
Compositional Service Trees

Wil M.P. van der Aalst1, Kees M. van Hee1, Peter Massuthe2,
Natalia Sidorova1, and Jan Martijn van der Werf1

1 Technische Universiteit Eindhoven,
Department of Mathematics and Computer Science,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

{W.M.P.v.d.Aalst, k.m.v.hee,n.sidorova,j.m.e.m.v.d.werf}@tue.nl
2 Humboldt-Universität zu Berlin, Institut für Informatik,

Unter den Linden 6, 10099 Berlin, Germany
massuthe@informatik.hu-berlin.de

Abstract. In the world of Service Oriented Architectures, one deals
with networks of cooperating components. A component offers services;
to deliver a service it possibly needs services of other components, thus
forming a service tree. This tree is built dynamically and not known
beforehand. It is hard to verify the behavior of a service tree by using
standard verification techniques, because these techniques typically as-
sume a static flattened model. In this paper we model a component by
an open Petri net. We give a sufficient condition for proper completion
(called soundness) that requires only pairwise checks of the service com-
positions. We also provide a correctness-by-construction approach for
building services trees.

1 Introduction

According to the paradigm of Service Oriented Architectures (SOA) a system
can be seen as a (possibly open) network of cooperating components based on
asynchronous communication [3, 8, 18]. A component offers services to a client
which may be a component itself. Each component may play two roles: service
provider and service client. One of the interesting features of SOA is the dynamic
binding of services: in order to provide a service S for its client, a component may
invoke a service S′ of another component during the execution, while it might be
not known at the beginning of this execution that the service S′ was needed and
which component would be selected to deliver it. In this way, the components
form a tree, called a service tree, to deliver a certain service. However, this tree
is not known to any party and for privacy and security reasons we often do not
want the tree to be known to anybody. This makes the verification of behavioral
correctness very hard.

Correctness requirements concern both dataflow and control flow. In this pa-
per, we focus on the control flow aspect, i.e., on the orchestration. There are
several approaches to define the orchestration process. BPEL (Business process
Execution Language) is one of the main languages to specify the orchestration



Fig. 1. The composition of three composable OWNs

at the implementation level [9]. We use here Petri nets for modeling the orches-
tration of components in order to analyse the behavioral properties.

Due to dynamic binding, we never know how a service tree will look like,
and therefore, we are not able to check a complete service tree beforehand.
Thus, if we want ensure proper termination we need a verification method that
only considers pairwise compositions of components. Therefore, we propose a
correctness-by-construction method that guarantees that if each pair of con-
nected components satisfies some correctness condition, then the whole service
tree will be sound.

We model services and service trees as open Petri nets (OPNs), i.e., a Petri
net with a set of interface (input or output) places [5, 15, 18]. An OPN has one
initial marking and one final marking, which is usually a deadlock. A composition
of two OPNs is an OPN again; the corresponding interface places of the two
nets are fused and they are not a part of the interface of the resulting net
anymore. Sometimes, we consider a more restrictive class of OPNs, called open
workflow nets (OWNs) which have one initial place, one final place, and an
arbitrary number of interface places. Both OPNs and OWNs can be seen as a
generalization of the classical workflow nets [1, 10].

The behavioral correctness criterion we consider is the weak termination
property of services, which can be seen as generalization of the soundness con-
cept of workflow nets [1], and therefore we also call it soundness. A stand-alone
OPN is called sound if for each marking reachable from the initial marking the
final marking is reachable, discarding the interface places.



We illustrate the need for compositional soundness conditions for service trees
on the example shown in Figure 1. Here, we have three components, A, B, and
C. The composition of A with B is sound, as well as the composition of B with
C. However, the composition of the three has a deadlock, since this composition
introduces a cyclic dependency implying a deadlock.

We will consider two approaches: a posteriori approach and a constructive
approach. In the posteriori approach for each pair of composed components in
a service tree we have to verify the correctness condition by checking a specific
simulation relation. In the constructive approach we apply stepwise refinement.
We start with a service tree of two composed components, which are known
to satisfy the correctness condition. Then we select two so-called synchronized
places and we refine them simultaneously by correctly composed components.
We can also extend the tree by adding new leaves to it at arbitrary nodes.

In Section 2 we give basic definitions. In Section 3 we introduce the basic
concepts of OPNs. In Section 4 we define the composition operator for OPNs and
give sufficient conditions for soundness of service trees. In Section 5 we introduce
the stepwise refinement approach in general and in Section 6 we present a correct-
by-construction method for service trees. Finally, we conclude with related and
future work in Section 7.

2 Preliminaries

Let S be a (finite) set. The powerset of S is denoted by P(S) = {S′ | S′ ⊆ S}.
We use |S| for the number of elements in S. Two sets U and V are disjoint if
U ∩ V = ∅. A bag m over S is a function m : S → IN . We denote e.g. the bag m
with an element a occurring once, b occurring three times and c occurring twice
by m = [a, b3, c2]. The set of all bags over S is denoted by INS . Sets can be seen
as a special kind of bag were all elements occur only once. We use + and − for
the sum and difference of two bags, and =, <, >, ≤, ≥ for the comparison of two
bags, which are defined in a standard way. The projection of a bag m ∈ INS on
elements of a set U ⊆ S, is denoted by m|U , and is defined by m|U (u) = m(u)
for all u ∈ U and m|U (u) = 0 for all u ∈ S \ U . Furthermore, if for some
n ∈ IN , disjoint sets Ui ⊆ S with 1 ≤ i ≤ n exist such that S =

⋃n
i=1 Ui, then

m =
∑n

i=1 m|Ui
.

A sequence over S of length n ∈ IN is a function σ : {1, . . . , n} → S. If n > 0
and σ(i) = ai for i ∈ {1, . . . , n}, we write σ = 〈a1, . . . , an〉, and σi for σ(i).
The length of a sequence is denoted by |σ|. The sequence of length 0 is called
the empty sequence, and is denoted by ε. The set of all finite sequences over S
is denoted by S∗. Let ν, γ ∈ S∗ be two sequences. Concatenation, denoted by
σ = ν; γ is defined as σ : {1, . . . , |ν| + |γ|} → S, such that for 1 ≤ i ≤ |ν|:
σ(i) = ν(i), and for |ν| + 1 ≤ i ≤ |ν| + |γ|: σ(i) = γ(i − |ν|). A projection of a
sequence σ ∈ S∗ on elements of a set U ⊆ S (i.e. eliminating the elements from
S \ U) is denoted as σ|U .



If we give a tuple a name, we subscript the elements with the name of the
tuple, e.g. for N = (A,B, C) we refer to its elements by AN , BN , and CN . If the
context is clear, we omit the subscript.

Definition 1 (Labeled transition system). A labeled transition system (LTS)
is a 5-tuple (S,A,−→, si, sf ) where

– S is a set of states;
– A is a set of actions;
– −→ ⊆ S × (A ∪ {τ})× S is a transition relation, where τ 6∈ A is the silent

action [10].
– si ∈ S is the initial state;
– sf ∈ S is the final state.

For m,m′ ∈ S and a ∈ A, we write L : m
a−→ m′ if and only if (m, a, m′) ∈−→.

If the context is clear, we omit the L. A state m ∈ S is called a deadlock if no
action a ∈ A∪{τ} and state m′ ∈ S exist such that m

a−→ m′. We often require
that sf is a deadlock.

We define =⇒ as the smallest relation such that m =⇒ m′ if m = m′ ∨
∃m′′ ∈ S : m =⇒ m′′ τ−→ m′. m =⇒ m′ is sometimes also referred to as m

τ=⇒
m′, i.e., a path of zero or more silent actions [10]. We define a=⇒ as the smallest
relation such that m

a=⇒ m′ if ∃m′′ ∈ S : m =⇒ m′′ a−→ m′.

Definition 2 (Hiding). Let L = (S,A,−→, si, sf ) be an LTS. Let H ⊆ A. We
define the operation τH on an LTS by τH(L) = (S,A\H,−→′, si, sf ), where for
m,m′ ∈ S and a ∈ A we have (m, a, m′) ∈−→′ if and only if (m, a, m′) ∈−→ and
a 6∈ H and (m, τ, m′) ∈−→′ if and only if (m, τ, m′) ∈−→ or (m, a, m′) ∈−→
and a ∈ H.

We define simulation and bisimulation relations on labeled transition systems.

Definition 3 (Simulation, bisimulation). Let L = (S,A,−→, si, sf ) and
L′ = (S′,A,−→′, s′i, s

′
f ) be two LTSs. The relation R ⊆ S × S′ is a simula-

tion, denoted by L ¹R L′, if:

1. si R s′i and sf R s′f ;

2. ∀m,m′ ∈ S, m̄ ∈ S′, a ∈ A∪{τ} : (m a−→ m′∧mR m̄) ⇒ (∃m̄′ ∈ S′ : m̄
a=⇒′

m̄′ ∧m′R m̄′).
3. ∀m′ ∈ S′ : (sf R m′) ⇒ (m′ =⇒ s′f ).

If both R and R−1 are simulations, R is a bisimulation.

Note that L ¹R L′ means that L′ can mimic L, i.e., L′ is able to simulate L.



Petri nets A Petri net is a 3-tuple N = (P, T, F ) where (1) P and T are two
disjoint sets of places and transitions respectively; (2) F ⊆ (P × T ) ∪ (T × P )
is a flow relation. The elements from the set P ∪ T are called the nodes of
N . Elements of F are called arcs. Places are depicted as circles, transitions
as squares. For each element (n1, n2) ∈ F , an arc is drawn from n1 to n2.
Two Petri nets N = (P, T, F ) and N ′ = (P ′, T ′, F ′) are disjoint if and only
if (P ∪ T ) ∩ (P ′ ∪ T ′) = ∅. Let N = (P, T, F ) be a Petri net. Given a node
n ∈ (P ∪ T ), we define its preset N• n = {n′ | (n′, n) ∈ F}, and its postset
n

N•= {n′ | (n, n′) ∈ F}. We lift the notation of preset and postset to sets. Given
a set U ⊆ (P ∪ T ), N• U =

⋃
n∈U

N• n and U
N•=

⋃
n∈U n

N• . If the context is clear,
we omit the N in the superscript.

Markings are states of a net. A marking m of a Petri net N = (P, T, F ) is
defined as a bag over P . A pair (N, m) is called a marked Petri net. A transition
t ∈ T is enabled in a marking m ∈ INP if and only if •t ≤ m. An enabled
transition may fire. A transition firing results in a new marking m′ with m′ =
m − •t + t•, denoted by N : m

t→ m′. If the context is clear, we omit the N .
A sequence σ = 〈t1, . . . , tn〉 is a firing sequence of (N, m) if and only if there
exist markings m1, . . . , mn ∈ INP such that N : m

t1→ m1
t2→ . . .mn−1

tn→ mn.
We write N : m

∗→ m′ if there exists a (possibly empty) firing sequence σ ∈ T ∗

such that N : m
σ→ m′. The set of all reachable markings of a marked Petri net

(N, m) is denoted by R(N, m) = {m′ ∈ INP | N : m
∗→ m′}.

A place p ∈ P is safe if for any marking m′ ∈ R(N, m), holds that m′(p) ≤ 1.
A marked Petri net is called safe if all its places are safe. The marking m is a
deadlock if there exists no transition t ∈ T such that •t ≤ m.

Definition 4 (Workflow net, soundness). A Petri net N = (P, T, F ) is
called a workflow net if (1) there exists exactly one place i ∈ P , called the initial
place, such that •i = ∅, (2) there exists exactly one place, called the final place,
f ∈ P such that f• = ∅, and (3) all nodes are on a path from i to f . N is sound
if [f ] ∈ R(N,m) for any marking m ∈ R(N, [i]).

3 Open Petri Nets

The SOA paradigm builds upon asynchronous communications: a component
sends messages to communicate with other components. In this approach, we
model a component by a Petri net. Communication is done through an interface,
modeled by input and output places. We call such a Petri net with an interface
an open Petri net (OPN) [5, 15,18].

Definition 5 (Open Petri net). An open Petri net (OPN) is a 7-tuple (P, I,O, T, F, i, f)
where

– (P ∪ I ∪O, T, F ) is a Petri net;
– P is a set of internal places;
– I is a set of input places, and •I = ∅;



– O is a set of output places, and O• = ∅;
– P , I, O, and T are pairwise disjoint;
– i ∈ INP is the initial marking,
– f ∈ INP is the final marking, and
– f is a deadlock.

We call the set I ∪O the interface places of the OPN. Two OPNs N and M are
called disjoint if PN , PM , IN , IM , ON , OM , TN and TM are pairwise disjoint.

Note that the initial and final markings cannot mark interface places. Al-
though we allow interface places to have more than one connected transition,
it is always possible to transform the nets to equivalent ones with exactly one
connected transition for interface places (cf. [4]).

In order to inspect and refer to the internal working of a component, ignoring
the communication aspects, we introduce the notion of a skeleton. The skeleton
is the Petri net of the component without any interface places.

Definition 6 (Skeleton). Let N be an OPN. The skeleton of N is defined as
the Petri net S(N) = (PN , TN , F ) with F = FN ∩ ((PN ×TN )∪ (TN ×PN )). We
use R(N) as a shorthand notation for R(S(N), iN ).

The semantics of an OPN is given by its LTS.

Definition 7 (LTS of an OPN). Let N be an OPN. Its labeled transition
system is defined as: T (N) = (R(N), T,−→, iN , fN ) with (m, t,m′) ∈−→ if and
only if S(N) : m

t→ m′.

We focus on services that try to reach a goal. We therefore introduce the
notion of an open workflow net, i.e., an open Petri net such that the skeleton is
a workflow, and only the initial place is marked in the initial marking.

Definition 8 (Open workflow net). Let N be an OPN. It is called an open
workflow net (OWN) iff its skeleton is a workflow net with initial place i ∈ P
and final place f ∈ P , such that •i = ∅, f• = ∅, iN = [i], fN = [f ].

Note that in an OWN N , the final marking fN is always a deadlock. All
transitions and internal places lie on a path from i to f , since the skeleton is a
workflow, whereas interface places cannot not have this property. We would like
services to be sound, i.e., always have the possibility to terminate properly. As the
open Petri net has interface places, termination depends on the communication
partners of the net. Still, we want to express that at least the service disregarding
the communication is modelled in a proper way. Therefore, we define soundness
on the skeleton of the open Petri net.

Definition 9 (Soundness of OPNs). An OPN N is called sound if for any
marking m ∈ R(N) we have S(N) : m

∗→ fN .

Note that if an OPN N is sound and fN is a nonempty deadlock, then the
initial marking iN cannot be the empty marking, since if f is reachable from the
empty marking, also 2 · f is reachable, but f cannot be reached from 2 · f thus
invalidating soundness.



4 Composition

Two open Petri nets can be composed by fusing interface places with the same
name.

Definition 10 (Composition). Let A and B be two OPNs. Their composition
is an OPN A⊕ B = (P, I, O, T, F, i, f) defined by:

– P = PA ∪ PB ∪ (IA ∩OB) ∪ (IB ∩OA);
– I = (IA \OB) ∪ (IB \OA);
– O = (OA \ IB) ∪ (OB \ IA);
– T = TA ∪ TB;
– F = FA ∪ FB;
– i = iA + iB;
– f = fA + fB.

Two OPNs are composable if they do not share any internal places, input
places and output places. Note that an input place of one net can be an output
place of another net.

Definition 11 (Composable). Two OPNs A and B are composable if and
only if (PA ∪ IA ∪OA ∪ TA) ∩ (PB ∪ IB ∪OB ∪ TB) = (IA ∩OB) ∪ (OA ∩ IB).

The composition operator is commutative and associative for composable
OPNs.

Lemma 12 (Commutativity and associativity of composition). Let A,
B and C be three pairwise composable OPNs. Then A ⊕ B = B ⊕ A and (A ⊕
B)⊕ C = A⊕ (B ⊕ C). In addition, if O = (∅, ∅, ∅, ∅, ∅, ∅, ∅), we have A⊕ O =
O ⊕ A = A.

Proof. Follows directly from the definition of ⊕. ut
Using the composition notion, we define a projection relation and simulation

based on this relation.

Definition 13 (Projection relation, simulation property). Let A and B
be two composable OPNs. The projection relation R ⊆ INPA×INPA⊕B is defined
as R = {(m|PA

,m) | m ∈ R(A⊕B)}. We use the shorthand notation A⊕B º A
for τTB (T (A ⊕ B)) ºR T (A). If A ⊕ B º A, we say that the composition has
the simulation property.

Note that the notation A ⊕ B º A states that the projection relation is a
simulation. If A⊕ B º A, then A⊕ B is able to mimic the behavior of A after
abstracting away the transitions in B.

The next lemma shows that for a sequence σ in A ⊕ B and a sequence σ̃
in B ⊕ C, such that their projections on B are identical, a composed sequence
σ exists, such that the projection of σ on A and B is identical to σ, and the
projection of σ on B and C is identical to σ̃.



Lemma 14 (Combining firing sequences). Let A, B and C be three pairwise
composable OPNs and let A and C have disjoint interface places. Let m ∈ R(A⊕
B ⊕ C), σ ∈ (TA ∪ TB)∗, σ̃ ∈ (TB ∪ TC)∗, m′ ∈ R(A⊕ B) and m′′ ∈ R(B ⊕ C)
such that A ⊕ B : m|PA⊕B

σ−→ m′, B ⊕ C : m|PB⊕C

σ̃−→ m′′ and σ|TB
= σ̃|TB

.
Then there exist a firing sequence σ ∈ (TA∪TB∪TC)∗ such that σ|TA∪TB

= σ and

σ|TB∪TC
= σ̃, and a marking m ∈ R(A⊕B⊕C) such that A⊕B⊕C : m

σ−→ m,
m|PA⊕B

= m′ and m|PB⊕C
= m′′.

Proof. We prove this lemma by induction on the length of σ|TB
. If σ|TB

= ε,
then σ can execute independently of σ̃, since transitions in A and C have no
places in common. Hence, the statement holds for length 0.

Let it hold for length n and we consider m ∈ R(A⊕B⊕C), σ ∈ (TA∪TB)∗,
σ̃ ∈ (TB ∪ TC)∗, m′ ∈ R(A ⊕ B) and m′′ ∈ R(B ⊕ C) such that A ⊕ B :
m|PA⊕B

σ−→ m′, B ⊕ C : m|PB⊕C

σ̃−→ m′′, with σ|TB
= σ̃|TB

= σ′; b for some
b ∈ TB and |σ′| = n. Then σ = σ1; b;σ2 for some σ1 ∈ (TA ∪ TB)∗, σ2 ∈ (TA)∗

and σ̃ = σ̃1; b; σ̃2 for some σ̃1 ∈ (TB ∪TC)∗ and σ̃2 ∈ (TC)∗ and σ1|TB
= σ̃1|TB

=
σ′|TB

. By the induction hypothesis there exists σ1 such that σ1|TA∪TB
= σ1

and σ1|TB∪TC
= σ̃1 and a marking m1 such that A ⊕ B ⊕ C : m

σ1−→ m1,
m1|PA⊕B

= m′
1 and m1|PB⊕C

= m′′
1 .

We have A ⊕ B ⊕ C : m1
b−→ m2, since b is enabled both in A ⊕ B and in

B⊕C. In the resulting marking m2, σ2 and σ̃2 are independently enabled, since
A and C have no common places. Hence, we can apply the induction hypothesis
on σ2 and σ̃2 which gives a firing sequence σ2 such that σ2|TA∪TB

= σ2 and

σ2|TB∪TC
= σ̃2 and a marking m such that A⊕B⊕C : m2

σ2−→ m, m|PA⊕B
= m′

and m|PB⊕C
= m′′. Hence, σ = σ1; b;σ2 has the desired property.

ut
Lemma 15. Let A and B be two composable OPNs. Let m,m′ ∈ R(A⊕B) and

σ ∈ (TA ∪ TB)∗ such that A ⊕ B : m
σ→ m′. Then A : m|PA

σ|TA−→ m′|PA
and

B : m|PB

σ|TB−→ m′|PB
.

Since a service tree is not known in advance, we need a condition such that
if any two composed services satisfy this condition, the whole service tree is
sound. The example in Figure 1 shows that soundness itself is not the right
property, since although both A⊕ B and B ⊕ C are sound, the composition of
the three, A ⊕ B ⊕ C is not. The reason is that A ⊕ B and B ⊕ C are acyclic
but A ⊕ B ⊕ C has a cycle which causes a deadlock. This example shows how
tricky the asynchronous composition of OPNs is. We use Lemma 14 to come to
a sufficient condition for soundness of the composition of three OPNs, by only
pairwise checking of the connections between the OPNs.

If a component B is composed with A, and this composition is sound, com-
posing it with C should not destroy soundness. This can occur e.g. if C blocks
some execution path of B. We will show that a sufficient condition for the sound-
ness of A⊕ B ⊕ C is: C should not block any execution of B that starts in the
initial marking and ends in the final marking.



First, we formally define the sufficient condition.

Definition 16 (Condition ΩA,B). Let A and B be two composable OPNs.
Condition ΩA,B holds if and only if ∀m ∈ R(A⊕ B), σ ∈ (TA)∗ : (A : m|PA

σ→
fA) ⇒ (∃σ̃ ∈ (TA ∪ TB)∗ : (A⊕ B : m

σ̃→ fA + fB) ∧ σ̃|TA
= σ).

Note that we do not require soundness of A or B here, but if A is sound,
ΩA,B implies that A⊕ B is sound.

Lemma 17. Let A and B be two composable OPNs. If A is sound and condition
ΩA,B holds, then A⊕ B is sound.

Now we show that condition ΩB,C is a sufficient condition allowing to extend
an arbitrary composition A⊕B by C obtaining a sound A⊕ B ⊕ C.

Theorem 18 (Sufficient condition). Let A, B and C be three pairwise com-
posable OPNs such that A and C have disjoint interface places. If the composition
A⊕B is sound and ΩB,C holds, then A⊕ B ⊕ C is sound.

Proof. Let m ∈ R(A⊕ B ⊕ C). Then, by Lemma 15, m|PA⊕B
∈ R(A⊕ B) and

m|PB⊕C
∈ R(B⊕C). By the soundness of A⊕B there is a σ ∈ (TA⊕B)∗ such that

A⊕ B : m|PA⊕B

σ−→ fA + fB . By condition ΩB,C applied to m|PB⊕C
and σ|TB

,

there is a σ̃ ∈ (TB∪TC)∗ such that σ̃|TB
= σ|TB

and B⊕C : m|PB⊕C

σ̃−→ fB+fC .
By Lemma 14, there exist a firing sequence σ ∈ (TA ∪ TB ∪ TC)∗ and marking
m such that σ|TA∪TB

= σ and σ|TB∪TC
= σ̃ and A ⊕ B ⊕ C : m

σ−→ m,
m|PA⊕B

= fA + fB and m|PB⊕C
= fB + fC . Note that the interface places

between A and B and between B and C are empty. Since there are no interface
places between A and C, we have m = fA + fB + fC . ut

To facilitate the check of condition ΩA,B , we prove that ΩA,B is equivalent
to the condition “A⊕ B simulates A”.

Theorem 19 (Equivalent condition). Let A and B be two composable OPNs
and A be sound. Then ΩA,B holds if and only if A⊕ B º A.

Proof. (⇒) Assume that ΩA,B holds. We show that the projection relation R =
{(m|PA

,m) | m ∈ R(A⊕ B)} is a simulation.
1) By definition of ⊕, we have iA R iA⊕B and fA R fA⊕B provided that

fA⊕B ∈ R(A⊕ B). The latter condition follows from ΩA,B .
2) Let m ∈ R(A⊕ B) and m = m|PA

, i.e., mR m. Note that by Lemma 15,

m ∈ R(A). Further let A : m
t−→ m′ for some m′ ∈ R(A), t ∈ TA.

Since A is sound, there exists a sequence σ ∈ (TA)∗ such that A : m
t;σ−→

fA. By the condition ΩA,B , there is a sequence σ̃ ∈ (TA ∪ TB)∗, such that

A ⊕ B : m
σ̃−→ fA + fB and σ̃|TA

= t; σ. Thus, A ⊕ B : m
σ̃′−→ m′′ t−→ m′ (i.e.

A ⊕ B : m
t=⇒ m′) for some markings m′, m′′ ∈ R(A ⊕ B) and sequence σ̃′ ∈

(TB)∗. Since σ̃′ ∈ (TB)∗, for all places p ∈ PA holds m(p) = m(p) = m′′(p) and



m′(p) = m(p)− •t(p)+ t•(p) = m′′(p)− •t(p)+ t•(p) = m′(p). Thus m′|PA
= m′,

and therefore m′R m′.
3) The only reachable deadlock possible in A is fA. Let m ∈ R(A⊕ B) such

that fA R m. No transition t ∈ TA is enabled in marking fA, and hence, also not
in m. By applying ΩA,B to ε and m, we conclude that there exists a sequence
σ̃ ∈ (TA ∪ TB)∗ such that A⊕ B : m

σ̃−→ fA + fB . Since no transition of A can
fire, σ̃ ∈ (TB)∗. Hence A⊕ B : m =⇒ fA + fB .

(⇐) Assume A ⊕ B º A. Let m ∈ R(A ⊕ B), σ ∈ (TA)∗ such that A :
m|PA

σ−→ fA. We prove by induction on the length of σ that ∃σ̃ ∈ (TA ∪ TB)∗ :

(A⊕ B : m
σ̃→ fA + fB) ∧ σ̃|TA

= σ to show that ΩA,B holds.
Suppose σ = ε, i.e. m|PA

ε−→ fA, which implies fA = m|PA
and thus fA R m.

Since A ⊕ B º A, there exists a sequence σ̃ ∈ (TB)∗ such that A ⊕ B : m
σ̃−→

fA + fB with σ̃|TA
= ε.

Suppose σ = t;σ′, t ∈ TA. Then, a marking m′ ∈ R(A) exists, such that

A : m|PA

t−→ m′ σ′−→ fA. Since A ⊕ B º A, there exists a marking m′ ∈
R(A⊕ B) such that A⊕ B : m

t=⇒ m′ and m′R m̄′. Hence, there is a marking

m′′ ∈ R(A⊕B) and a sequence σ̃′ ∈ (TB)∗ such that A⊕B : m
σ̃′−→ m′′ t−→ m′.

The induction hypothesis applied to σ′ implies the existence of a sequence σ̃′′ ∈
(TA∪TB)∗ such that σ̃′′|TA

= σ′ and A⊕B : m′ σ̃′′−→ fA +fB . Hence, σ̃ = σ̃′; t; σ̃′′

is a sequence such that A⊕ B : m
σ̃−→ fA + fB and σ̃|TA

= σ. ut

We can extend our results to compositions that are more complex than chains
of three components. A service tree is a tree of components connected to each
other such that the higher OPNs can only “subcontract” work to lower level
OPNs. The structure of the tree is defined by the tree function c. Each node i is
an OPN representing a component that is delivering a service to its parent c(i)
using services of its children c−1(i). In the remainder of this section, we show
that the sufficient condition is enough to only pairwise check the connections in
the tree to decide whether the whole service tree is sound.

Definition 20 (Service tree). Let A1, . . . , An be pairwise composable OPNs.
Let c : {2, . . . , n} → {1, . . . , n− 1} be such that:

– ∀i ∈ {2, . . . , n} : c(i) < i,
– ∀1 ≤ i < j ≤ n : i 6= c(j) ⇒ IAi ∩OAj = ∅ ∧ OAi ∩ IAj = ∅, and
– ∀1 ≤ i < j ≤ n : i = c(j) ⇒ IAi ∩OAj 6= ∅ ∨ OAi ∩ IAj 6= ∅.

We call A1 ⊕ . . .⊕ An a service tree with root A1 and tree function c.

Lemma 17 together with Theorem 19 implies that if B ⊕ C º B and B is
sound, the composition is sound as well. Hence, if we combine the results so far,
we can show that if the root of a service tree is sound, and all the connections
fulfill the Ω condition, the whole service tree is sound.



Theorem 21 (Soundness of service trees). Let A1, . . . An be a service tree
with root A1 and tree function c. Further, let A1 be sound and for 2 ≤ i ≤ n, it
holds that Ai ⊕ Ac(i) º Ac(i). Then A1 ⊕ . . .⊕ An is sound.

Proof. We prove this by induction on n. If n = 1, it is true by definition. Suppose
it is true for n = k− 1. Let n = k. By the induction hypothesis: A1⊕ . . .⊕Ak−1

is sound and always c(k) < k. By the associativity and commutativity of ⊕ we
have that (A1⊕ . . .⊕Ac(k)−1⊕Ac(k)+1⊕ . . . ⊕Ak−1)⊕Ac(k) is sound. We also
have Ak⊕Ac(k) º Ac(k). By Lemma 17 we have (A1⊕ . . .⊕Ac(k)−1⊕Ac(k)+1⊕
. . . ⊕ Ak−1) ⊕ Ac(k) ⊕ Ak is sound. Again by associativity and commutativity,
the theorem is proven. ut

5 Stepwise Refinement

In the previous section we showed that we can build sound service trees com-
positionally. In this section we present a construction method that guarantees
condition Ω with simultaneous refinements of places in communicating compo-
nents with communicating subcomponents.

In [12], the authors introduce a notion of place refinement where a place is
refined by a workflow net. We define this refinement operation on open Petri
nets, and refine internal places by communicating OWNs.

The choice for OWNs with a single initial and a single final place makes
the refinement definition natural. The refinement is only defined for the nets
that do not overlap, except for (possibly) interface places. In some situations
we will additionally require that input places of A may not be output of B or
vice-versa, to prevent breaking the composability of A with other components.
These requirements are captured in the following definition.

Definition 22 (Refinable). Let A be an OPN, and let B be an OWN. A is
refinable by B if (PA∪IA∪OA∪TA)∩(PB∪IB∪OB∪TB) = (IA∪OA)∩(IB∪OB).

A is strictly refinable by B if (PA ∪ IA ∪OA ∪ TA)∩ (PB ∪ IB ∪OB ∪ TB) =
(IA ∩ IB) ∪ (OA ∩OB).

When we refine an arbitrary place p ∈ PA by an OWN B, all transitions of
the refined net that produced a token in p now produce a token in the initial
place of B, and all transitions that consumed a token from p now consume a
token from the final place of B. If the two nets share interface places, these
places are fused.

Definition 23 (Place refinement). Let A be an OPN, and let B be an OWN
such that A is refinable by B. Let p ∈ PA such that iA(p) = fA(p) = 0. The
refined OPN A¯p B = (P, I, O, T, F, i, f) is defined as:

– P = (PA \ {p}) ∪ PB ∪ (IA ∩OB) ∪ (IB ∩OA);
– I = (IA \OB) ∪ (IB \OA);
– O = (OA \ IB) ∪ (OB \ IA);
– T = TA ∪ TB;



Fig. 2. Places p and q are safe, A⊕ B º A and C ⊕D º C, but (A¯p C)⊕ (B ¯q D)
is not sound

– F = FA \ ((•p× {p}) ∪ ({p} × p•)) ∪ FB ∪ (•p× {iB}) ∪ ({fB} × p•);
– i = iA;
– f = fA.

Note that in case an input place of one net is an output place of another net,
this place becomes an internal place of the resulting net.

If in the original net two places are refined, the resulting net does not depend
on the order in which the refinements took place. Also, the refinement distributes
over the composition.

Lemma 24. Let N be an OPN, let p, q ∈ PN and p 6= q. Let C and D be two
disjoint OWNs such that N is strictly refinable by C and N is strictly refinable
by D. Then (N ¯p C)¯q D = (N ¯q D)¯p C. Furthermore, if N = A⊕ B for
some OPNs A and B, p ∈ PA and q ∈ PB, we have ((A ⊕ B) ¯p C) ¯q D =
(A¯p C)⊕ (B ¯q D).

The following statement is a generalization of Theorem 10 from [12] to the
case of OPN nets.

Lemma 25 (Soundness of refinement). Let A be a safe and sound OPN,
and let B be a sound OWN such that A is strictly refinable by B. Let p ∈ PA.
Then the refinement A¯p B is sound.

When constructing services, we might want to refine two places of communi-
cating components with a sound composition of two subcomponents. Refinement



�� ��

����

�

��

�

Fig. 3. Block structure ensuring that p is synchronized with q (p N q)

of a sound and safe OPN by a sound OWN results in a sound OPN, but refining
two places in a sound and safe OPN by a sound composition is in general not
sound. An intuitive approach would be to apply this refinement only to “syn-
chronizable” places — such places that if one of the places becomes marked in
the execution sequence, then another one already has a token, or will receive it
before the token disappears from the first one. A counterexample for this idea is
given in Figure 2. Both compositions A⊕ B and C ⊕D are safe and sound and
places p and q are “synchronizable”, but the composition (A¯p C)⊕ (B ¯q D),
i.e. place p is refined by C and place q by D, is not sound, which is caused by the
fact that C can be started for the second time before D has finished. Consider for
example the firing sequence σ = 〈t1, u1, u3, t2, u2, u4, u6, u5, u7, t3, t5, u1〉. We
have (A¯pC)⊕ (B¯q D) : [iA, iB ] σ→ [s5, b, c, s2, p1, e, j, p6]. Continuing with the
firing sequence γ = 〈u9, u3, t4, t6〉 we obtain marking [s5, s6, p3, g, j, iD], which
is a deadlock. This scenario was not possible in C ⊕ D itself.

To solve this problem, we need to ensure a stricter synchronization for places
p and q, namely that place q only becomes marked if p is marked, and that p can
only become unmarked, after q became unmarked. A structure that guarantees
this condition is the block structure (see Figure 5), which is a handshaking pro-
tocol providing the notifications when a place becomes marked or unmarked. If
place p becomes marked, this is notified by sending a message. This message is
consumed when q becomes marked. As soon as q becomes unmarked, a message
is sent, after which p can become unmarked.

Definition 26 (Synchronized places, p N q). Let N be an OPN and p, q ∈
PN two distinct places. We say that p is synchronized with q in N , denoted by
p N q, if and only if p and q are safe, iN (p) = iN (q) = fN (p) = fN (q) =
0, and there exist two communication places r, s ∈ PN and four transitions
t1, t2, u1, u2 ∈ TN that together form a so-called block structure where:

– •p = {t1} ∧ p• = {t2} ∧ •q = {u1} ∧ q• = {u2};
– t1

• = {p, s} ∧ •t2 = {p, r} ∧ u1
• = {q} ∧ •u2 = {q};

– •s = {t1} ∧ s• = {u1} ∧ •r = {u2} ∧ r• = {t2}.
The block structure guarantees that if place p becomes marked, it cannot

become unmarked before q has been marked. This is ensured via two communi-
cation places, place s and place r. A token in place s indicates that a token is
put in p but not yet in q, whereas a token in place r indicates that a token has



Fig. 4. Places p and q are not synchronized

been consumed from place q. I.e., a transition that produces a token in p should
also produce a token in place s, a transition that consumes from s should place
a token in q. If a transition consumes from place q, it should produce a token
in r, which can only be consumed by a transition that also consumes from p.
Note that the block structure is asymmetric, although reversing the direction of
the messages will have small local influence on the behaviour when p and q get
refined with communicating subcomponents.

It is easy to show that p = q + r + s is a place invariant, i.e., the structure
guarantees that the number of tokens in p equals the number of tokens in q, r,
and s.

Lemma 27. Let N be an OPN. Let p, q ∈ PN such that p N q. Let s, r ∈ PN

be the communication places of the block structure of p and q. Then p = q+s+r
is a place invariant.

This invariant implies that if the net is sound, the block structure of two
synchronized places indeed guarantees the desired property: if p is marked, q is
already marked, or it will become marked before the token is gone from p.

Corollary 28. Let N be a sound OPN, p, q ∈ PN such that p N q and m ∈
R(N) such that m(p) = 1. Then there exist a firing sequence σ ∈ (TN )∗ and a
marking m′ ∈ R(N) such that N : m

σ−→ m′ and m′(p) = m′(r) = 1 (i.e. σ
enables t2). Moreover, if N = A⊕ B for some composable OPNs A and B with
A ⊕ B º A, p ∈ PA and q ∈ PB, then there exists such a sequence σ with just
transitions of B (i.e., σ ∈ (TB)∗).

In Figure 4, we consider a slight extension of the block structure by allowing
more output places for transition t1. This extension does not work. First note
that A, B and A⊕B are all sound and A⊕B º A. However, if we refine places



p and q with the very simple net C⊕D, we loose the simulation property for the
whole system. In A¯p C we can have the firing sequence 〈t0, t1, t3〉 while in the
whole system, (A ¯p C) ⊕ (B ¯q D), this firing sequence cannot be simulated,
since the firing of transition x is needed in order to put a token on the third
input place of t3 in (A¯p C)⊕ (B ¯q D).

As in an OPN only a safe place can be refined by a sound OWN, we show
that if a net is safe, and we refine two places by a safe composition of two OWNs,
then the refined net is safe again.

Theorem 29 (Refinement preserves safety). Let N be a safe OPN, let
p, q ∈ PN such that p N q. Let C and D be two composable OWNs such that
N is strictly refinable by C and N is strictly refinable by D, and C ⊕ D is safe.
Then the refinement N ′ = (N ¯p C)¯q D is safe.

Proof. Since N is safe, p and q are never marked with two or more tokens. Hence,
if m(p) > 0, transition t2 ∈ p

N• fires before transition t1 ∈N• p can fire again. The
same holds for u1 and u2 because of the block structure. Therefore, C ⊕ D can
never be restarted before it is finished. Hence, since both N and C⊕D are safe,
N ′ is safe. ut

We use Corollary 28 to show that if in a sound OPN N two synchronized
places are refined by a sound composition, then the refined OPN is sound as
well.

Theorem 30 (Refinement preserves soundness). Let N be a sound OPN
with p, q ∈ PN such that p N q. Let C and D be composable OWNs such that
C⊕D is sound and N strictly refinable by C and N strictly refinable by D. Then
N ′ = (N ¯p C)¯q D is sound.

Proof. (Idea) We map an arbitrary token marking m′ ∈ R(N ′) to the marking
m of N by putting a token on p when C is marked, a token on q when D is
marked and keeping the rest of the marking as is; note that m is reachable in
N . Due to the soundness of N , m

σ−→ fN for some σ ∈ T ∗N . Then we use the
fact that p and q are safe and synchronized, and C ⊕ D is sound to fill in σ up

to σ′ such that m′ σ′−→ fN ′ . ut
The next theorem exploits the composition structure. If A⊕ B simulates A

and C ⊕ D simulates C, then ((A¯p C)⊕ (B ¯q D)) simulates A¯p C.

Theorem 31 (Refinement preserves simulation). Let A and B be two com-
posable OPNs such that N = A ⊕ B, N º A, and A is sound. Let p ∈ PA and
q ∈ PB such that p N q. Let C and D be two composable OWNs such that N
is strictly refinable by C and N is strictly refinable by D, C ⊕ D º C and C is
sound. Let A′ = A¯p C and B′ = (B ¯q D). Then A′ ⊕ B′ º A′.

Proof. (Sketch) Let N ′ = A′⊕B′. We prove that R = {(m|PA′ ,m) | m ∈ R(N ′)}
is a simulation, assuming all transitions of B′ are τ -labeled. Let m,m′ ∈ R(A′),
t ∈ TA′ and m ∈ R(N ′). Then either t ∈ TA or t ∈ TC . Suppose t ∈ TA. Then



either (1) C and D do not contain any marked place in m, or (2) there is at least
one place marked in C. In the first case, the firing of t does not depend on the
marking in p. A ⊕ B º A implies the existence of a marking m′ ∈ R(N ′) such
that N ′ : m

t=⇒ m′ and m′R m′. In the second case, we need to consider two
subcases: either p is in the preset of t in A, or not. If p is not in the preset, the
argument is similar to case (1). In case p is in the preset of t, we have t = t2. If
there is a place marked in D, C ⊕ D º C implies that a marking m′′ ∈ R(N ′)
enabling transition t can by reached by the firings of transitions of B and D only.
Hence, there exists a marking m′ ∈ R(N ′) such that N ′ : m

t=⇒ m′ and m′R m′.
If there is no place marked in D, then by Corollary 28, either t is enabled in m′,
or there exists a firing sequence in B marking a place in D. In both cases we
can conclude the existence of a marking m′ ∈ R(N ′) such that N ′ : m

t=⇒ m′

and m′R m′.
Suppose t ∈ TC . Then either (1) there exists a place in D that is marked in

m or (2) no place in D is marked in m. In the first case, C ⊕ D º C implies
the existence of a marking m′ such that N ′ : m

t=⇒ m′ and m′R m′. If there
is no place in D that is marked in m, then by Corollary 28, either there is a
firing sequence in B that marks a place in D or D has already finished. In the
first case, a marking m′′ ∈ R(N ′) with N ′m =⇒ m′′ is reached, marking a place
in D, hence we can apply case (1) to marking m′′. In the second case, D has
already produced all necessary tokens for C, thus t ≤ m. In both cases we can
conclude the existence of a marking m′ ∈ R(N ′) such that N ′ : m

t=⇒ m′ and
m′R m′. ut

Theorems 21 and 31 imply compositionality of our construction method with
respect to soundness:

Corollary 32. Let A and B be two composable OPNs such that N = A ⊕ B,
N º A, and A sound. Let p ∈ PA and q ∈ PB such that p N q. Let C and D
be two composable OWNs such that N is strictly refinable by C and N is strictly
refinable by D, C⊕D º C, and C sound. Then ((A¯p C)⊕ (B¯q D)) is sound.

6 Construction of Service Trees

In Section 4 we defined a sufficient condition for the soundness of service trees and
showed that this condition is equivalent to the simulation property. In Section 5,
we showed that if two places in a composition are synchronized, they can be
refined by a composition, such that the refined net is sound again. In this section,
we combine the results obtained so far to construct service trees in a soundness-
by-construction fashion. We show two examples of possible approaches, one for
OWNs and another one for a specific subclass of OPNs.

The first approach is inspired by the concept of outsourcing. Consider a sound
OWN N . Suppose some place x ∈ PN is not just a state marker, but it represents
the execution of an activity outside the scope of the OWN, e.g. the place is called
“producing an item”. Now suppose there is a service that produces this “item”.



Fig. 5. The “outsourcing” method: place x is refined by M1

Then we can “outsource” the activity to the service we found. We modify the
net, and refine the place by a start transition and an end transition, indicating
the start and end of the activity. The start transition initiates the service, and
as soon as the service finishes, the end transition is triggered.

Consider Figure 5, where place x represents “producing an item” and we
assume that it is safe. By Lemma 25, we can refine place x by a sound workflow
net so that the refined net is sound. Consider the OWN M1 = ({iM , p, fM},
{r}, {s}, {t1, t2}, {(iM , t1), (t1, p), (t1, s), (p, t2), (r, t2), (t2, fM )}, [iM ], [fM ]). The
refinement N¯x M1 is sound, and, since place x is safe, place p is safe. Now, con-
sider the OPN M2 = ({q}, {s}, {r}, {t3, t4}, {(s, t3), (t3, q), (q, t4), (t4, r)}, ∅, ∅).
Although we need to drop the requirement that the final marking is a dead-
lock, it is easy to show that the net (N ¯x M1) ⊕ M2 is sound and so is
(N ¯x M1) ⊕ M2 º (N ¯x M1). By this composition, we introduced a block
structure around places p and q (see Figure 5). By Lemma 27 and the safety
of p, we know that q is safe, and thus p (N¯xM1)⊕M2 q. Now we can refine
places p and q by any sound composition of OWNs. This way, we can construct
an arbitrary large sound service tree, without the need to check condition ΩA,B

for any pair of composed OPNs A and B.

Theorem 33. Let N be an arbitrary OPN and x ∈ PN . Consider the two OPNs
M1 and M2 from Figure 5. Let N ′ = N¯x (M1⊕M2) = (N¯x M1)⊕M2. Then:

1. if N is safe, then N ′ is safe;
2. if N is sound, then N ′ is sound;
3. N ′ º (N ¯x M1);
4. if N is an OWN, then N ′ is also an OWN.

Proof. This follows immediately from the structure of M1 and M2. ut
A second approach is based on pairs of composed OPNs belonging to a special

subclassN of OPNs. This class is recursively defined, starting with two composed
OPNs that are either both acyclic T-nets3 or both isomorphic S-nets4 with some
3 A Petri net in which all places have maximal one input and output transition
4 A Petri net in which all transitions have maximal one input and one output place



additional requirements on their composition. The class N is defined in such a
way that any pair of OPNs in this class is safe, sound and has the simulation
property. In these pairs of composed OPNs we can easily detect the synchronized
places and then each pair of these can be refined with nets of N , resulting in an
element that is again in N . For details, see [4].

As an example, consider the approach presented in [13]. All services have
the same protocol (OPN) for bargaining about the outsourcing of a service.
Internally each service has its OWN orchestration process of the service. A task
of this orchestration is modeled by a start transition, an end transition and a
place in between like in Figure 5. The whole orchestration is modeled as an OWN.
Some tasks may be outsourced to another service. The next step is refinement of
the synchronized places by the standard bargaining protocol, which is in fact a
sound composition of two OWNs, one for the service client and one for the service
provider. In the OWN of the service provider there is one place that represents
the execution of the service. This place may be refined by an arbitrary sound
OWN which represents the orchestration of the service and by Lemma 25 this
conserves the soundness of the whole system. Now we may select a task in this
orchestration process and we may repeat the outsourcing process. Hence, we
build up a service tree as an OWN.

Another example is that we have three parties with interaction between all
three. For instance a Buyer invokes a service at a Seller and the Seller invokes a
service at a Shipper which is the direct delivery of the goods to the Buyer. Now,
the question is: “does this fit into the framework?”. In fact the Seller process
will wait in some place q until the Shipper has delivered the goods at the Buyer
and then the Shipper will notify the Seller by sending a token to a transition t
in the Seller, where t is an output transition of q. We may refine q by a OWN
that only intercepts and passes the communication between Shipper and Buyer
and thus all interaction between the Shipper and the Buyer is now via the Seller.
This reflects the responsibility: the Seller is in fact responsible for the delivery.
Hence, now it is a tree structure again and it fits into our framework.

7 Conclusions

In this paper, we presented a method for compositional verification of a global
termination property of an arbitrary tree of communicating components, where
only checks of pairs of directly linked components are required. Another dimen-
sion where our construction goes is place refinements. Note that our method can
easily be extended to the simultaneous refinement of several (more than two)
places in communicating components with communicating subcomponents. Fi-
nally, we gave a method to construct such a tree in a correctness-by construction
fashion, based on the composition and refinement.

Related Work In [10] the authors give a constructive method preserving the
inheritance of behavior. As shown in [2] this can be used to guarantee the correct-
ness of interorganizational processes. Other formalisms, like I/O automata [17]



or interface automata [7] use synchronous communication, whereas we focus
on asynchronous communication, which is essential for our application domain,
since the communication in SOA is asynchronous.

In [20], the author introduces place composition to model asynchronous com-
munication focusing on the question which subnets can be exchanged such that
the behavior of the whole net is preserved. Open Petri Nets are very similar to
the concept of Petri net components, see e.g. [14], in which a module consists of a
Petri net and interface places to be connected to other components. Open Petri
nets were introduced and studied in [5, 6, 15, 16, 18]. In [16] the authors focus
on deciding controllability of an OPN and computing its operating guidelines.
Operating guidelines can be used to decide substitutability of services [19], or to
prove that an implementation of a service meets its specification [6].

The major advantage of our approach compared to the operating guideline
approach is its compositionality. In our setting it is sufficient to analyze only
directly connected services of the tree, while the overall operating guidelines of
the tree would have to be re-computed before a new service can be checked for
a harmless addition to the tree. Moreover, the construction of the service tree
remains flexible — any component can be replaced by another component, pro-
vided that the composition of this component with its direct neighbors satisfies
our condition. This flexibility comes however with a price label, namely, the con-
dition we define is a sufficient but not necessary condition, i.e. we might not be
able to approve some service trees, although they were sound.

In [11], the authors propose to model choreographies using Interaction Petri
nets, which is a special class of Petri nets, where transitions are labeled with the
source and target component, and the message type being sent. To check whether
the composition is functioning correctly, the whole network of components needs
to be checked, whereas in our approach the check is done compositionally.

Future Work The sufficient condition provided in Section 4 requires that an
OPN B does not restrict the behavior of A in the composition A ⊕ B. This
condition might be relaxed by requiring that A⊕ B mimics all visible behavior.
The main research question here is defining a set of visible actions so that the
approach would remain compositional and this set would be as small as possible.
Note that such a relaxation will not influence the framework.

In Section 6, we have shown how the obtained results can be used to build
service trees that are sound by construction. Although we only apply our results
on Petri nets, our method can be extended to languages like BPEL, to facilitate
the construction of web services in development environments like Oracle BPEL
or IBM Websphere.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to agree
to disagree without loosing control? Information Technology and Management
Journal, 4(4):345–389, 2003.



3. W.M.P. van der Aalst, M. Beisiegel, K.M. van Hee, D. König, and C. Stahl. An
SOA-Based Architecture Framework. International Journal of Business Process
Integration and Management, 2(2):91–101, 2007.

4. W.M.P. van der Aalst, K.M. van Hee, P. Massuthe, N. Sidorova, and J.M.E.M. van
der Werf. Compositional service trees. Technical Report CSR 09/01, Technische
Universiteit Eindhoven, January 2009.

5. W.M.P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. From
Public Views to Private Views: Correctness-by-Design for Services. In WS-FM
2007, volume 4937 of Lecture Notes in Computer Science, pages 139–153. Springer,
2008.

6. W.M.P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. Multi-
party Contracts: Agreeing and Implementing Interorganizational Processes. The
Computer Journal, 2009. (Accepted for publication).

7. L. de Alfaro and Th. A. Henzinger. Interface automata. SIGSOFT Softw. Eng.
Notes, 26(5):109–120, 2001.

8. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services Concepts, Archi-
tectures and Applications. Springer, 2004.

9. A. Alves, A. Arkin, S. Askary, et al. Web Services Business Process Execution
Language Version 2.0 (OASIS Standard). WS-BPEL TC OASIS, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.html, 2007.

10. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic
and Algebraic Programming, 47(2):47–145, 2001.

11. G. Decker and M. Weske. Local enforceability in interaction petri nets. In BPM
2007, volume 4714 of Lecture Notes in Computer Science, pages 305–319. Springer,
2007.

12. K.M. van Hee, N. Sidorova, and M. Voorhoeve. Soundness and Separability of
Workflow Nets in the Stepwise Refinement Approach. In ICATPN 2003, volume
2679 of LNCS, pages 335–354. Springer, 2003.

13. K.M. van Hee, H.M.W. Verbeek, C. Stahl, and N. Sidorova. A framework for
linking and pricing no-cure-no-pay services. Transactions on Petri Nets and Other
Models of Concurrency, 2009. to appear.

14. E. Kindler. A compositional partial order semantics for Petri net components. In
18th International Conference on Application and Theory of Petri Nets (ICATPN
1997), volume 1248 of LNCS, pages 235–252. springer, June 1997.

15. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing Interacting BPEL
Processes. In BPM 2006, volume 4102 of Lecture Notes in Computer Science, pages
17–32. Springer, 2006.

16. N. Lohmann, P. Massuthe, and K. Wolf. Operating Guidelines for Finite-State
Services. In ICATPN 2007, volume 4546 of Lecture Notes in Computer Science,
pages 321–341, Siedlce, Poland, jun 2007. Springer.

17. N. A. Lynch and M. Tuttle. Hierarchical correctness proofs for distributed algo-
rithms. In 6th Annual ACM Symposium on Principles of Distributed Computing,
1987.

18. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to
the SOA. Annals of Mathematics, Computing & Teleinformatics, 1(3):35–43, 2005.

19. C. Stahl, P. Massuthe, and J. Bretschneider. Deciding Substitutability of Ser-
vices with Operating Guidelines. Transactions on Petri Nets and Other Models of
Concurrency, 2008. (Accepted for publication).

20. W. Vogler. Asynchronous communication of petri nets and the refinement of tran-
sitions. In Automata, Languages and Programming, volume 623 of LNCS, pages
605 – 616. springer, 1992.


