reset arcs. Figure 20 visualises the φRA
rule.

Definition 16 (Abstraction Rule for RWF-nets: φRA). Let N1 and N2 be two RWF-
nets, where N1 = (P1, T1, F1, R1) and N2 = (P2, T2, F2, R2). (N1, N2) ∈ φRA if there
exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩ P2, places Q ⊆ P1 ∩ P2, a
place s ∈ P1 \Q, transitions U ⊆ T1 ∩ T2, and a transition t ∈ T1 \ U such that:

Extension of the φRA rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φA (Note that, by definition, the i, o, s, t, Q, and U
mentioned in this definition have to coincide with i, o, s, t, Q, and U as mentioned
in the definition of φA.)

Conditions on R1:

2. R↼
1 (s) = ∅ (s is not a reset place)

3. R1(t) = ∅ (t does not reset)
4. for all q ∈ t• : R↼

1 (q) = ∅ (all output places for t are not reset places)

Construction of R2:

5. R2 = {(z,R1(z) ∩ P2)|z ∈ T2 ∩ T1}

Theorem 9 (The φRA rule is soundness preserving). Let N1 and N2 be two RWF-nets
such that (N1, N2) ∈ φRA. N1 is sound iff N2 is sound.

Proof This rule is quite close to the φRFST rule (i.e., the fusion of two subsequent
transitions), except that it allows for s (p for the φRFST rule) to have multiple inputs.
Using the φRFST rule, the proof is quite simple. It is obvious that we can replace s and t
by s1, ..., sN and t1, ..., tN in such a way that •si = {ui}, si• = {ti}, •ti = {si}, and
ti• = Q while preserving soundness. Next, we can use the φRFST rule to reduce every si
and ti. Figure 21 visualises the proof of the φRA rule.
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Fig. 21. Proof sketch for the φRA rule

The other two linear dependency rules described by Desel and Esparza [6] to remove
nonnegative linearly dependent places and nonnegative linearly dependent transitions
are only applicable to free-choice nets. The rules are said to be not strongly sound for
arbitrary nets (i.e., N is well-formed if and only if N ′ is well-formed) [6]. Hence, they
cannot be used for WF-nets and RWF-nets.

4.7 Fusion of equivalent subnets

The Fusion of Equivalent Subnets Rule for WF-nets (φFES) allows removal of multiple
identical subnets by replacing them with only one subnet. The rule requires that pairs
of transitions have the same input and output places. See the example in Figure 22 for
an application of the φFES rule. The set of transitions V1 has been merged into V3.
The set of transitions V2 has been merged into V4, and places in Q2 have been merged
into one place r. The Fusion of Equivalent Subnets Rule for RWF-nets (φFES) extends
the φFES rule by introducing reset arcs. Figure 23 visualises the φRFES rule. Additional
requirements are that all places in Q2 are reset by the same set of transitions and all
transition pairs in V1 and V3 also reset the same places. Formal definitions of the φFES

rule and the φRFES rule follow the same structure as the other rules. Note that the name of
the rule may be a bit misleading. This rule only applies to subnets having the structure
shown in Figure 22. The reason that this rule has been added is that it is very effective
in reducing YAWL models (cf. [16]).
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Fig. 22. Reduction of a WF-net using the
φFES rule
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Definition 17 (Fusion of Equivalent Subnets Rule for WF-nets: φFES). Let N1 and
N2 be two WF-nets, where N1 = (P1, T1, F1) and N2 = (P2, T2, F2). (N1, N2) ∈
φFES if there exists an input place i ∈ P1 ∩ P2, an output place o ∈ P1 ∩ P2, places
Q1, Q3 ⊆ P1 ∩ P2, Q2 ⊆ P1 where |Q2| ≥ 2, r ∈ P2 \ P1, transitions V1, V2 ⊆ T1,
and V3, V4 ⊆ T2 \ T1 such that:

Conditions on N1:

1. V1 = {vq1,q21 |q1 ∈ Q1 ∧ q2 ∈ Q2} (every transition of V1 is of the form v
q1,q2
1 )

2. V2 = {vq2,q32 |q2 ∈ Q2 ∧ q3 ∈ Q3} (every transition of V2 is of the form v
q2,q3
2 )

3. for all p ∈ Q2 :
N1

• p ⊆ V1 ∧ p
N1

• ⊆ V2 (preset and postset of all places in Q2 are
from V1 and V2 respectively)

4. for all vq1,q21 ∈ V1 :
N1

• v
q1,q2
1 = {q1} ∧ v

q1,q2
1

N1

• = {q2} (preset of vq1,q21 is q1 and
postset is q2)

5. for all vq2,q32 ∈ V2 :
N1

• v
q2,q3
2 = {q2} ∧ v

q2,q3
2

N1

• = {q3} (preset of vq2,q32 is q2 and
postset is q3)

Construction of N2:

6. P2 = (P1 \Q2) ∪ {r}
7. T2 = (T1 \ (V1 ∪ V2)) ∪ (V3 ∪ V4) where V3 = {vq1,r3 |q1 ∈ Q1} and V4 =
{vr,q34 |q3 ∈ Q3}

8. F2 = (F1∩ ((P2×T2)∪ (T2×P2)))∪ (V3×{r})∪ ({r}×V4)∪{(q1, v
q1,r
3 )|q1 ∈

Q1 ∧ v
q1,r
3 ∈ V3} ∪ {(v

r,q3
4 , q3)|q3 ∈ Q3 ∧ v

r,q3
4 ∈ V4}

Theorem 10 (The φFES rule is soundness preserving). Let N1 and N2 be two WF-
nets such that (N1, N2) ∈ φFES. N1 is sound iff N2 is sound.

Proof The state spaces of both nets are comparable, such that where the state space of
N1 contains edges for transitions in V1, the state space of N2 only contains edges for
transitions in V3. Similarly, the set of transitions V2 in N1 is now V4 in N2. The set of
places Q2 has been replaced with r.

FESRThe Fusion of Equivalent Subnets Rule for RWF-nets (φFES) extends the φFES

rule by introducing reset arcs. The rule allows the removal of multiple identical subnets
by replacing them with only one subnet. Additional requirements are that all places in
Q2 are reset by the same set of transitions and all transition pairs in V1 and V3 also reset
the same places. Figure 23 visualises the φRFES rule.

Definition 18 (Fusion of Equivalent Subnets Rule for RWF-nets: φRFES). Let N1

and N2 be two RWF-nets, where N1 = (P1, T1, F1, R1) and N2 = (P2, T2, F2, R2).
(N1, N2) ∈ φRFES if there exists an input place i ∈ P1∩P2, an output place o ∈ P1∩P2,
places Q1, Q3 ⊆ P1 ∩P2, Q2 ⊆ P1 where |Q2| ≥ 2, r ∈ P2 \P1, transitions V1, V2 ⊆
T1, and V3, V4 ⊆ T2 \ T1 such that:

Extension of the φFES rule:

1. ((P1, T1, F1), (P2, T2, F2)) ∈ φFES (Note that, by definition, the i, o, Q1, Q2, Q3,
V1, V2, V3, and V4 mentioned in this definition have to coincide with the i, o, Q1,
Q2, Q3, V1, V2, V3, and V4 as mentioned in the definition of φFES.)

24



Condition on R1:

2. for all q1 ∈ Q1 and q2, q
′

2 ∈ Q2 : R(vq1,q21 ) = R(v
q1,q

′

2

1 ) (transitions in V1 that
have the same input set should also have the same reset arcs)

3. for all q3 ∈ Q3 and q2, q
′

2 ∈ Q2 : R(vq2,q31 ) = R(v
q′

2
,q3

1 ) (transitions in V2 that
have the same output set should also have the same reset arcs)

4. for all q2, q′2 ∈ Q2, R↼
1 (q2) = R↼

1 (q′2) (places in Q2 are reset by the same set of
transitions)

Construction of R2:

5. R2 = {(z,R1(z) ∩ P2)|z ∈ T2 ∩ T1}
⊕{(z, (R1(z) ∩ P2 ∪ {r}))|z ∈ R↼

1 (q2) ∧ q2 ∈ Q2}
∪{(vq1,r3 , R1(v

q1,q2
1 ) ∩ P2)|q1 ∈ Q1 ∧ q2 ∈ Q2}

∪{(vr,q34 , R1(v
q2,q3
2 ) ∩ P2)|q2 ∈ Q2 ∧ q3 ∈ Q3}

Theorem 11 (The φRFES rule is soundness preserving). Let N1 and N2 be two RWF-
nets such that (N1, N2) ∈ φRFES. N1 is sound iff N2 is sound.

Proof The proof is similar to the one for the φFES rule. The state spaces of both nets
are comparable, such that where the state space of N1 contains edges for transitions in
V1, the state space of N2 only contains edges for transitions in V3. Similarly, the set of
transitions V2 in N1 is now V4 in N2. The set of places Q2 has been replaced with r.
Additional requirements for reset arcs ensure that the transitions can be abstracted.

In this section, seven reduction rules for RWF-nets have been presented. Please note that
we do not claim the set of rules to be complete. We have shown that transitions with reset
arcs or places that can be reset cannot be entirely abstracted from the net. Hence, it is not
possible to reduce an RWF-net from a large net to a trivial net with just a source node, a
single transition and a sink node even if the net is correct (i.e. sound) (cf. Figure 1 and
Figure 2). Nevertheless, reduction rules presented in this paper can be used to reduce
the size of an RWF-net and to improve the complexity of performing verification. We
have applied these reduction rules to workflows modelled in YAWL and found them to
be very effective. It is easy to see that all seven rules also apply to arbitrary reset nets
while preserving liveness and/or boundedness. Only trivial requirements like pre and
postsets not being empty are sufficient.

4.8 Reducing the credit card application process model
We now use the RWF-net in Figure 5 to illustrate the reduction of the credit card appli-
cation example in a step by step manner. Five reduction rules; the φRFST rule, the φRFSP

rule, the φRFPT rule, the φRFPP rule and the φRELT rule, are applied repeated to the model
to obtain the reduced RWF-net. The number of elements (transitions and places) in the
original reset net is 77 and the number of elements in the final reduced net is 11.

Figure 24 depicts where the φRFST rule and the φRFSP rule can be applied to the
model. You can see that the φRFST rule, for instance, cannot be applied to any of the
transitions within the reset region of transition cne as one the requirements of this rule
is that the intermediate place between two transitions cannot be a reset place. The φRFST
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Fig. 24. Applying the φRFST rule and φRFSP rule repeatedly to Figure 5

rule has been applied successfully to the other half of the net where there are no reset
arcs. Similarly, transitions ras and rae cannot be reduced using the φRFST rule as one of
the output places of transition rae is a reset place. On the other hand, we can apply the
φRFSP rule a number of times to reduce the number of transitions and places within the
reset region.
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Fig. 25. A reduced RWF-net after applying the reduction rules repeatedly to Figure 24

Figure 25 depicts the reduced net after applying the φRFST rule and the φRFSP rule
repeatedly. The reduced transitions and places are coloured in grey. It also demonstrates
three additional reduction rules that are applicable to the model. One of them is the φRELT
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rule, which is applied twice to the loop structures involving timeout (tos) and receive
more information (ris). This reduction has a significant impact on the calculation of state
space during reachability analysis. We can also observe the φRFPT rule being applied
twice, once to the transitions which has reset arcs on their input and output places and
the second time to the transitions without any reset arcs on their input and output places.
The φRFPP rule is applied once to reduce the elements in the bottom half of the model.

Figure 26 depicts applicable reduction rules for a final round of reduction. Figure 27
depicts the final reduced net with 11 elements. Please note that according to the φRFSP

rule, it is not possible to reduce the input place i or the output place o. Similarly, the
φRFST rule prevents transitions ras and rae to be reduced due to one of the output places
(the grey place) of transition rae having a reset arc. Transitions cns and cne cannot be
reduced using the φRFST rule either, because transition cne has a reset arc. From this,
it is clear that no other reduction rules can be applied to this net. Also, note that if an
original model has reset arcs, the final reduced net will have one or more reset arcs. It
is not possible to entirely abstract from them. In this case, the entire cancellation region
is now represented by one place. Next, we discuss how these reduction rules are used in
the verification of YAWL process models with cancellation regions.

rasi rae

on

cce1 cle2 pse mds

cns cne

o

FSPR FSTR
FPTR

FSTR

Fig. 26. A reduced RWF-net after applying reduction rules repeatedly to Figure 25
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Fig. 27. A reduced RWF-net after applying reduction rules repeatedly to Figure 26

5 Implementation in YAWL

Reduction rules presented in this paper have been implemented in the YAWL Editor
(version 1.4.4) to manage the complexity of detecting various desirable properties for
YAWL workflows4. Using the verification feature, it is possible to detect four desirable
properties for YAWL workflows: soundness, weak soundness, irreducible cancellation

4 Downloadable from http://sourceforge.net/projects/yawl/
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regions, and immutable OR-joins. Coverability and reachability analyses of reset nets
have been used to perform verification of YAWL workflows with cancellation.

Figure 28 shows the results from the soundness property check for a YAWL work-
flow with cancellation, that has similar semantics to the example RWF-net shown in
Figure 1(task F cancels c1, C, c2, D, c3) using reduction rules. The YAWL workflow
is first transformed into an equivalent RWF-net with 54 elements. The reduced net has
13 elements after applying these rules recursively. The φRFSP rule has been applied 18
times, then the φRFST rule 2 times and then the φRFSP rule 1 time again.

Fig. 28. Soundness property results for a YAWL workflow with cancellation

Figure 29 shows the soundness property check for the credit card application pro-
cess. The time it takes to verify the soundness property of the credit card application
process with 77 elements took approximately 0.35 secs without using reduction rules.
When using the reduction rules, the reduced net contains 11 elements and it took only
0.1 secs to perform both the reduction and the soundness check.

Fig. 29. Soundness property results for credit card application process
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We also carried out a case study by modelling the visa application process to Aus-
tralia as a set of four YAWL workflows with cancellation and OR-joins. The resulting
YAWL workflows are then verified for correctness with and without using reduction
rules. The analysis of this model became intractable when verifying the soundness prop-
erty of these four nets without using reduction rules (for details: see the PhD thesis of
the first author [16]). The findings support that the reduction rules are necessary for the
efficient verification of YAWL workflows as they could speed up the time it takes to gen-
erate reachability and coverability sets needed to detect these properties. For instance,
the time it takes to verify the soundness property of one of the nets with 89 elements
containing many reset arcs took approximately 25 secs without using reduction rules.
When using the reduction rules, the reduced net contains 35 elements and took only 4
secs to perform both the reduction and the soundness check.

6 Related work

Reduction rules have been suggested to be used together with Petri nets for the veri-
fication of workflows (cf. Chapter 4 of [2]). We follow a similar approach with a set
of reduction rules for workflow nets with cancellation regions using reset nets. In the
general area of reset nets, Dufourd et al.’s work has provided valuable insights into the
decidability status of various properties of reset nets including reachability, bounded-
ness and coverability [8, 9]. A number of authors have investigated reduction rules for
Petri nets and for various subclasses of Petri nets. Berthelot presents a set of reduction
rules for general Petri nets [4]. They include transformation on places such as struc-
turally redundant places, double places and equivalent places and fusion of transitions
such as post-fusion, pre-fusion and lateral fusion and these rules provided inspiration
for our work. Six reduction rules are presented for Petri nets In [13] and this set of rules
has been used as a starting point for the rules in this paper. In [6], a set of reduction rules
are proposed for free-choice Petri nets while preserving well-formedness. Even though
reduction rules exist for Petri nets, the nature of reset arcs could invalidate the transfor-
mation rules applicable to Petri nets. For example, it is possible that an incorrect net that
does not satisfy the proper completion criterion (i.e., tokens can be left in the net when
it reaches the end) becomes sound when there is a reset arc to remove the leftover token
before completion. Therefore, we proposed extension to the requirements for Petri net
reduction rules with additional restrictions with respect to reset arcs. The abstraction
rule defined in [6] for free-choice Petri nets has been extended for reset nets. In [14],
authors extend the reduction rules given by Berthelot for Time Petri nets. Six reduction
rules that preserve correctness for EPCs including reduction rules for trivial constructs,
simple splits and joins, similar splits and joins, XOR loop and optional OR-loop are
proposed in [7]. However, these reduction rules do not take cancellation into account.

7 Conclusion

In this paper, seven reduction rules for a subclass of reset nets, RWF-nets, were pro-
posed and proven to be correct with respect to the soundness property, a well-established
correctness notion in the context of workflow specification. These reduction rules for
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RWF-nets were inspired by earlier reduction rules for Petri nets without reset arcs (ex-
cept for the fusion of equivalent subnets rule). As mentioned in the introduction, a reset
arc introduces significant complexities when determining the correct behaviour of a net.
This is reflected by the addition of extra context conditions in the reduction rules. It is
perhaps not a surprise that reset arcs do not offer new possibilities for reduction rather
they limit them. In most cases, the conditions ensure that 1) the place or transition that
is removed from the net is not connected to a reset arc or 2) all places and transitions
that are merged are connected to the same node via a reset arc. We also demonstrated
how a business process model with cancellation feature can be reduced using the pro-
posed reduction rules. The proposed reduction rules have found a practical application
in the YAWL open source workflow management system, which provides support for
cancellation regions, for the purposes of speeding up verification and reducing the state
space. Even though the paper focuses on a subclass of reset nets, RWF-nets, the reduc-
tion rules presented for RWF-nets in this paper can be generalised beyond RWF-nets
and the rules are equally applicable to arbitrary reset nets (cf. Section 4). As the re-
quirements for these rules ensure that occurrence sequences in the original net and the
reduced net correspond to each other, these reduction rules are liveness and bounded-
ness preserving.

Acknowledgements. We would like to acknowledge Marc Voorhoeve for providing
the construction which proves that the general problem of determining soundness for
RWF-nets is not decidable. (See [16] for details.)
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