
Flexibility as a Service

W.M.P. van der Aalst1,2, M. Adams2, A.H.M. ter Hofstede2, M. Pesic1, and H.
Schonenberg1

1 Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.

w.m.p.v.d.aalst@tue.nl
2 Queensland University of Technology

GPO Box 2434, Brisbane QLD 4001, Australia.

Abstract. The lack of flexibility is often seen as an inhibitor for the suc-
cessful application of workflow technology. Many researchers have pro-
posed different ways of addressing this problem and some of these ideas
have been implemented in commercial systems. However, a “one size fits
all” approach is likely to fail because, depending on the situation (i.e.,
characteristics of processes and people involved), different types of flex-
ibility are needed. In fact within a single process/organisation varying
degrees of flexibility may be required, e.g., the front-office part of the pro-
cess may require more flexibility while the back-office part requires more
control. This triggers the question whether different styles of flexibility
can be mixed and integrated into one system. This paper proposes the
Flexibility as a Service (FAAS) approach which is inspired by the Service
Oriented Architecture (SOA) and our taxonomy of flexibility. Activities
in the process are linked to services. Different services may implement
the corresponding activities using different workflow languages. This way
different styles of modelling may be mixed and nested in any way appro-
priate. This paper demonstrates the FAAS approach using the Yawl,
Declare, and Worklet services.

1 Introduction

Web services, and more generally Services-Oriented Architectures (SOAs), have
emerged as the standard way of implementing systems in a cross-organisational
setting. The basic idea of SOA is to modularise functions and expose them as
services using a stack of standards. Although initially intended for automated
inter-organisational processes, the technology is also used for intra-organisational
processes where many activities are performed by human actors. This is illus-
trated by the fact that classical workflow technology is being embedded in SOA-
style systems (cf. the role of BPEL). Moreover, proposals such as BPEL4People
[15] illustrate the need to integrate human actors in processes as has been done
in workflow systems since the nineties [2, 16, 13].

Experiences with workflow technology show that it is relatively easy to sup-
port structured processes. However, processes involving people and organisations



tend to be less structured. Often, the process is not stable and changes continu-
ously or there are many cases that require people to deviate from the predefined
process [5, 7, 19, 20]. Therefore, numerous researchers proposed ways of dealing
with flexibility and change. Unfortunately, few of these ideas have been adopted
by commercial parties. Moreover, it has become clear that there is no “one size
fits all” solution, i.e., depending on the application, different types of flexibility
are needed. In this paper we use the taxonomy presented in [23] where four types
of flexibility are distinguished: (1) flexibility by design, (2) flexibility by deviation,
(3) flexibility by underspecification, and (4) flexibility by change (both at type
and instance levels). This taxonomy shows that different types of flexibility exist.
Moreover, different paradigms may be used, i.e., even within one flexibility type
there may be different mechanisms that realise different forms of flexibility. For
example, flexibility by design may be achieved by adding various modelling con-
structs depending on the nature of the initial language (declarative/imperative,
graph-based/block-structured, etc.). Therefore, it is not realistic to think that a
single language is able to cover all flexibility requirements.

To address the need for flexibility and to take advantage of today’s SOAs, we
propose Flexibility as a Service (FAAS). The idea behind FAAS is that different
types of flexibility can be arbitrarily nested using the notion of a service. Figure 1
shows the basic idea. The proposal is not to fix the choice of workflow language
but to agree on the interfaces between engines supporting different languages.
Activities in one workflow may be subcontracted to a subprocess in another
language, i.e., activities can act as service consumers while subprocesses, people,
and applications act as service providers. As Figure 1 shows, languages can be
arbitrarily nested.

A B Z

Fig. 1. Overview of FAAS approach: A, B, . . . , Z may use different languages. The
solid arcs are used to connect a service consumer (arc source) to a service provider (arc
target).



A particular case (i.e., workflow instance) triggers the invocation of a tree of
services. For example, the top-level workflow is executed using language B, some
of the activities in this workflow are directly executed by people and applications
while other activities are outsourced, as shown by the links between activities
and people or applications in Figure 1. This way some of the activities in the
top-level workflow can be seen as service consumers that outsource work to
service providers using potentially different workflow languages. The outsourced
activities are atomic for the top-level workflow (service consumer), however, may
be decomposed by the service provider. The service provider may use another
workflow language, say A. However, activities expressed in language A may again
refer to processes expressed in language C, etc. In fact any nesting of languages
is possible as long as the interfaces match.

In this paper, we will show that the FAAS approach depicted in Figure 1 is
indeed possible. Moreover, we will show that the different forms of flexibility are
complementary and can be merged. This will be illustrated in a setting using
Yawl [3], Worklets [9], and Declare [6]. Yawl is a highly expressive lan-
guage based on the workflow patterns. Using the advanced routing constructs of
Yawl, flexibility by design is supported. Worklets offer flexibility by under-
specification, i.e., only at run-time the appropriate subprocess is selected and/or
defined. Declare is a framework that implements various declarative languages,
e.g., DecSerFlow and ConDec, and supports flexibility by design, flexibility by
deviation, and flexibility by change [17].

The paper is organised as follows. First, we present related work using our
taxonomy of flexibility. Section 3 defines the FAAS approach and describes
the characteristics of three concrete languages supporting some form of flexi-
bility (Yawl, Worklets, and Declare). Note that also other workflow lan-
guages/systems could have been used (e.g., ADEPT [19]). However, we will show
that Yawl, Worklets, and Declare provide a good coverage. Section 4 de-
scribes the implementation. Finally, we show an example that joins all three
types of flexibility and conclude the paper.

2 Related Work and Taxonomy of Flexibility

Since the nineties many researchers have been working on workflow modelling,
analysis, and enactment [2, 16, 13]. Already in [13] it was pointed out that there
are different workflow processes ranging from fully automated processes to ad-
hoc processes with considerable human involvement. Nevertheless, most of the
commercial systems focus on structured processes. One notable exception is the
tool FLOWer by Pallas Athena that supports flexibility through case handling
[7]. Although their ideas have not been adopted in commercial offerings, many
researchers have proposed interesting approaches to tackle flexibility [5, 7, 19, 14,
17, 20].

Using the taxonomy of flexibility presented in [23], we now classify the flexi-
bility spectrum and use this classification to discuss related work.



Flexibility by Design is the ability to incorporate alternative execution paths
within a process definition at design time such that selection of the most appro-
priate execution path can be made at runtime for each process instance. Consider
for example a process model which allows the user to select a route; this is a form
of flexibility by design. Also parallel processes are more flexible than sequential
processes, e.g., a process that allows for A and B to be executed in parallel,
also allows for the sequence B followed by A (and vice versa), and thus offers
some form of flexibility. In this way, many of the workflow patterns [4] can be
seen as constructs to facilitate flexibility by design. A constraint-based language
provides a completely different starting point, i.e., anything is possible as long
as it is not forbidden [6].

Flexibility by Deviation is the ability for a process instance to deviate at
runtime from the execution path prescribed by the original process without
altering its process definition. The deviation can only encompass changes to
the execution sequence of activities in the process model for a specific process
instance; it does not allow for changes in the process definition or the activities
that it comprises. Many systems allow for such functionality to some degree, i.e.,
there are mechanisms to deviate without changing the model or any modelling
efforts. The concept of case handling allows activities to be skipped and rolled
back as long as people have the right authorisation [7]. Flexibility by deviation
is related to exception handling as exceptions can be seen as a kind of deviation.
See [10, 21] for pointers to the extensive literature on this topic.

Flexibility by Underspecification is the ability to execute an incomplete pro-
cess specification at runtime, i.e., one which does not contain sufficient informa-
tion to allow it to be executed to completion. Note that this type of flexibility
does not require the model to be changed at runtime, instead the model needs
to be completed by providing a concrete realisation for the undefined parts.
There are basically two types of underspecification: late binding and late mod-
elling. Late binding means that a missing part of the model is linked to some
pre-specified functionality (e.g., a subprocess) at runtime. Late modelling means
that at runtime new (i.e., not predefined) functionality is modelled, e.g., a sub-
process is specified. Worklets allow for both late modelling and late binding
[9, 8]. The various approaches to underspecification are also discussed in [22].

Flexibility by Change is the ability to modify a process definition at runtime
such that one or all of the currently executing process instances are migrated to
a new process definition. Unlike the previous three flexibility types the model
constructed at design time is modified and one or more instances need to be
transferred from the old to the new model. There are two types of flexibility
by change: (1) momentary change (also known as change at the instance level
or ad-hoc change): a change affecting the execution of one or more selected
process instances (typically only one), and (2) evolutionary change (also known
as change at the type level): a change caused by modification of the process
definition, affecting all new process instances. Changing a process definition leads
to all kinds of problems as indicated in [5, 12, 19, 20]. In [12] the concept of the
so-called dynamic change bug was introduced. In the context of ADEPT [19]



much work has been performed on workflow change. An excellent overview of
problems and related work is given in [20].

Workflow flexibility has been a popular research topic in the last 15 years.
Therefore, it is only possible to mention a small proportion of the many papers
in this domain here. However, the taxonomy just given provides a good overview
of the different approaches, and, more importantly, it shows that there are many
different, often complementary, ways of supporting flexibility. Therefore, we pro-
pose not to use a single approach but to facilitate the arbitrary nesting of the
different styles using the FAAS approach.

3 Linking Different Forms of Flexibility

The idea of FAAS was already introduced using Figure 1. The following definition
conceptualises the main idea. The whole of what is shown in Figure 1 is a so-
called workflow orchestration which consists of two types of services: workflow
services and application services.

Definition 1. A workflow orchestration is a tuple WO = (WFS , AS , W ), where

– WFS is the set of workflow services (i.e., composites of activities glued to-
gether using some “process logic”),

– AS is the set of application services (i.e., we abstract from the workflow
inside such as service),

– S = WFS ∪AS is the set of services,
– for any s ∈WFS, we defined the following functions:
• lang(s) is the language used to implement the process,
• act(s) is the set of activities in s,
• logic(s) defines the process logic, i.e., the causal dependencies between

the activities in act(s) and expressed in lang(s), and
• impl(s) ∈ act(s)→ S defines the implementation of each activity in s,

– from the above we can distill the following wiring relation: W = {(cons, prov)
∈WFS × S | ∃a∈act(cons) impl(cons)(a) = prov}.

The arcs (i.e., the links in wiring relation W ) in Figure 1 represent service
consumer/provider links. The source of a link is the service consumer while
the target of a link is the service provider. The application services are the
leaves in Figure 1, i.e., unlike workflow services they are considered to be black
boxes and their internal structure is not revealed. They may correspond to a
web service, a worklist handler which pushes work-items to workers, or some
legacy application. The workflow services have the same “provider interface”
but have their own internal structure. In Figure 1, several workflow services
using languages A, B, . . . Z are depicted. Each workflow service s uses a lang(s)
to describe the workflow process. In Figure 1, the top-level workflow is using
language B. In process s, act(s) refers to the set of activities. Seen from the
viewpoint of s, act(s) are black boxes that are subcontracted to other services.
impl(s)(a) is the service that executes activity a for workflow service s. The solid



arcs connecting activities to services in Figure 1 describe the wiring relation W .
Note that workflow orchestration WO does not need to be static, e.g., modelling
activities at runtime may lead to the creation of new services.

The goal of FAAS is that different languages can be mixed in any way.
This requires a standard interface between the service consumer and the service
provider. There are different ways of implementing such an interface. (For the
implementation part of this paper, we use the so-called “Interface B” of Yawl
described later.) However, the minimal requirement can be easily described using
the notion of a work-item. A work-item corresponds to an activity enabled for a
particular case, i.e., an activity instance. A work-item has input data and output
data. The input data is information passed on from the service consumer to the
service provider and output data is information passed on from the provider to
the consumer. Moreover, there are two basic interactions: (1) check-in work-item
and (2) check-out work-item. When an activity is enabled for a particular case, a
work-item is checked out, i.e., data and control are passed to the service provider.
In the consumer workflow the corresponding activity instance is blocked until
the work-item is checked in, i.e., data and control are passed to the service con-
sumer. An interface supporting check-in and check-out interactions provides the
bare minimum. It is also possible to extend the interface with other interactions,
e.g., “Interface B” of Yawl supports cancellation. However, for the purpose of
this paper this is less relevant. The important thing is that all engines used in
the workflow orchestration use the same interface. This interface can be simple
since we do not consider the process logic in the interface.

As a proof of concept, we demonstrate how three very different languages,
Yawl [3], Worklets [9], and Declare [6], can be combined. First, we discuss
the characteristics of the corresponding languages and why it is interesting to
combine them. In Section 4 we briefly describe the implementation.

3.1 A Highly Expressive Language: YAWL

The field of workflow lacks commonly accepted formal and conceptual founda-
tions. Many approaches, both in industry and in academia, to workflow speci-
fication exist, including (proposed) standards, but till recently, these have not
had universal acceptance. In the late nineties the Workflow Patterns Initiative3

distilled patterns from workflow control-flow specification approaches of a num-
ber of commercial systems and research prototypes [4]. These patterns, which
are language-independent, can be used to gain comparative insight, can assist
with workflow specification and can serve as a basis for language definition.

Yawl (Yet Another Workflow Language) [3] provides comprehensive support
for these control-flow patterns and can thus be considered a highly expressive
language. This support was achieved by taking Petri nets as a starting point
and by observing that Petri nets have the following shortcomings in terms of
control-flow patterns support:

– It is hard to capture cancellation of (parts of) a workflow;
3 www.workflowpatterns.com



Fig. 2. Yawl control-flow concepts.

– Dealing with various forms of synchronisation of multiple concurrent in-
stances of the same activity is difficult;

– There is no direct support for a synchronisation concept which captures the
notion of “waiting only if you have to”.

The graphical manifestations of the various concepts for control-flow specifi-
cation in Yawl are shown in Figure 2. Yawl extends Workflow nets (see e.g. [2])
with concepts for the OR-split and the OR-join, for cancellation regions, and for
multiple instance tasks. In Yawl terminology transitions are referred to as tasks
and places as conditions. As a notational abbreviation, when tasks are in a se-
quence they can be connected directly (without adding a connecting place).

The expressiveness of Yawl allows for models that are relatively compact as
no elaborate work-arounds for certain patterns are needed. Therefore the essence
of a model is relatively clear and this facilitates subsequent adaptation should
that be required. Moreover, by providing comprehensive pattern support Yawl
provides flexibility by design and tries to prevent the need for change, deviation,
or underspecification.

3.2 An Approach Based on Late Binding & Modelling: Worklets

Typically workflow management systems are unable to handle unexpected or
developmental change occurring in the work practices they model, even though
such deviations are a common occurrence for almost all processes. Worklets
provide an approach for dynamic flexibility, evolution and exception handling
in workflows through the support of flexible work practices, and based, not on
proprietary frameworks, but on accepted ideas of how people actually work.

A worklet is in effect a small, self-contained, complete workflow process,
designed to perform (or substitute for) one specific task in a larger parent process.
The Worklets approach provides each task of a process instance with the
ability to be associated with an extensible repertoire of actions (worklets), one
of which is contextually and dynamically bound to the task at runtime.

The actual worklet selection process is achieved by the evaluation of a hierar-
chical set of rules, called the Ripple Down Rules (RDR) [11]. An RDR Knowledge
Base is a collection of simple rules of the form “if condition, then conclusion”



conceptually arranged in a binary tree structure (Figure 3). The tree contains
nodes that consist of a condition (a Boolean expression) and a conclusion (a
reference to a worklet). During the selection, nodes are evaluated by applying
the current context of the case and the task instance. After evaluation, the
corresponding branch is taken for the evaluation of the next node. The right
(exception) branch is taken when the condition holds, the left (else) branch is
taken when the condition is violated. If the condition holds in a terminal node,
then its conclusion is taken, i.e., that associated worklet is selected. In case the
condition of the terminal node is violated, then for terminal nodes on a true
branch the conclusion of the parent node is taken, whereas for terminal nodes
on a false branch the conclusion of node with the last satisfied condition is taken.

For new exceptions, the RDR can be extended and new worklets may be
added to the repertoire of a task at any time (even during process execution) as
different approaches to completing the task are developed. Most importantly, the
method used to handle an exception is captured by the system, and so a history
of the event and the method used to handle it, is recorded for future instanti-
ations. In this way, the process model undergoes a dynamic natural evolution,
thus avoiding the problems normally associated with workflow change, such as
migration and version control. The Worklets paradigm provides full support
for flexibility by underspecification and allows to postpone the realisation of par-
ticular part of the process till runtime and be dependent on the context of each
process instance.

Fig. 3. RDR tree. Fig. 4. Declare constraints.

3.3 An Approach Based on Constraints: Declare

In imperative modelling approaches, which are used by most process modelling
languages, allowed behaviour is defined in terms of direct causal relations be-
tween activities in process models. Opposed to this, a declarative approach offers
a wide variety of relations, called constraints, that restrict behaviour. Constraint-
based languages are considered to be more flexible than traditional languages
because of their semantics; everything that does not violate the constraints is



allowed. Regarding flexibility, imperative and declarative approaches are oppo-
sites; to offer more flexibility, for imperative approaches more execution paths
need to be incorporated into the model, whereas for declarative approaches the
number of constraints need to be reduced. Hence, a declarative approach is more
suitable for loosely-structured processes, since it requires less effort to include a
variety of behaviours in the design.

Declare has been developed as a framework for constraint-based languages
and offers most features that traditional WFMSs have, e.g., model develop-
ment and verification, automated model execution and decomposition of large
processes, moreover is offers support for most flexibility types. Activities and
constraints on activities are the key elements of a constraint-based model. Con-
straints are expressed in temporal logic [18], currently LTL is used, but other
types of logic could be used as well. By using graphical representations of con-
straints (called templates), users do not have to be experts in LTL. The set of
templates (called a constraint-based language) can easily be extended. DecSer-
Flow [6] is a such a language, available in Declare, and can be used for the
specification of web services.

Figure 4 shows some of the constraints available in DecSerFlow. The existence
constraint on A expresses that activity A has to be executed exactly once. The
response constraint between B and C expresses that if B is executed, then C

must eventually also be executed. The precedence constraint between D and E

expresses that E can only be executed if D has been executed before, in other
words, D precedes E . Finally, the not co-existence constraint between F and G

expresses that if F has been executed, then G cannot be executed and vice versa.
Declare supports flexibility by deviation by offering two types of con-

straints: mandatory and optional constraints. Optional constraints are constraints
that may be violated, mandatory constraints are constraints that may not be vi-
olated. Declare forces its users to follow all mandatory constraints and allows
users to deviate by violating optional constraints. Graphically, the difference be-
tween mandatory and optional constraints is that the former are depicted by
solid lines and the latter by dashed lines. Figure 4 only shows mandatory con-
straints. In Declare it is possible to change the process model during execution,
both at type and instance level. A constraint-based model can be changed by
adding constraints or activities, or by removing them. For declarative models
it is straightforward to transfer instances. Instances for which the current trace
satisfies the constraints of the new model, are mapped onto the new model.
Hence the dynamic change bug, as described in [12] can be circumvented.

In this section we showed three approaches that provide flexibility. Yawl tries
to prevent the need for change, deviation, or underspecification by providing
a highly expressive language based on the workflow patterns. Worklets al-
low for flexibility by underspecification by providing an extensible repertoire of
actions at runtime. Declare uses a constraint-based approach that supports
flexibility by design, flexibility by deviation, and flexibility by change. Each of
the approaches has its strengths and weaknesses. Therefore, the idea presented



in Figure 1 and Definition 1 is appealing as it allows to combine the strengths
of the different approaches and wrap them as services.

4 Implementation

The idea of FAAS has been implemented in the context of Yawl. Since the
initial set-up of Yawl was based on the service-oriented architecture, the exist-
ing interfaces could be used to also include Worklets and Declare services.
Figure 5 shows the overall architecture of Yawl and the way Worklets and
Declare have been included to allow for the arbitrary nesting of processes as
illustrated by Figure 1. The Worklets and Declare services have been im-
plemented as YAWL Custom Services [1]. Using the web-services paradigm, all
external entities (users, applications, devices, organisations) are abstracted as
services in YAWL. Custom services communicate with the YAWL engine using
a set of pre-defined interfaces, which provide methods for object and data pass-
ing via HTTP requests and responses. All data are passed as XML; objects are
marshalled into XML on each side of an interface for passing across it, then
reconstructed back to objects on the other side.

YAWL 
Workflow 
Engine

Worklet 
Service

Resource 
Service

Declare 
Service

A B X

E

Event Log

Event Log
Process 

Repository

Case Data

YAWL 
Process 
Editor

A A B

Admin Worklist

R R

A BB

O

W

Org Model
Event Log

Worklet 

Repository

Exception SelectionX

users

Interfaces

A - Administration

B - Processes
E - Logging

O - Org Data

R - Resourcing

W - Work Queue
X - Exception

PROM

Fig. 5. High-level architecture of the YAWL environment.

As Figure 5 shows, Interface B plays a crucial role in this architecture. YAWL
can subcontract work to Custom Services. Moreover, Interface B can also be
used to start new process instances in YAWL. Therefore, the same interface



can be used to provide a service and to use a service. Figure 5 shows that the
Worklets and Declare services are connected through Interface B. Note
that the Resource Service is also connected to the engine through Interface B.
This service offers work to end users through so-called worklists. Again work is
subcontracted, but in this case not to another process but to a user or software
program.

Note that a Yawl process may contain tasks subcontracted to the Declare
and/or Worklets services. In turn, a Declare process may subcontract some
of its task to Yawl. For each Declare task subcontracted to Yawl, a process
is instantiated in the Yawl engine. This process may again contain tasks sub-
contracted to the Declare and/or Worklets services, etc. Note that it is not
possible to directly call the Declare service from the Worklets service and
vice versa, i.e., Yawl acts as the “glue” connecting the services. However, by
adding dummy Yawl processes, any nesting is possible as shown in Figure 1.
The reason that Yawl is used as an intermediate layer results from the fact that
Interface B allows for additional functionalities not mentioned before. For exam-
ple, custom services may elect to be notified by the engine when certain events
occur in the life-cycle of nominated process instantiations (i.e. when a work-item
becomes enabled, when a work-item is cancelled, or when a case completes), to
signal the creation and completion of process instances and work-items, or to
notify the occurrence of certain events or changes in the status of existing work-
items and cases. This allows for additional functionality used for e.g. exception
handling and unified logging.

The complete YAWL environment, together with source code and accom-
panying documentation, can be freely downloaded from www.yawl-system.com.
The current version of Yawl includes the Worklets service. The Declare
service is an optional component that can be downloaded from declare.sf.net.

5 Example

In this section the feasibility of FAAS is illustrated by means of an example which
is inspired by the available documentation for the process of filling a vacancy at
QUT.4 The process starts with the preparation of documents and the formation
of a selection panel. This is necessary to formally acknowledge the vacancy by the
organisational area and to start the advertisement campaign to attract suitable
applicants and fill the vacancy. Incoming applications are collected and a shortlist
of potential candidates is made. From the shortlisted candidates, a potential
candidate is selected based on the outcomes of an interview and one additional
selection method. This selection method must be identical for all applicants of the
same vacancy. Shortlisted candidates are notified and invited for an interview.
In addition, they are informed about the additional selection method. Finally,
the application, the interview and the additional selection method outcomes are
4 Manual of Policies and Procedures (MOPP), Chapter B4 Human Resources - Re-

cruitment, Selection and Appointment (http://www.mopp.qut.edu.au/B/), Queens-
land University of Technology.



Fig. 6. The application procedure: (a) The high-level process as Yawl net with

Worklet-enabled task selection procedure and its RDR tree. (b) The RDR tree
in more detail with a link to the Referee report Yawl net. (c) The contents of
the Referee report net task is a Declare process.

evaluated and one potential candidate is selected to whom the position is offered.
After the candidate accepts the offer, the employment procedure is started. In
the remainder of this section we illustrate the FAAS ideas by modelling the
relevant parts of this process, with Yawl, Worklets, and Declare.

At the highest level the process can be seen as a sequence of phases, such
as the advertisement phase and the selection phase. There are two types of
choices at this level. The choice to advertise internally, externally, or both, and
the choice whether to go through the selection procedures with a selection of
the shortlisted applicants, or to cancel the process in case there are no suitable
shortlisted applicants. In addition, it is unknown in advance how many incoming
applications will have to be considered. All flexibility requirements at this level
can be supported by Yawl, by means of multi-instance tasks, the OR- and
XOR-join.

Depending on the type and duration of a vacancy, there is a range of available
additional selection methods, folio, referee report, psycho-metric test, in-basket
test, presentation and pre-interview presentation. The selection and execution of
a particular selection procedure for a particular applicant can be expressed with
a Worklet-enabled task in the Yawl net (cf. Section 3.2). Ripple Down Rules



(RDR [11]) define the selection of a suitable selection procedure for the vacancy
at runtime (cf. Section 3.2). The advantage of this approach is that the selection
rules can progressively evolve, e.g., for exceptions new rules can be added to
the tree. Figure 6(b) depicts the RDR tree for Worklet-enabled task selection

procedure of Figure 6(a). Depending on the evaluation of the rule in a specific
context, a Yawl net is selected, e.g., the referee process.

The selection method by referee reports is a good example of a loosely-
structured process, i.e., a process with just a few execution constraints and many
possible execution paths. Prior to the interview, the HR department must advise
the candidate about preparation regarding the selection method, and where to
find important information. Also the candidate must be asked for his/her re-
quirements regarding access. The referee method consists of requesting a report
from a referee, e.g., a former supervisor that knows the candidate professionally.
The referee report can be available before or after the interview and be pro-
vided written or orally. In case of an oral report, a written summary should be
made afterwards. When a referee report is requested, the selection criteria for
the position should be provided.

The declarative approach offers a compact way for the specification of the
referee report process. Figure 6(c) shows the process modelled in Declare us-
ing mandatory constraints, precedence, response and not co-existence and optional
existence constraints exactly 1 (cf. Section 3.3). The not co-existence allows the
specification of the occurrence of receiving either a written report or an oral re-
port from a referee, without specifying when it should be decided. The optional
constraint exactly 1 expresses that ideally the involved tasks are executed exactly
once and it allows employees from the organisational area to deviate if necessary.

The example illustrates that through the FAAS approach different languages
for (flexible) workflow specification can be combined, yielding a powerful solution
to deal with different flexibility requirements. The synchronisation of multiple
instances and the multi-choice construct can be solved by Yawl. The context-
dependent selection of (sub)processes at runtime can be modelled conveniently
using Worklets. For loosely-structured (sub)processes Declare provides a
convenient solution. Moreover, it is not only possible to combine, but also to nest
the different approaches, e.g., a Yawl model may contain a Declare process
in which a Worklet-enabled task occurs.

6 Conclusion

In this paper, we presented the Flexibility as a Service (FAAS) approach. The
approach combines ideas from service oriented computing with the need to com-
bine different forms of flexibility. Using a taxonomy of flexibility, we showed
that different forms of flexibility are possible and argued that it is not realistic
to assume a single language that suits all purposes. The flexibility paradigms
are fundamentally different and therefore it is interesting to see how they can
be combined without creating a new overarching and complex language. As a
proof-of-concept we showed that Yawl, Worklets, and Declare can be com-



posed easily using the FAAS approach. This particular choice of languages was
driven by the desire to cover a large parts of the flexibility spectrum. However,
it is possible to include other languages. For example, it would be interesting
to also include ADEPT (strong in flexibility by change, i.e., changing processes
on-the-fly and migrating instances) and FLOWer (strong in flexibility by de-
viation using the case handling concept). As indicated in the introduction, a
lot of research has been conducted on flexibility resulting in many of academic
prototypes. However, few of these ideas have been incorporated in commercial
systems. Using the FAAS approach it may be easier for commercial systems to
offer specific types of flexibility without changing the core workflow engine.

References

1. W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design
and Implementation of the YAWL System. In A. Persson and J. Stirna, editors,
Advanced Information Systems Engineering, Proceedings of the 16th International
Conference on Advanced Information Systems Engineering (CAiSE’04), volume
3084 of Lecture Notes in Computer Science, pages 142–159. Springer-Verlag, Berlin,
2004.

2. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods,
and Systems. MIT press, Cambridge, MA, 2004.

3. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow
Language. Information Systems, 30(4):245–275, 2005.

4. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns. Distributed and Parallel Databases, 14(1):5–51, 2003.

5. W.M.P. van der Aalst and S. Jablonski. Dealing with Workflow Change: Identifica-
tion of Issues and Solutions. International Journal of Computer Systems, Science,
and Engineering, 15(5):267–276, 2000.

6. W.M.P. van der Aalst and M. Pesic. DecSerFlow: Towards a Truly Declarative
Service Flow Language. In M. Bravetti, M. Nunez, and G. Zavattaro, editors,
International Conference on Web Services and Formal Methods (WS-FM 2006),
volume 4184 of Lecture Notes in Computer Science, pages 1–23. Springer-Verlag,
Berlin, 2006.

7. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

8. M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic,
Extensible and Context-Aware Exception Handling for Workflows. In F. Curbera,
F. Leymann, and M. Weske, editors, Proceedings of the OTM Conference on Co-
operative information Systems (CoopIS 2007), volume 4803 of Lecture Notes in
Computer Science, pages 95–112. Springer-Verlag, Berlin, 2007.

9. M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets:
A Service-Oriented Implementation of Dynamic Flexibility in Workflows. In
R. Meersman and Z. Tari et al., editors, On the Move to Meaningful Internet
Systems 2006, OTM Confederated International Conferences, 14th International
Conference on Cooperative Information Systems (CoopIS 2006), volume 4275 of
Lecture Notes in Computer Science, pages 291–308. Springer-Verlag, Berlin, 2006.



10. F. Casati, S. Ceri, S. Paraboschi, and G. Pozzi. Specification and Implementation
of Exceptions in Workflow Management Systems. ACM Transations on Database
Systems, 24(3):405–451, 1999.

11. P. Compton and B. Jansen. Knowledge in context: A strategy for expert system
maintenance. In J.Siekmann, editor, Proceedings of the 2nd Australian Joint Artifi-
cial Intelligence Conference, volume 406 of Lecture Notes in Artificial Intelligence,
pages 292–306, Adelaide, Australia, November 1988. Springer-Verlag.

12. C.A. Ellis, K. Keddara, and G. Rozenberg. Dynamic change within workflow
systems. In N. Comstock, C. Ellis, R. Kling, J. Mylopoulos, and S. Kaplan, editors,
Proceedings of the Conference on Organizational Computing Systems, pages 10 –
21, Milpitas, California, August 1995. ACM SIGOIS, ACM Press, New York.

13. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

14. P. Heinl, S. Horn, S. Jablonski, J. Neeb, K. Stein, and M. Teschke. A Compre-
hensive Approach to Flexibility in Workflow Management Systems. In G. Geor-
gakopoulos, W. Prinz, and A.L. Wolf, editors, Work Activities Coordination and
Collaboration (WACC’99), pages 79–88, San Francisco, February 1999. ACM press.

15. M. Kloppmann, D. Koenig, F. Leymann, G. Pfau, A. Rickayzen,
C. von Riegen, P. Schmidt, and I. Trickovic. WS-BPEL Exten-
sion for People BPEL4People. IBM Corporation, http://www-
128.ibm.com/developerworks/webservices/library/specification/ws-bpel4people/,
2005.

16. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

17. M. Pesic, M. H. Schonenberg, N. Sidorova, and W.M.P. van der Aalst. Constraint-
Based Workflow Models: Change Made Easy. In F. Curbera, F. Leymann, and
M. Weske, editors, Proceedings of the OTM Conference on Cooperative information
Systems (CoopIS 2007), volume 4803 of Lecture Notes in Computer Science, pages
77–94. Springer-Verlag, Berlin, 2007.

18. A. Pnueli. The Temporal Logic of Programs. In Proceedings of the 18th IEEE
Annual Symposium on the Foundations of Computer Science, pages 46–57. IEEE
Computer Society Press, Providence, 1977.

19. M. Reichert and P. Dadam. ADEPTflex: Supporting Dynamic Changes of
Workflow without Loosing Control. Journal of Intelligent Information Systems,
10(2):93–129, 1998.

20. S. Rinderle, M. Reichert, and P. Dadam. Correctness Criteria For Dynamic
Changes in Workflow Systems: A Survey. Data and Knowledge Engineering,
50(1):9–34, 2004.

21. N. Russell, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Workflow Exception
Patterns. In E. Dubois and K. Pohl, editors, Proceedings of the 18th International
Conference on Advanced Information Systems Engineering (CAiSE’06), volume
4001 of Lecture Notes in Computer Science, pages 288–302. Springer-Verlag, Berlin,
2006.

22. S. Sadiq, W. Sadiq, and M. Orlowska. Pockets of Flexibility in Workflow Specifica-
tion. In Proceedings of the 20th International Conference on Conceptual Modeling
(ER 2001), volume 2224 of Lecture Notes in Computer Science, pages 513–526.
Springer-Verlag, Berlin, 2001.

23. M.H. Schonenberg, R.S. Mans, N.C. Russell, N.A. Mulyar, and W.M.P. van der
Aalst. Towards a Taxonomy of Process Flexibility (Extended Version). BPM
Center Report BPM-07-11, BPMcenter.org, 2007.


