
Schedule-Aware Workflow Management Systems

R.S. Mans1,2, N.C. Russell1, W.M.P. van der Aalst1, A.J. Moleman2, P.J.M.
Bakker2

1 Department of Information Systems, Eindhoven University of Technology, P.O. Box
513, NL-5600 MB, Eindhoven, The Netherlands.

{r.s.mans,n.c.russell,w.m.p.v.d.aalst}@tue.nl
2 Academic Medical Center, University of Amsterdam, Department of Quality

Assurance and Process Innovation, Amsterdam, The Netherlands.
{a.j.moleman,p.j.bakker}@amc.uva.nl

Abstract. Contemporary workflow management systems offer work-
items to users through specific work-lists. Users select the work-items
they will perform without having a specific schedule in mind. However,
in many environments work needs to be scheduled and performed at par-
ticular times. For example, in hospitals many work-items are linked to
appointments, e.g., a doctor cannot perform surgery without reserving
an operating theater and making sure that the patient is present. One of
the problems when applying workflow technology in such domains is the
lack of calendar-based scheduling support. In this paper, we present an
approach that supports the seamless integration of unscheduled (flow)
and scheduled (schedule) tasks. Using CPN Tools we have developed a
specification and simulation model. Based on this a system has been re-
alized that uses YAWL, Microsoft Exchange Server 2007, Outlook, and a
dedicated scheduling service. The approach is illustrated using a real-life
case study at the AMC hospital in the Netherlands.

1 Introduction

Healthcare is a prime example of a domain where the effective execution of
tasks is often tied to the availability of multiple scarce resources, e.g. doctors.
In order to maximize the effectiveness of individual resources and minimize pro-
cess throughput times, typically an appointment-based approach is utilized for
scheduling the tasks performed by these resources. However, the scheduling of
these appointments is often undertaken on a manual basis and its effectiveness
is critically dependent on preceding tasks being performed on-time in order to
prevent the need for rescheduling.

To illustrate the importance of the afore-mentioned issue, consider a small
hospital process for diagnosing a patient, shown in Figure 1. As a first step, the
patient is registered. Next, a physical examination (task “physical examination”)
of the patient takes place which is done by an assistant and a nurse. In parallel,
a nurse prepares the documents for the patient (task “make documents”). When
these tasks have been completed, a doctor evaluates the result of the test (task
“consultation”) and decides about the information and brochures that need to



endstart

register
patient

physical
examination

make documents

assistant doctor nurse

Jane
Marc

Nick

Sue

Rose

d:15
r:nurse

d:60
r:assistant, nurse

d:45
r:doctor

consultation give brochures
and information

d:15
r:nurse

p1

p2

p3

p4

p5

P

P

Fig. 1. Running example showing schedule (S) and flow (F) tasks. The prefix “d:”
indicates the average time needed for performing the task and prefix “r:” indicates
which roles are necessary to perform the task. From each associated role, exactly one
person needs to be assigned to the task. For both schedule tasks, indicated by the
character “P” in the top-right corner of the task, the patient is also required to be
present.

be provided by the nurse (task “give brochures and information”). Figure 1 also
shows the corresponding organizational model which specifies the roles being
played by people in the organization.

From this example, it can be seen that a distinction can be made between two
kinds of tasks. The tasks annotated with an “F” in the figure, can be performed
at an arbitrary point in time when a resource becomes available and are called
flow tasks. However, the tasks “physical examination” and “consultation”, anno-
tated with an “S” in the figure, can only be performed when the required room
is reserved, the patient is present, and the necessary medical staff are present for
performing the specific task, i.e. these tasks need to be scheduled and performed
at particular times. Therefore, we call these kinds of tasks schedule tasks as they
are performed by one or more resources at a specified time.

For the consultation task in the figure, it is often the case that a doctor finds
out at the actual appointment that some results from required diagnostic tests
are missing. Consequently, this leads to wasted time for the doctor as a new
appointment needs to be scheduled. Therefore, for the effective performance of
schedule tasks it is vital that the whole workflow is taken into account in order
to guarantee that preceding tasks are performed on-time thereby preventing the
need for rescheduling and avoiding unproductive time for resources as a result
of canceled appointments.

Workflow technology presents an interesting vehicle with which to support
healthcare processes. Based on a corresponding process definition, Workflow
Management Systems (WfMSs) support processes by managing the flow of work
such that individual work-items are done at the right time by the proper person
[2]. Contemporary WfMSs offer work-items through so-called work-lists. At an
arbitrary point in time, a user can pick a work-item from this list and perform
the associated task.

If we consider the implementation of this process in the context of a WfMS,
we find that a significant dichotomy exists in that people are used to working
in a scheduled way, but this is not supported by current WfMSs. In contrast



to administrative processes, healthcare processes invoke the coordination of ex-
pensive resources which have scarce availability. Therefore, it is of the utmost
importance that the scheduling of appointments for these resources is done in an
efficient way, that is suitable both for the medical staff and also for the patients
being treated. To summarize, there is a need to integrate workflow management
systems with scheduling facilities.

In this paper, we present the design and implementation of a WfMS sup-
porting both schedule and flow tasks. In addition to the classical work-list func-
tionality generally associated with workflow systems, the concept of a calendar
is also introduced in order to present appointments for scheduled work-items to
the people involved. Unlike traditional workflow implementations, our focus is
on how WfMSs can be integrated with scheduling facilities rather than simply
extending the functionality of a WfMS or a scheduling system (e.g. a scheduling
algorithm). In other words, we investigate how scheduling facilities can be added
to workflow systems in general.

An interesting problem in this context lies in the actual development ap-
proach taken to extending a WfMS with scheduling facilities. Our strategy for
this is based on the use of CPN Tools, a widely used modeling and execution
tool for Colored Petri Nets, with which we developed a comprehensive concep-
tual model capable of serving both as a specification and simulation model for
the application domain. Formalizing such a system using CP Nets offers several
benefits. First of all, building such a net allows for experimentation. So, the
model or parts of it can be executed, simulated, and analyzed which leads to
important insights about the design and implementation of the system. Second,
the hierarchical structuring mechanism of CP Nets allows for the modeling of
large complex systems at different levels of abstraction. That is, CP Nets can
be structured into a set of components which interact with each other through
a set of well-defined interfaces, in a similar way to the components in a modular
software architecture.

In this way, we were able to use the conceptual model as a specification for
the subsequent realization of the system. In order to realize the functionality
contained in the conceptual model, we incrementally mapped it to an opera-
tional system based on widely available open-source and commercial-off-the-shelf
(COTS) software. Although the conceptual model is detailed, it remains abstract
enough, such that its components can be concretized in many different ways. We
choose an approach based on the reuse of existing software. In total, the con-
ceptual model consists of 30 nets, 250 transitions, 634 places, and in excess of
1000 lines of ML-code illustrating the overall complexity of the system. For the
concrete realization of the system we used the open-source, service-oriented ar-
chitecture of YAWL and Microsoft Exchange Server 2007 as the implementation
platform.

The remainder of the paper is organized as follows. In Section 2 we ex-
plain how a workflow language can be augmented with information relevant for
scheduling. In Section 3 we present the design of a WfMS integrated with schedul-
ing facilities, together with a concrete implementation. In Section 4 a concrete



application of the realized system is presented. Section 5 discusses related work
and finally Section 6 concludes the paper.

2 Flow and Schedule Tasks

In order to allow for the extension of a WfMS with scheduling functionality some
concepts need to be introduced. It is assumed that the reader is familiar with
basic workflow management concepts, like case, role, and so on [2]. Using the
process shown in Figure 1, we will elaborate on how a workflow language can be
integrated with scheduling functionality.

2.1 Concepts

We can distinguish between two distinct types of tasks. Flow tasks are performed
at an arbitrary point in time when a resource becomes available. As only one
resource is needed, it is sufficient to define only one role for each of them3.
Consequently, these tasks can be presented in an ordinary work-list. For example,
for the flow task “make documents” the work may either be performed by “Sue”
or “Rose”.

Conversely, schedule tasks are performed by one or more resources at a spec-
ified time. As multiple resources can be involved, with different capabilities, it is
necessary to specify which kinds of resources are allowed to participate in com-
pleting the task. To this end, multiple resources may be defined for a schedule
task where for each role specified, only one resource may be involved in the actual
performance of the task. For example, in Figure 1, the schedule task “physical
examination” may be performed by “Jane” and “Rose”, but not by “Sue” and
“Rose”. Note that a resource involved in the performance of a schedule task may
also be a physical resource such as medical equipment or a room. Furthermore,
for the schedule tasks the patient may also be involved which means that the
patient is also a required resource for these tasks. Note that the patient is not
involved in the actual execution of the task but is a passive resource who needs
to be present whilst it is completed. For this reason, the patient is not added to
any of the roles for the task, nor are they defined in terms of a separate role.
Instead, it is necessary to identify for which schedule tasks the patient needs to
be present.

For presenting the appointments made for schedule tasks to users, the concept
of a calendar will be used. More specifically, each resource will have its own
calendar in which appointments can be booked. Note that each patient also has
his / her own calendar. An appointment either refers to a schedule task which
needs to be performed for a specific case or to an activity which is not workflow
related. So, an appointment appears in the calendars of all resources that are
involved in the actual performance of the task. An appointment for a schedule

3 There also exist approaches for which more roles may be defined, but this is not the
focus of our work.



task, for which a work-item does not yet exist, can be booked into the calendar
of a resource. However, when the work-item becomes available it has already
been determined when it will be performed and by whom. Note that sometimes
work-items need to be rescheduled because of anticipated delays in preceding
tasks.

In order to be able to determine at runtime the earliest time that a schedule
task can be started, information about the duration of every task needs to be
known. For example, in Figure 1, for each task the average duration is indicated
by prefix “d:”. For example, one block represents one minute, which means that
the task “physical examination” takes 60 minutes on average.

2.2 Formalization

Based on the informal discussion in the previous section, we now formalize the
augmented workflow language. The definition of our language is based on WF-
nets [2]. Note that our results are in no way limited to WF-nets and can be
applied to more complex notations (BPM, EPCs, BPEL, etc). Note that WF-
nets are the most widely used formal representation of workflows. A WF-net is
a tuple N = (P, T, F ) defined in the following way:

– P is a non-empty finite set of places;
– T is a non-empty finite set of tasks (P ∩ T = ∅);
– F ⊆ (P × T ) ∪ (T × P ) is a set of arcs (flow relation);
– There is one initial place i ∈ P and one final place o ∈ P such that every

place or transition is on a directed path from i to o.

A WF-net can be extended in the following way, called a scheduling WF-net
(sWF-net). A sWF -net is a tuple N = (P, Tf , Ts, F, CR, Res,Role,R, Rtf,Rts, D),
where:

– Tf is a finite set of flow tasks;
– Ts is a finite set of schedule tasks;
– Tf ∪ Ts = T and Tf ∩ Ts = ∅, i.e., Ts and Tf partition T . So, a task is either

a flow task or a schedule task, but not both;
– (P, T, F ) is a WF-net;
– CR ⊆ Ts is the set of schedule tasks for which the human resource for whom

the case is being performed is also required to be present.
– Res is a non-empty finite set of resources;
– Role is a non-empty finite set of roles;
– R: Res→ P(Role) is a function which maps resources on to sets of roles;
– Rtf : Tf 9 Role is a partial function which maps flow tasks on to roles;
– Rts: Ts → P(Role)\{∅} is a function which maps schedule tasks on to at

least one role;
– D: T → N0 is a function which maps tasks onto the number of blocks that

are needed for the execution of the task.

Note that Figure 1 fully defines a particular sWF-net.



3 Design

In this section, we present the design and implementation of a WfMS integrated
with scheduling facilities. First of all, the approach followed for doing this is
presented. Second, in Section 3.2, we introduce the architecture of the system.
Third, for each component identified in Section 3.2, a detailed (functional) de-
scription is provided in sections 3.3 to 3.5.

3.1 Approach

Contemporary WfMSs provide a wide range of functions. In order to determine
before the implementation phase, how such a system can be integrated with
scheduling facilities one needs to identify how the new scheduling functionality
being added should be incorporated with existing functionality. To this end,
Colored Petri Nets (CP Nets) [12] have been chosen as the mechanism to identify
and formalize the behavior of the system. CP Nets provide a well-established and
well-proven language suitable for describing the behavior of systems exhibiting
characteristics such as concurrency, resource sharing, and synchronization.

Formalizing a system using CP Nets offers several benefits. First of all, build-
ing such a net allows for experimentation. So, the model or parts of it can be
executed, simulated and analyzed which leads to insights about the design and
implementation of the system. Second, a complete model of the system allows for
testing parts of the system that are implemented. Given that a CP Net consists
of several components, we can “replace” one or more components in the CP Net
by the concrete implementation of these components by making connections be-
tween the CP Net model and components in the actual system. As the CP Net is
an executable model this allows for the testing of numerous scenarios facilitating
the discovery of potential flaws in both the architecture and the implementation.

Another important benefit of having a CP Net consisting of several com-
ponents, is that it provides precise guidance in the configuration of software
products, thereby allowing for the use of existing software. As will become clear
below, whilst the specification model is detailed, it remains abstract enough,
such that it allows components to be concretized in various ways.

3.2 Architecture

In this section, we give a global overview of the architecture of a WfMS inte-
grated with scheduling facilities. The architecture of both the conceptual model
of the system and its concrete implementation are shown in Figure 2. Both ar-
chitectures illustrate the main components and the system is defined in a service
oriented way. The components are loosely coupled and the interfaces (shown as
clouds) are kept as compact and simple as possible.

In Figure 2b, we see for the actual system implementation how the compo-
nents have been realized. As the interfaces share the same numbering, it is easy
to compare both sets of interfaces.



YAWL AXIS2 service

Microsoft
Exchange

Server 2007

adaptor
(Axis2 service)

Outlook 
2003 
client

Outlook 
2003 
client

YAWL
Interface B

1 2

3
Workflow engine Scheduling service

Workflow client application Calendars

SOAP

SOAP

5 5
MAPI

Java interface

Workflow
engine

Scheduling
service

Workflow client application

Worklist management

Worktray Calendar

server
client

3
- start case, cancel case

- check in workitem
-check out workitem

- etc

user request:
- reschedule

- reject
- move

appointment
- response user request

- scheduling problem
- cancel case

- allocated schedule tasks
- notification task

- response user request

GUI

Calendars

- create/delete appointment 
- first available appointment

- check availability specific slot
- allocated appointments resource
- allocated resources appointment

- meeting time
- cancel case 

5 - create/delete appointment
- calendars

4

1 2

4

a) Architecture of the conceptual model

b) Architecture of the concrete implementation of the system

Fig. 2. Architectures of both the conceptual model and the concrete implementation
of the system. There are four main components: (I) workflow engine, (II) scheduling
service, (III) workflow client application, and (IV) calendars. The distinct interfaces
are indicated by numbers.

The architecture consists of four components. First of all, the workflow engine
routes cases through the organization. Based on the business process definition
for a case, tasks are carried out in the right order and by the right people. Once
a task in a case becomes available for execution, the corresponding work-item
is communicated to users via the workflow client application allowing it to be
selected and performed by one of them. The scheduling service and the workflow
client application communicate with the Calendar component in order to obtain
a view on users’ calendars and to manipulate their contents. Note that users can
add /remove appointments that are possibly unrelated to the workflow.

As our focus is on how a WfMS can be integrated with scheduling facilities,
we want to completely separate the scheduling facilities provided by the system
from the engine. As a consequence, we have a separate scheduling service com-
ponent which is responsible for providing scheduling facilities to the system (e.g.
(re)scheduling of tasks). In order for the scheduling service to work function cor-
rectly, all scheduling constraints imposed by the engine (which might be relevant
to a scheduling decision) need to be sent to the scheduling service. To be more
precise, the scheduling service receives a scheduling problem, which contains all



relevant constraints for one case only. Based on these constraints, the scheduling
service makes decisions with regard to the scheduling of schedule tasks for the
case.

Informally, the scheduling problem is formulated as a graph which has nodes
and arcs between nodes. Nodes, arcs and the graph itself may have properties
represented as name-value attributes. The rationale for representing the schedul-
ing problem using this data structure is that any information in the graph can
be included which is deemed relevant. For a case, which is in a given state, we
map the process definition, defined in terms of the formal definition given in
Section 2.2, to the graph (e.g. tasks, duration, split/join semantics of a node,
roles). Where a work-item exists for a given node, a property is added to that
node indicating the state the work-item is currently in. For a user to reschedule
an appointment, additional information is added, such as the name of the re-
quester. Moreover, if the human resource for which the case is being performed
is also required in order to perform any task, then the name of the calendar for
this resource is included together with the names of the relevant schedule tasks.

An example of a scheduling graph is given in Figure 3. In this figure, we see
how the process definition shown in Figure 1 is mapped to the graph. In order
to simplify the graph, the figure only shows the properties of the “consultation”
node. For this node it indicates that the average duration is 45 minutes, only a
doctor is allowed to perform the task, the task is a schedule task, the node has
XOR-split semantics, AND-join semantics, and a work-item exists for it which
is in the enabled state.

In sections 3.3 to 3.6 the individual components are discussed in more detail.
For each component a description of the main functionality is provided together
with a discussion on its interaction with other components. Note that, due to
space limitations, only the most important interface methods will be discussed.

3.3 Workflow Engine

A workflow engine is responsible for the routing of cases. In addition to the
standard facilities an engine should provide [2], the following facilities are added
in order to integrate scheduling capabilities.

The engine is responsible for sending a scheduling problem to the scheduling
service in order to determine whether appointments need to be (re)scheduled,
or if limited time remains in which to finish work-items for preceding tasks

(duration,45)
(roles,doctor)

(typeTask,schedule)
(splitType,XOR)
(joinType,AND)
(state,enabled)

start register
patient

p2

p1
physical

examination

make
documents

p3

p4
consultation

give
brochures

and
information

p5

end

Fig. 3. Scheduling graph for the running example of Figure 1 in which the task “con-
sultation” is enabled.

.



cancel
case

Out CaseIDOut

Resource

get available
wi user

In ResourceIn

user request reschedule
appointment from to

InIn

select
wi

In WorkItemIdUserIn

DataStartCase

available
wi user

Out WisUserOut

WisUser

user request reschedule
appointment

InIn WorkitemUser

WisTaskType

WorkitemUser

StartCase

Time
I/O smallintI/O

WorkItemIdUser

NodeArcGraphProps

Resource

Resource

notification
task

In

ScheduleStatusTasks

In

Resource

ResWorkItemIdentifiers

cancel
case

cancelCasecancelCase

connect
disconnect

connectDisconnectconnectDisconnect

complete
data start

caseInIn

data attr
start case

OutOut

enabled
workitems

availableWorkitemsEng

Process
Repository

state
processes

Organizational
model

response
to user

Out

continue
wi

InIn

availableWorkitemsEng

check in workitem

checkInWorkitemcheckInWorkitem

ResponseUser

NodeArcGraphProps

planning
service

OutOut

update
status
tasks

updateRushStatusTasksupdateRushStatusTasks

beginning
start
case

beginningStartCasebeginningStartCase
DataStartCase

data
start
case

dataStartCasedataStartCase

available
processes

availableProcessesEngavailableProcessesEng

selection
wi

allocateWorkitemallocateWorkitem

continue
wi

dataWorkitemdataWorkitem

administration
schedule

regularCheckScheduleStatusregularCheckScheduleStatus

give
wi

back
deallocateWorkitem

deallocate
workitem

InIn

Out

get available
cases

InIn

available
processes

OutOut

start
case

InIn

commenced
wi

allocatedWorkitemsEngallocatedWorkitemsEng

get commenced
wi user

InIn

commenced 
wi user

OutOut

request
alloc sched wis

OutOut

wi_data
user

OutOut

check
in workitem

InIn
user

influencing
agenda

userRequestAppointmentuserRequestAppointment

response
planning
serviceInIn

user rejects
appointment

InIn

UserReschedule

UserRescheduleFromTo

UserRejectedAppointment

disconnect
InIn

connect
InIn

processDeclarations

NodeArcs
Graph

OutOut

response
alloc sched wis

InIn

organizationalModel initialStateEngine

OrgModelProcessDeclarations StateProcess ResponseUser

ProcessesUser

deallocateWorkitem
WorkItemIdUser

Fig. 4. CP Net component for the workflow engine component.

of an appointment. As a consequence of our choice to completely separate the
scheduling facilities from the engine, a scheduling problem for a case is sent
when the following situations occur: (1) a case is started; (2) a work-item is
finished; (3) a user wants to reschedule an appointment; and (4) at regular time
intervals. The fourth option is necessary as it may be the case that no work-
items are completed in a given period, but that some appointments need to be
rescheduled due to the fact that time has passed. Obviously, the graph is sent
the least number of times possible.

As a consequence of the execution of the scheduling service, the engine is
informed about appointments for which limited time is left in which to finish
work-items of preceding tasks. For these work-items, a warning is sent to the
workflow client to indicate that limited time remains in which to finish the
work-item.

Model.
A fragment of the CP Net for the workflow engine component is depicted in
Figure 4. The places at the far right and far left hand side are part of the
interface of the engine with other components. As an indication of the complexity
of the engine it is worth mentioning that the flattened substitution transition
comprises 54 transitions and 127 places. Moreover, the whole CP Net consists of
217 transitions, 518 places and around 950 lines of ML code. The construction
of the whole model required more than three months of work. This underscores
the fact that it is a complex system.

Implementation.
The Engine component in the CP Net model can be replaced by a concrete
implementation which allows it to be tested. The workflow component is realized
(see Figure 2b) using the open-source WfMS YAWL [1] and a service which
acts as an adaptor in between YAWL and the workflow client application. The
adaptor service communicates with YAWL via “Interface B” [1]. The adaptor
also communicates with the scheduling service using SOAP messages. However,
the adaptor and the YAWL system are tightly coupled as large volumes of work-
item and process related information are exchanged.



3.4 Workflow client application

Users working with the WfMS do so via the workflow client application which
delivers the basic facilities that should be provided by this facility [2]. The com-
ponent consists of a GUI and a work-list management component. The work-list
management component serves as a layer between the engine and the GUI and
takes care of the communication between them. The GUI component consists
of a “worktray” and a “calendar” component where the “worktray” provides
the same facilities as a classical worktray. The appointments that are created
for schedule tasks are advertised via the calendar. Once a work-item becomes
available for such an appointment, it can be performed via the calendar. In our
approach, only one user can interact with the WfMS with respect to the com-
pletion of the work-item. This prevents concurrency issues where multiple users
want to complete the same work-item.

With regard to the appointments that are made for schedule tasks, users can
express their dissatisfaction with the nominated scheduling by requesting: (1)
the rescheduling of the appointment, (2) the rescheduling of the appointment to
a specified date and time, or (3) the reassignment of the appointment to another
employee. Such a user request can be done as a single action and is the only
supported means for the rescheduling of appointments by users. In addition, the
workflow client also indicates whether limited time is left in which to undertake
work-items in order to meet the schedule. Moreover, users are also allowed to
add appointments to the calendar which are not workflow related (e.g. having
dinner with friends).

As can be seen in Figure 2a, two interfaces are defined for the communica-
tion between the workflow client application and the engine. The interface with
number “1” defines the standard communication that takes place between an
engine and a workflow client application. The interface with number “2” defines
methods added as a consequence of the scheduling facilities developed for the
system. For this interface, nothing is stored in the engine when these methods
are called.
Model.
The corresponding CP Net model for the work-list management component is
fairly complex (and is not shown here): the component’s model contains 104
transitions and 225 places.
Implementation.
Similarly, the workflow client application component of the CP Net can be re-
placed by a concrete implementation. Once the Exchange Server was in place we
could easily use the Microsoft Outlook 2003 client to obtain a view of a user’s
calendar. Furthermore, the Outlook client can be configured in such a way that
it can act as a full workflow client application which can communicate with the
WfMS via an adaptor service via the exchange of SOAP messages.

3.5 Scheduling Service

The scheduling service is responsible for providing scheduling facilities to the
WfMS. Scheduling is done sequentially on a case-by-case base. Once a scheduling



problem is received, the scheduling service needs to determine whether some of
the schedule tasks need to be (re)scheduled. Moreover, several distinct issues
need to be addressed of which we mention the most important ones.

First of all, the final scheduling of tasks needs to occur in the same order
as the sequence of schedule tasks in the accompanying process definition for the
case. Moreover, there should be sufficient time between two scheduled tasks.
Also, when rescheduling appointments, any preceding constraints need to be
satisfied. For example, in Figure 1, it needs to be guaranteed that first the
“physical examination” is scheduled, followed by the “consultation” which needs
to occur at a later time.

Second, for the actual scheduling of an appointment multiple roles can be
specified for a schedule task. For each role specified a resource needs to be se-
lected, i.e., the number of roles determines the number of resources involved
in the actual performance of the task. If the patient for which the case is per-
formed also needs to be present at an appointment, then this is also taken into
account. The scheduling service only books an appointment in the calendars of
these resources who need to be present during the performance of the task (i.e.
the performers of the task and the patient (if needed)).

Third, the scheduling service is also responsible for determining whether lim-
ited time is left for performing preceding work-items for scheduled tasks. In such
a situation, the engine needs to be informed. Moreover, the scheduling service
is also informed about the cancelation of a case, so that all appointments re-
lated to the case can be removed. When too little time is left for performing
preceding work-items for a scheduled schedule task, the corresponding appoint-
ment is automatically rescheduled which in this context can be seen to be the
most straightforward recovery action. However, different strategies can also be
conceived for dealing with such situations. Potential solutions can be found in
[15].

In this paper, we focus on integration aspects instead on devising new schedul-
ing algorithms. Nevertheless, to demonstrate the approach that is used for the
scheduling of appointments, we will briefly examine the implemented ‘naive’
scheduling algorithm. Of course it can be envisaged that more advanced schedul-
ing strategies are possible.

The (re)scheduling of appointments is done automatically, which means that
there is no user involvement. Starting with the tasks in the graph for which a
work-item exists, it is determined which schedule tasks need to be (re)scheduled.
Once we know that tasks are able to be scheduled, they are scheduled. Moreover,
these tasks are scheduled on a sequential basis in order to avoid conflicts involving
shared resources. However, we do not schedule any tasks which occur after a
choice in the process as this can lead to unnecessary usage of available slots in
the calendar. Moreover, we do not take loops into account.

For the actual scheduling of an appointment, a search is started for the first
opportunity where one of the resources of a role can be booked for the respective
work-item. If found, an appointment is booked in the calendar of the resource.
If the patient for which the case is performed also needs to be present at the



appointment, then this is also taken into account. For example, for Figure 1, if a
case is started, an appointment is created for task “physical examination” in the
calendars of “Jane”, “Sue”, and the patient, or “Jane”, “Rose” and the patient.
Model.
The CP Net model which models the scheduling service consists of 48 transitions
and 144 places. Moreover, modeling the scheduling behavior necessitated writing
many lines of ML code, involving around more than 60 hours of work.
Implementation.
The concrete implementation of this component of the CP Net is shown in Figure
2b. Here we see that the component is implemented in Java as a service which
communicates with the WfMS via SOAP messages. However, in order to get a
view of and to manipulate the calendar, the service also communicates via a
Java interface with the Exchange Server which in turn exchanges information
via SOAP messages.

3.6 Calendar

The Calendar component is responsible for providing a view on the calendars
of users and for manipulating their contents. It is possible to create / delete
appointments or to get information about the appointments that have been
made. Moreover, the interface contains some convenience methods for deleting
cases and finding the first available slot for a schedule task. Otherwise, large
volumes of low-level information need to be exchanged whereas now only one
call is necessary.
Model.
The CP Net model which models the scheduling service consists of 11 transitions
and 22 places. Note that this model is relatively simple.
Implementation.
For the Calendar component we selected Microsoft Exchange Server 2007 as the
system for storing the calendars of users. The big advantages of this system are
its widespread use and the fact that it offers several interfaces for viewing and
manipulating calendars.

4 Application

In this section, we demonstrate our approach and software in the context of a
real-life healthcare scenario. To evaluate our approach, we have taken the diag-
nostic process of patients visiting the gynecological oncology outpatient clinic at
the AMC hospital, a large academic hospital in the Netherlands. This healthcare
process deals with the diagnostic process that is followed by a patient who is
referred to the AMC hospital for treatment, up to the point where the patient
is diagnosed, and consists of around 325 activities. However, for our scenario we
will only focus on the initial stages of the process shown in Figure 5.

At the beginning of the process, a doctor in a referring hospital calls a nurse
or doctor at the AMC hospital resulting in an appointment being made for



the first visit of the patient. Several administrative tasks need to be requested
before the first visit of the patient (e.g. task “first consultation doctor”). At the
first consultation, the doctor decides which diagnostic tests are necessary (MRI,
CT or pre-assessment) before the next visit of the patient (task “consultation
doctor”). Note that for the MRI, CT and pre-assessment tasks we do not show
the preceding tasks at the respective departments that need to performed in
order to simplify the model presented.

For this scenario, we assume that the task “additional information and
brochures” has been performed. Moreover, at the first consultation with the
doctor it has been decided that an MRI and a pre-assessment are needed for
the patient. So, by looking at the process model it becomes clear that the tasks
“MRI”, “pre-assessment” and “consultation doctor” need to be scheduled. The
result of the scheduling performed by the system for these tasks is shown in
Figure 6a. Note that our case has “Oncology” as its process identifier and has
“15” as its case identifier. Moreover, for the “consultation doctor”, “pre assess-
ment”, and “MRI” examination, a doctor, an anaesthetist, and MRI machine
are needed respectively. Moreover, the patient is also required to be present.

In Figure 6a we can see that the “MRI” has been scheduled for 10:00 to 10:45
(see first column), the consultation with the doctor has been scheduled for 13:00
to 13:30 in the calendar of doctor “Nick” (see second column), and that the pre-
assessment has been scheduled for 11:00 to 11:30 in the calendar of anaesthetist
“Jules” (see third column). At the far right, we can see the calendar of patient
Anne who also needs to be present for the work-items mentioned, which explains
why the previously mentioned appointments are also present in her calendar. For
Anne we see that she is not available till 10 ’o clock which has influenced the
actual scheduling. This is due to the fact that she can not manage to be at the
hospital before 10 ’o clock by public transport. However, it is important that the
“consultation doctor” task is scheduled after the “MRI” and “pre-assessment”
task, which is also consistent with the corresponding process definition.

Now, let us assume that unexpectedly some maintenance for the MRI ma-
chine is necessary for that day, which will take until 13:30 hours to complete.

Fig. 5. Screenshot of the YAWL editor showing the initial stages of the gynaecological
oncology healthcare process. The flow tasks are indicated by a person icon and the
schedule tasks are indicated by a calendar icon.

.



a) Before rescheduling

b) After rescheduling

Fig. 6. Screenshot of the calendars for the MRI, consultation with the doctor, and the
pre-assessment before and after rescheduling.

.

Consequently, the MRI appointment needs to be rescheduled to 13:30 hours. The
effect of this specific rescheduling request can be seen in Figure 6b. In this figure,
the message box indicates that the MRI has been successfully rescheduled to the
requested time. Moreover, in the calendar of Anne we can see that the MRI now
takes place from 13:30 to 14:15. However, it was also necessary to reschedule the
appointment with doctor “Nick” which will now take place from 14:30 to 15:00.
As can be seen in Figure 5, this rescheduling step is necessary as the task “con-
sultation doctor” occurs after the “MRI” task and the task “register patient”
falls in between these two tasks and takes 15 minutes.

5 Related Work

Analysis of the healthcare research shows that significant work has been done
on the problem of appointment scheduling. Examples of such research efforts are
appointment scheduling for outpatient services [7] and operating room scheduling
[6]. However, most of these studies focus on a single unit instead of situations
in which a patient may pass through multiple facilities. In our research, we take
the scheduling of work-items for the whole workflow into account together with
the current state of a case.



Our work is also related to time management in workflows. For example, in
[13, 11] the authors focus on the satisfiability of time constraints and the enforce-
ment of these at run-time. In addition, there is also research on the problem of
the scheduling of tasks by WfMSs. For example, [4, 9, 14] present algorithms for
the scheduling of tasks. In contrast, we focus on the augmentation of a WfMS
with scheduling facilities instead of just presenting new scheduling algorithms.

The work presented in [8] is somewhat similar to ours as it presents different
architectures for a WfMS in which temporal aspects are explicitly considered.
However, the temporal reasoning facilities are added as core functionality to
the engine. In this paper, we propose a different approach where this kind of
functionality is realized through a separate service in the system. In this way,
loose coupling is guaranteed which means that our approach can be generalized
to any WfMS (or even to multiple engines at the same time).

Multiple people can be involved in the actual performance of a schedule
task. However, in our approach, only one user can interact with the WfMS with
respect to the completion of a work-item. In [3, 5, 10] reference models to extend
the organizational meta model with a team concept allowing for the distribution
of work to teams are proposed. By doing so, advanced mechanisms are offered
for the performance of work by such a team. Additionally, in [3, 5] a language is
discussed for defining work allocation requirements to people.

6 Conclusions and Future Work

In this paper, we have presented the design and implementation of a WfMS aug-
mented with calendar-based scheduling facilities. Instead of just offering work-
items via a work-list, as is the case in most existing WfMSs, they can also be
offered as a concrete appointment in a calendar taking into account which pre-
ceding tasks are necessary and whether they have been performed.

Our approach demonstrates that the use of CP Nets, for constructing a con-
ceptual model of the system to be realized, provides valuable insights in terms of
understanding the problem domain and identifying the behavior of the system.
Moreover, the same conceptual model provides a comprehensive specification on
which to base the ultimate realization of the required functionality. We have
incrementally mapped it to an operational system using widely available open-
source and commercial-off-the-shelf (COTS) software. This demonstrates that
although the specification model is detailed, it remains at a sufficient level of ab-
straction to allow its constituent components to be concretized in various ways.
Moreover, it also shows that our ideas can, for example, be applied to a variety
of WfMSs and scheduling systems.

The resultant system has been tested using several realistic scenarios. We plan
to test the components of the system in a more systematic way by incrementally
“replacing” components of the CP Net by their concrete implementation. In this
way, we can test numerous scenarios facilitating the discovery of flaws both in
individual components as well as in the overall architecture of the actual system.



In the design and the implementation of the system, a naive algorithm has
been used for the scheduling of appointments. This naive approach can lead
to inefficient use of resources. In the future, we plan to use the CP Net for
evaluating various scheduling approaches and to investigate the effects of our
calendar-based approach on case performance.

Finally, to test the feasibility of our approach, we plan to evaluate the oper-
ation of our resultant system in a real-life scenario at the AMC hospital.

References

1. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design
and Implementation of the YAWL System. In Proceedings of CAiSE’04, 2004.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT Press, Cambridge, MA, 2002.

3. W.M.P. van der Aalst and A. Kumar. A Reference Model for Team-Enabled
Workflow Management Systems. Data and Knowledge Engineering, 38(3):335–363,
2001.

4. C. Bettini, X.S. Wang, and S. Jajodia. Temporal Reasoning in Workflow Systems.
Distributed and Parallel Databases, 11(3):269–306, 2002.

5. J. Cao, S. Zhang, and X. Zhang. Team Work Oriented Flexible Workflow Man-
agement System. In X. Meng, J. Su, and Y. Wang, editors, Advances in Web-Age
Information Management, volume 2419 of LNCS, pages 189–200, 2002.

6. B. Cardoen, E. Demeulemeester, and J. Beliën. Operating Room Planning and
Scheduling: A Literature Review. FEB Research Report KBI 0807, Katholieke
Universiteit Leuven, Leuven, 2008.

7. T. Cayirli and E. Veral. Outpatient Scheduling in Health Care: A Review of
Literature. Product Operations Management, 12(4):519–549, 2003.

8. C. Combi and G. Pozzi. Architectures for a Temporal Workflow Management
System. In H. Haddad, A. Omicini, R.L. Wainwright, and L.M. Liebrock, editors,
Proc. of the 2004 ACM symposium on applied computing, pages 659–666, 2004.

9. C. Combi and G. Pozzi. Task Scheduling for a Temporal Workflow Management
System. In Thirteenth International Symposium on Temporal Representation and
Reasoning (TIME’06), pages 61–68, 2006.

10. L. Cui and H. Wang. Research on Cooperative Workflow Management Systems.
In W. Shen, Z. Lin, and J.-P.A. Barthès, editors, Computer Supported Cooperative
Work in Design I, volume 3168 of LNCS, pages 359–367, 2005.

11. J. Eder, E. Panagos, and M. Rabinovich. Time Constraints in Workflow Systems.
In M. Jarke and A. Oberweis, editors, Proceedings of CAiSE ’99, volume 1626 of
Lecture Notes in Computer Science, pages 286–300. Springer-Verlag, Berlin, 1999.

12. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools
for Modelling and Validation of Concurrent Systems. International Journal on
Software Tools for Technology Transfer, 9(3-4):213–254, 2007.

13. O. Marjanovic and M. Orlowska. On Modeling and Verification of Temporal Con-
straints in Production Workflows. Knowledge and Information Systems, 1(2):157–
192, 1999.

14. P. Senkul and I.H. Toroslu. An Architecture for Workflow Scheduling under Re-
source Allocation constraints. Information Systems, 30(5):399–422, 2005.

15. W.M.P. van der Aalst, M. Rosemann, and M. Dumas. Deadline-based Escalation
in Process-Aware Information Systems. Decision Support Systems, 43(2):492–511,
2007.


