DYNAMIC AND CONTEXT-AWARE PROCESS
ADAPTATION

MICHAEL ADAMS, ARTHUR TER HOFSTEDE, NICK RUSSELL
AND WIL VAN DER AALST

ABSTRACT. This Chapter re-examines the principles that under-
pin business process technologies to derive a novel approach that
moves beyond the traditional assembly-line metaphor. Using a set
of principles derived from Activity Theory, a system has been im-
plemented, using a Service Oriented Architecture, that provides
support for dynamic and extensible flexibility, evolution and ex-
ception handling in business processes, based on accepted ideas of
how people actually perform their work tasks. The resulting sys-
tem, called the Worklet Service, makes available all of the benefits
offered by Process Aware Information Systems to a wider range of
organisational environments.

1. INTRODUCTION

Organisations are constantly seeking efficiency improvements for their
business processes. To help achieve those goals, many are turning to
Process-Aware Information Systems (PAIS) to configure and control
those processes (Dumas et al., 2005; van der Aalst & van Hee, 2004)
by supporting their modelling, analysis, enactment and management
(zur Muehlen, 2004; Casati, 1998). The key benefits organisations seek
by implementing PAIS solutions include: improved efficiency, better
process control, improved customer service and business process im-
provement.

The use of PAIS has grown by concentrating on modelling rigidly
structured business processes that in turn derive well-defined workflow
instances (Bider, 2005; Joeris, 1999; Reichert & Dadam, 1997). How-
ever, the proprietary process definition frameworks imposed make it
difficult to support (i) dynamic evolution and adaptation (i.e. modify-
ing process definitions during execution) following unexpected or de-
velopmental change in the business processes being modelled (Borgida
& Murata, 1999); and (ii) deviations from the prescribed process model
at runtime (Rinderle et al., 2004; Casati, 1998).

But change is unavoidable in the modern workplace. To remain
effective and competitive, organisations must continually adapt their
business processes to manage the rapid changes demanded by the dy-

namic nature of the marketplace or service environment. Also, a large
1

proportion of workplaces undertake activities that do not easily con-
form to rigid or constricting representations of their work practices.
And even in the most concrete processes deviations will occur within
almost every instantiation.

If PAIS could be extended to meet the challenges of evolutionary and
unexpected change in business processes, then their applicability would
widen to include a far greater proportion of workplaces. Such support
would not only benefit existing users of process-aware technologies, but
would also introduce those businesses which employ more creative or
ad-hoc processes to the range of benefits that PAIS offer.

This Chapter offers one solution designed to meet that challenge.
The primary objectives of this Chapter are to provide:

e an overview of literature on approaches to exception handling
and flexibility in Process-Aware Information Systems

e a discussion of theoretical underpinnings of work practices

e a discussion of a comprehensive framework for exception han-
dling

e the introduction of a concrete approach for exception handling
based on this framework

e the introduction of a concrete approach to processes that require
on-the-fly change

e a description of an (open source) implementation of these ap-
proaches within a state-of-the-art workflow system; and

e the presentation of an elaborated example.

2. BACKGROUND

A business process can be defined as a composite set of tasks that
comprise coordinated computer-based and human activities (Leymann,
2006). A business process model or schema is a formal representation
of work procedures that controls the sequence of performed tasks and
the allocation of resources to them (Oberweis, 2005).

The development of a business process model typically begins with
an analysis of current business procedures and processes. Subsequently,
a model is developed based on those practices and business rules, then
input into a PAIS and repetitively executed, supporting and giving
formal structure and flow control to those processes. However, trans-
lating abstract concepts and descriptions of business practices and rules
into tangible process models is a far from trivial exercise. There are
sizeable development costs involved in mapping an abstract process
to a structured schema, which must be weighed against the perceived
cost benefits that the system will deliver. Therefore, current systems
are most advantageous where they provide support for standardised,
repetitive activities that do not vary between execution instances.

But even in highly structured environments, it is difficult (if not
impossible) to successfully capture all work activities, and in particu-
lar all of the task sequences possible, in a static process model. It is
also the case that, for any given human activity, the process for suc-
cessfully completing the activity is constantly evolving. Change can
also be introduced via many sources, including government regulation,
new competitors, new markets, improvements in plant and equipment,
workforce and resource availability and so on.

A recent Workflow Management Coalition survey found that 75 per
cent of respondents reported they were currently performing work on
improving existing processes (up to 92 per cent for the Finance sec-
tor) and 56 per cent were currently involved in a major business pro-
cess redesign (Palmer, 2007). Such statistics underscore the frequency
of organisational change and importance of providing a process man-
agement system which supports flexibility and the ability to adapt to
change.

It is because of the discrepancies between real-world activities and
formal representations of them that process instances typically experi-
ence exceptions during their execution. Rather than being considered
an error, an exception in a business process is simply a deviation from
the expected control flow or was unaccounted for in the original process
model. Exceptions are a fundamental part of most organisational pro-
cesses (Kammer et al., 2000); in fact, a substantial proportion of the
everyday tasks carried out in a business can be categorised as exception
handling work (Barthelmess & Wainer, 1995). Historically, exception
handling within PAIS has fallen well short, particularly after execution
has commenced (Kammer et al., 2000).

Thus a large group of business processes do not easily map to the
rigid modelling structures provided, due to the lack of flexibility inher-
ent in a framework that, by definition, imposes rigidity. This inflexi-
bility extends to the management of exceptions, which places further
limits on how accurately a process model can reflect the actual busi-
ness process it is based on. Rather, process models are ‘system-centric’,
meaning that work processes are straight-jacketed (van der Aalst et al.,
2005) into the paradigm supplied, rather than the paradigm reflecting
the way work is actually performed (Bider, 2005). As a result, users are
forced to work outside of the system, and/or constantly revise the pro-
cess model, in order to successfully complete their activities, thereby
negating the perceived efficiency gains sought by implementing a pro-
cess management solution in the first place.

Survey of Literature and Related Systems. The following reviews
the levels of support for flexibility and exception handling in several of
the leading commercial process management products and a number of

academic prototypes'. Unless explicitly stated otherwise, information
regarding the products has been gleaned from product manuals, pub-
lished literature and white papers. The version numbers specified for
the commercial products are the versions that were reviewed.

Since the mid-nineties much research has been carried out on is-
sues related to dynamic flexibility and exception handling in workflow
management systems. Such research was initiated because, generally,
commercial workflow management systems provide only basic support
for handling exceptions (Russell et al., 2006; zur Muehlen, 2004) (be-
sides modelling them directly in the main ‘business logic’), and, where
extant, each deals with them in a proprietary manner; they typically
require the model to be fully defined before it can be instantiated; and
changes must be incorporated by modifying the model statically. Fur-
ther, there is minimal support for handling: workitem failures (and
even when that support is offered, they must be manually terminated);
external triggers; and only one system reviewed offers some constraint
violation management (Russell et al., 2006).

Tibco iProcess Suite (version 10.5) (formerly Staffware) (TIBCO,
2006) provides constructs called event nodes, from which a separate
pre-defined exception handling path or sequence can be activated when
an exception occurs at that point. It may also suspend a process either
indefinitely or wait until a deadline occurs. If a workitem cannot be
processed it is forwarded to a ‘default exception queue’ where it may be
manually purged or re-submitted. A compensation workitem may be
initiated when a deadline occurs. Also, a workitem may be externally
triggered, or ‘wait’ until an external trigger occurs. Certain tasks may
be manually skipped at runtime.

An optional component of the iProcess Suite is the Process Orches-
trator (Georgeff & Pyke, 2003), which provides for the dynamic al-
location of sub-processes at runtime. It requires a construct called a
“dynamic event” to be explicitly modelled that will execute a number
of sub-processes listed in a predefined ‘array’ when execution reaches
that event. Which sub-processes execute depend on predefined data
conditionals matching the current case. There is no scope for dynami-
cally refining conditionals, nor adding sub-processes at runtime.

COSA (version 5.4) (COSA, 2005) provides for the definition of ex-
ternal ‘triggers’ or events that may be used to start a sub-process.
All events and sub-processes must be defined at design time, although
models can be modified at runtime (but only for future instantiations).
When a workitem fails the activity can be rolled back or restarted. A
compensating activity can be triggered either externally or on deadline
expiry. COSA also allows manual ad-hoc runtime adaptations such as
reordering, skipping, repeating, postponing or terminating steps.

ISpace considerations limit this discussion to the more popular and/or recent sys-
tems and prototypes; a more complete discussion can be found in Adams (2007)

WebSphere M@ Workflow (version 6.0) (IBM, 2005) supports dead-
lines and, when they occur, will branch to a pre-defined exception path
and/or send a notification message to a pre-defined user or admin-
istrator. Administrators can manually suspend, restart or terminate
processes, or reallocate tasks. Only transaction-level exceptions are
recognised, and they are simply recorded in the audit log.

SAP Workflow (version 6.20) (SAP, 2006) supports conditional branch-
ing, where a list of conditions (each linked to a process branch) is parsed
and the first evaluating to true is taken; all branches are pre-defined.
Exception events are provided for cancelling workflow instances, for
checking workitem pre and post constraints, and for ‘waiting’ until an
external trigger occurs. Exception handling processes may be assigned
to a workflow based on the type of exception that has occurred, al-
though the handlers for each are specified at design time, and only one
may be assigned to each type — that is, filtering through a set of pos-
sible handlers based on the context of the case is not supported. When
an exception occurs and a corresponding handler is found, all tasks in
the block where the exception is caught are cancelled.

FLOWer (version 2.1) (Berens, 2005), is of the ‘case-handling’ par-
adigm); the process model (or ‘plan’) describes only the preferred way
of doing things and a variety of mechanisms are offered to allow users
to deviate in a controlled manner (van der Aalst et al., 2005). For ex-
ample, a deadline expiry can automatically complete a workitem. Also,
some support for constraint violation is offered: a plan may be auto-
matically created or completed when a specified condition evaluates to
true (Russell et al., 2006).

There have been a number of academic prototypes developed in the
last decade (although activity was greater during the first half); very
few have had any impact on the offerings of commercial systems (zur
Muehlen, 2004). Several of the more widely acknowledged are discussed
here.

ADEPT (Reichert et al., 2005) supports modification of a process
during execution (i.e. add, delete and change the sequence of tasks)
both at the model (dynamic evolution) and instance levels (ad-hoc
changes). Such changes are made to a traditional monolithic model and
must be achieved via manual intervention, abstracted to a high level
interaction. The system also supports forward and backward ‘jumps’
through a process instance, but only by authorised staff who instigate
the skips manually (Reichert et al., 2003).

The AdaptFlow prototype (Greiner et al., 2004) provides a hybrid
approach to flexibility and exception handling. It supports ECA rules-
based detection of exceptions and the dynamic adaptation of process
instances, although each adaptation must be confirmed manually by
an authorised user before it is applied (alternate manual handling to
override the dynamic adaptation offered is also supported). Also, the

rule classifications and available exception handling actions are limited
to medical treatment scenarios.

AgentWork (Muller et al., 2004) provides the ability to modify pro-
cess instances by dropping and adding individual tasks based on events
and ECA rules. However, changes are limited to individual tasks,
rather than the task-process-specification hierarchy. Also, the possibil-
ity exists for conflicting rules to generate incompatible actions, which
requires manual intervention and resolution.

A further approach using incompletely specified process definitions
is found in the SwinDeW (Swinburne Decentralised Workflow) project
(Yan et al., 2004). SwinDew is a peer-to-peer based decentralised
model, where a process definition is split into a set of task partitions and
distributed to peers, and on-the-fly process elaboration is performed at
runtime. Thus, a multi-tiered process modelling and execution frame-
work is provided.

CBRFlow (Weber et al., 2004) uses a case-based reasoning approach
to support adaptation of predefined workflow models to changing cir-
cumstances by allowing (manual) annotation of business rules during
run-time via incremental evaluation by the user. Thus users must be
actively involved in the inference process during each case.

An approach, which integrates CBRFlow into the ADEPT frame-
work, is described in (Rinderle et al., 2005). In doing so, semantic
information about the reasons for change, and traceability data, are
presented to the ADEPT user/administrator to support decision mak-
ing processes. The information can also be used to facilitate reuse of
ad-hoc changes from similar scenarios. When deviations from a process
schema are required, the case-based reasoning component assists the
user to find similar previous cases through a series of questions and an-
swers, one of which may then be applied to the current instance. While
the process is quite user-intensive, the approach does provide a good
example of the combination of contextual information with exception
handling techniques.

Pesic and van der Aalst (2006) point out that the majority of lan-
guages used to described and define business process models are of a
procedural nature, which limits their effectiveness in very flexible envi-
ronments, and introduce a declarative approach to process modelling,
called DecSerFlow. A graphical language, it avoids many of the as-
sumptions, constraints, conditions and rules that must be explicitly
specified in procedural languages to perform flexible activities, the in-
clusion of which typically lead to an over-specification of the process.

In summary, approaches to flexibility and exception handling usually
rely on a high-level of runtime user and/or administrator interactivity,
which directly impedes on the basic aim of PAIS (to bring greater
efficiencies to work practices) and distracts users from their primary
work roles into process support activities. Another common limitation

is the complex update, modification and migration issues required to
evolve process models.

3. THEORETICAL FOUNDATION

Whenever a series of actions is undertaken with a view to achieving
a pre-conceived result, some plan or set of principles is implemented
that guide and shape those actions towards that goal. To be effective,
a plan must be described using constructs and language that are rele-
vant to both the actions being performed and the desired result, and
be comprehensible by its participants and stakeholders. In business
process terms, analysts seek to model some aspect of the real world
by using a metaphor that bears some resemblance to the real world,
but also represents an understanding of computational processes. Such
metaphors are abstract constructs that form a common reference model
that assist in representing the external world through computers.

The fundamental and widely understood computational metaphor
(Stein, 1999) takes a set of inputs, performs a series of functional steps
in a strict sequence, and, on completion, produces some output that
represents the goal of the process. This metaphor describes a single,
centralised thread of control, which very much reflects its mathematical
ancestry but also reveals an underlying misconception in the common
perception of technological ‘progress’. Technological developments are,
according to Holt (1997), “as much affected by fashion as clothing”.
Technologies do not evolve automatically (as Marx assumed) but rather
reflect prevailing human culture (Mumford, 1963). That is, new tech-
nologies are derived from perceived needs and realised, not in isolation,
but through the conventions and norms of their social milieu.

Thus the traditional computational metaphor reveals the influence
of pioneers such as von Neumann and his team, and especially Turing,
whose abstract machine proposed ‘step-at-a-time’ processing (Turing,
1936), and which in turn reflects the influence on prevailing thought
of the contemporaneous development of assembly-line manufacturing
(Hendriks-Jansen, 1996).

As contempory technological advances influenced the structure of
early computers, so too has the computational metaphor become a sig-
nificant model system for the conceptualisation and interpretation of
complex phenomena, from cognition to economics to ecology (Stein,
1999). Of particular interest is the way the metaphor has been applied
to the definition of organisational work processes. The computational
metaphor remains applicable to well-defined problem domains where
goal-directed, sequential, endpoint-driven planning is required (Stein,
1999). Such domains were the early beneficiaries of process manage-
ment systems. Consequently, current commercial process management
systems provide support for standardised, repetitive activities that do
not vary between execution instances.

Adherence to the metaphor by PAIS has been an important factor
in their acceptance by organisations with structured work practices.
Descriptions can be found throughout the workflow literature to the
‘processing’, ‘'manufacturing’ and ’assembly-line’ modelling metaphors
that are employed by commercial systems. However, while the Work-
flow Management Coalition claims that “even office procedures can
be processed in an assembly line” (Workflow Management Coalition,
2002), there are many aspects where administrative and service pro-
cesses differ from manufacturing processes (van der Aalst & Berens,
2001). It may be that the computational metaphor has been an in-
hibiting factor in the development of systems able to effectively support
flexible work practices.

A process management system that better supports flexible work
environments requires a sound theoretical foundation that avoids the
computing metaphor, but rather describes how work is actually con-
ceived, carried out and reflected upon. One such theoretical base can
be found in Activity Theory.

Activity Theory is a powerful and clarifying descriptive tool, rather
than a strongly predictive theory, and incorporates notions of inten-
tionality, history, mediation, collaboration and development, focussing
on understanding everyday practice in the real world (Nardi, 1996).

Activity Theory originated in the former Soviet Union in the 1920’s
and 30’s as part of the cultural-historical school of psychology founded
by Vygotsky, who began working on the theory at a time when the
prevailing psychological theories were based on reflexology (which at-
tempted to reduce all psychological phenomena to a series of stimulus-
response chains).

In the form presented by Leontiev (1974), Activity Theory subse-
quently became one of the major Soviet psychology theories, and was
used in areas such as the education of disabled children and the er-
gonomic design of equipment control panels.

In the 1980’s and 90’s, Activity Theory came to the attention of
Scandinavian information technology researchers (for example: (Nardi,
1996), (Kuutti, 1996) and (Bgdker & Greenbaum, 1993). Their con-
tribution was a revised formulation of Activity Theory, and also the
application of Activity Theory to human-computer interface design.

Briefly, Activity Theory states that human activity has four basic
characteristics (Bardram, 1997):

(1) Every activity is directed towards a material or ideal object
satisfying a need, which forms the overall motive of the activity.

(2) Every activity is mediated by artefacts, either external (a tool)
or internal (cognitive: using concepts, knowledge and experi-
ence).

(3) Each individual activity is almost always part of collective activ-
ities, structured according to the work practice in which they

take place. For example, a patient diagnosis can seldom be
established without reference to a diversity of medical infor-
mation. Thus collective activities are organised according to a
division of labour.

(4) Finally, human activity can be described as a hierarchy with
three levels: activities realised through chains of actions, and
performed through operations:

e An activity consists of one or more actions, and describes
the overall objective or goal.

e An action equates to a single task carried out to achieve
some pre-conceived result. Each action is achieved through
operations determined by the actual conditions in the con-
text of the activity.

e Operations describe the actual performance of the action,
and are dependant on the context, or conditions that exist
for each action.

In Adams et al. (2003), ten fundamental principles, representing an
interpretation of the central themes of Activity Theory applicable to
an understanding of organisational work practices, were derived and
are summarised below.

e Principle 1: Activities are hierarchical An activity con-
sists of one or more actions. Each action consists of one or more
operations.

e Principle 2: Activities are communal An activity almost
always involves a community of participants working towards a
common objective.

e Principle 3: Activities are contextual Contextual condi-
tions and circumstances deeply affect the way the objective is
achieved in any activity.

e Principle 4: Activities are dynamic Activities are never
static but evolve asynchronously, and historical analysis is often
needed to understand the current context of the activity.

e Principle 5: Activities are mediated An activity is medi-
ated by tools, rules and divisions of labour.

e Principle 6: Actions are chosen contextually A reper-
toire of actions and operations is created, maintained and made
available to any activity, which may be performed by making
contextual choices from the repertoire.

e Principle 7: Actions are understood contextually The
immediate goal of an action may not be identical to the objec-
tive of the activity of which the action is a component. It is
enough to have an understanding of the overall objective of the
activity to motivate successful execution of an action.

e Principle 8: Plans guide work A plan is not a blueprint or
prescription of work to be performed, but merely a guide which

is modified depending on context during the execution of the
work.

e Principle 9: Exceptions have value Exceptions are merely
deviations from a pre-conceived plan. Deviations will occur
with almost every execution of the plan, and give rise to a
learning experience which can then be incorporated into future
executions.

e Principle 10: Granularity based on perspective A partic-
ular piece of work might be an activity or an action depending
on the perspective of the viewer.

Table 1 shows a summary mapping of the 10 principles to a set of
criteria that a PAIS supporting the principles would meet.

Activity Theory offers a number of interesting insights into process
management domains, particularly the related issues of adaptability,
flexibility, evolution and exception handling. The principles derived
in this chapter have formed the theoretical foundations for the imple-
mentation and deployment of the system described in the following
sections.

4. CONCEPTUAL FRAMEWORK

In the previous section, a set of principles was derived from Activity
Theory and applied to the issues of flexibility and exception handling
for workflow systems. From that mapping of principles to issues, it was
found that:

(1) Workflow management systems typically have trouble support-
ing all but the most rigid business processes precisely because
their frameworks are based on computing metaphors rather
than accepted ideas of actual work practices.

(2) A workflow management system that sought to overcome those
issues must be built around a framework that better mirrors
the way people perform work activities in organisational envi-
ronments.

The consideration of these findings formed the conceptual founda-
tions of a discrete service that transforms otherwise static workflow pro-
cesses into fully flexible and dynamically extensible process instances
that are also supported by dynamic exception handling capabilities.
That service has been named the Worklet Service.

4.1. Worklets: A Conceptualisation. Fundamentally, a workflow
management system that is based on the principles derived from Ac-
tivity Theory would satisfy the following criteria:

o A flexible modelling framework — a process model is to be re-
garded as a guide to an activity’s objective, rather than a pre-
scription for it;

TABLE 1. Summary mapping of Activity Theory princi-

ples vs. workflow functionality criteria

Flexibility &
Re-use

Adaptation
via Reflec-
tion

Dynamic
Evolution

Locality of
Change

Comprehen-
sibility — of
Models

Exceptions
as ‘First-
Class
Citizens’

Activities
are Hierar-
chical

Activities
are Commu-
nal

Activities
are Contex-
tual

Activities
are Dy-
namic

Mediation
of Activity

Actions

are Chosen
Contextu-
ally

Actions are
Understood
Contextu-
ally

Plans Guide
Work

Exceptions
have Value

Granularity
Based on
Perspective

e A repertoire of actions — extensible at any time, the reper-
toire would be made available for each task during each process
instance;

e Dynamic, contextual choice — from the repertoire at runtime
by considering the specific context of the executing instance;
and

e Dynamic process evolution — allow the repertoire to be dynam-
ically extended, thus providing support for unexpected process
deviations for all current and future instantiations of the pro-
cess, leading to natural process evolution.

Thus, to accommodate flexibility, such a system would provide each
task of a process instance with the ability to be linked to an extensible
repertoire of actions, one of which to be contextually and dynami-
cally chosen at runtime to carry out the task. To accommodate ex-
ception handling, such a system would provide an extensible repertoire
of exception-handling processes to each process instance, members of
which to be contextually and dynamically chosen to handle exceptions
as they occur.

Using a service-oriented architecture, such a system, the Worklet Ser-
vice, has been implemented. To support flexibility, the service presents
the repertoire-member actions as worklets. In effect, a worklet is a
small, self-contained, complete workflow process which handles one spe-
cific task (action) in a larger, composite process (activity).> A top-level
or parent process model is developed that describes the workflow at a
macro level. From a manager process instance, worklets may be con-
textually selected and invoked from the repertoire of each enabled task,
using an associated extensible set of selection rules. New worklets may
be added to the repertoire of a task at any time (even during process
execution) as different approaches to completing a task are developed,
derived from the context of each process instance. Importantly, the
new worklet becomes an implicit part of the process model for all cur-
rent and future instantiations, avoiding issues of migration and version
control (van der Aalst & Basten, 2002; van der Aalst, 2001; Kradolfer
& Geppert, 1999; Joeris & Herzog, 1998). In this way, the process
model undergoes implicit, dynamic, natural evolution.

In addition, for each anticipated exception, a separate repertoire
of exception handling processes, known as exlets may be defined, to
be dynamically incorporated into a running process instance on an
as-needed basis. That is, for any exception that may occur at the
task, case instance or specification level, a repertoire of exlets may be
provided, the most appropriate one system-selected at runtime based
on the context of the case and the type of exception that has occurred.

In Activity Theory terms, a worklet may represent one action within an activity,
or may represent an entire activity.

Further, worklets that are invoked as compensation processes within
an exlet are constructed in exactly the same way as those created to
support flexibility, which in turn are constructed in the same way as
ordinary, static process models.

In the occurrence of an unanticipated exception (i.e. an event for
which a handling exlet has not yet been defined), then either an exist-
ing exlet can be manually selected (re-used) from the repertoire, one
may be adapted on the fly to handle the immediate situation, or a
new exlet constructed and immediately deployed, in each case allowing
execution of the process instance that raised the exception to take the
necessary action and either continue unhindered, or, if specified in the
exception handler, to terminate, as required. Crucially, the method
used to handle the new exception and a record of its context are cap-
tured by the system and immediately become an implicit part of the
parent process model, and so a history of the event and the method
used to handle it is recorded for future instantiations.

4.2. Context, Rules and Worklet Selection. For any situation,
there are multiple situational and personal factors that combine to
influence a choice of action. That set of factors that are deemed to be
relevant to the current situation we call its context.

A taxonomy of contextual data that may be recorded and applied to
a workflow instance may be categorised as follows (examples are drawn
from a medical treatment process):

e Generic (case independent): data attributes that can be
considered likely to occur within any process (of course, the
data values change from case to case). Such data would include
descriptors such as when created, created by, times invoked,
last invoked, current status; and role or agent descriptors such
as experience, skills, rank, history with this process and/or task
and so on. Process execution states and process log data also
belong to this category.

e Case dependent with a prior:i knowledge: that set of data
that are known to be pertinent to a particular case when it is
instantiated. Generally, this data set reflects the data variables
of a particular process instance. Examples are: patient name
and id, blood pressure readings, height, weight, symptoms and
so on; deadlines both approaching and expired; and diagnoses,
treatments and prescribed medications.

e Case dependent with no a prior:i knowledge: that set
of data that only becomes known when the case is active and
deviations from the known process occur. Examples in this
category may include complications that arise in a patient’s
condition after triage, allergies to certain medications and so
on.

Methods for capturing contextual propositions typically focus on col-
lecting a complete set of knowledge from an ‘expert’ and representing
it in a computationally suitable way (Kang et al., 1998). Such ap-
proaches depend heavily on the expert’s ability to interpret their own
expertise and express it in non-abstract forms (Manago & Kodratoff,
1987). Consequently, the lack of systematic dissemination of expertise
has proved a major barrier to the development and use of improve-
ments in exception handling methods in business processes (Klein &
Dellarocas, 2000).

One bottom-up approach to the capture of contextual data that offers
an alternative method to global knowledge construction is Ripple Down
Rules (RDR), which comprise a hierarchical set of rules with associated
exceptions, first devised by Compton and Jansen (1988).

The fundamental feature of RDR is that it avoids the difficulties
inherent in attempting to pre-compile a systematic understanding, or-
ganisation and assembly of all knowledge in a particular domain. The
RDR method is well established and fully formalised (Scheffer, 1996)
and has been implemented as the basis for a variety of commercial ap-
plications, including systems for reporting DNA test results, environ-
mental testing, intelligent document retrieval, fraud detection based
on patterns of behaviour, personal information management and data
mining of large and complex data sets (Pacific Knowledge Systems,
2003).

An RDR Knowledge Base is a collection of rules of the form “if con-
dition then conclusion” (together with other associated descriptors),
conceptually arranged in a binary tree structure (cf. Figure 1. Each
rule node may have a false (‘or’) branch and/or a true (‘exception’)
branch to another rule node, except for the root node, which contains
a default rule and can have a true branch only. If a rule is satisfied,
the true branch is taken and the associated rule is evaluated; if it is
not satisfied, the false branch is taken and its rule evaluated (Drake &
Beydoun, 2000). When a terminal node is reached, if its rule is sat-
isfied, then its conclusion is taken; if its rule is not satisfied, then the
conclusion of the last rule satisfied on the path to that node is taken.

If the conclusion returned is found to be unsuitable for a particu-
lar instance — that is, while the conclusion was correct based on the
current rule set, the context of the instance make the conclusion an
inappropriate choice — a new rule is formulated that defines the con-
textual differences between the instance and the selected rule and is
added as a new leaf node using the following algorithm:

e If the conclusion returned was that of a satisfied terminal rule,
then the new rule is added as a local exception to the exception
‘chain’ via a new true branch from the terminal node.

g __,(: condition

true

default - PP e -
~7=--< conclusion %

—

Condition not satisfied - e
TicketsSold < (Seating * 0.75) Condition satisfied

suspend workitem
run ChangeToMidVenue
continue workitem

2

Equipmentinstalled = False TicketsSold < (Seating * 0.5)
suspend case suspend workitem

run RescheduleConcert run ChangeToSmallVenue
continue case continue workitem

TicketsSold < (Seating * 0.2)

suspend case
run CancelShow
remove case

FIGURE 1. Example rule tree (ItemPreConstraint tree
for DoShow task of OrganiseConcert)

e If the conclusion returned was that of a non-terminal, ancestor
node (that is, the condition of the terminal rule was not satis-
fied), then the new rule is added via a new false branch from
the unsatisfied terminal node.

In essence, each added exception rule is a refinement of its parent
rule. This method of defining new rules allows the construction and
maintenance of the rule set by “sub-domain” experts (i.e. those who
understand and carry out the work they are responsible for) without
regard to any engineering or programming assistance or skill (Kang
et al., 1998).

Each rule node incorporates a set of case descriptors, called the ‘cor-
nerstone case’, which describe the actual case context that was the
catalyst for the creation of the rule. When a new rule is added to the
rule set, its condition is determined by comparing the descriptors of the
current case to those of the cornerstone case and identifying a sub-set
of differences. Not all differences will be relevant — only the factor or
factors that make it necessary to handle the current case in a different
fashion to the cornerstone case are required to define a new rule. The
identified differences are expressed as attribute-value pairs, using the
normal conditional operators. The current case descriptors become the
cornerstone case for the newly formulated rule; its condition is formed
by the identified attribute-value pairs and represents the context of the
case instance that caused the addition of the rule.

Rather than impose the need for a closed knowledge base that must
be completely constructed a priori, this method allows for the identi-
fication of that part of the universe of discourse that differentiates a
particular case as the need arises. Indeed, the only context of interest
is that needed for differentiation, so that rule sets evolve dynamically,
from general to specific, through experience gained as they are applied.

Ripple-Down Rules are well suited to the worklet and exlet selection
processes, since they:

e provide a method for capturing relevant, localised contextual
data;

e provide a hierarchical structuring of contextual rules;

e do not require the top-down construction of a global knowledge
base of the particular domain prior to implementation;

e explicitly provide for the definition of exceptions at a local level,

e do not require expert knowledge engineers for its maintenance;
and

e allow a rule set to evolve and grow, thus providing support for
a dynamic learning system.

Each worklet is a representation of a particular situated action that
relies on the relevant context of each instance, derived from case data
and other (archival) sources, to determine whether it is invoked to
fulfil a task in preference to another worklet within the repertoire.
When a new rule is added, a worker describes the contextual conditions
as a natural part of the work they perform® This level of human
involvement — at the ‘coalface’, as it occurs — greatly simplifies the
capturing of contextual data. Thus RDR allows the construction of an

evolving, highly tailored local knowledge base about a business process.

4.3. A conceptual framework for exception handling. The work-
flow exception patterns (Russell et al., 2006) were developed with the
general aim of providing a conceptual framework for exception handling
in workflow systems. They aim to describe the notion of a workflow
exception in a general sense and the various ways in which they can
be triggered and handled. An exception is anticipated to be a distinct,
identifiable event which occurs at a specific point in time during the
execution of a process instance. The manner in which the exception is
handled will depend on the type of exception that has been detected.
The types of events that give rise to exceptions can be classified into
five distinct groups:

Work Item Failure where during the course of its execution, a work
item to unable progress any further. This may be a consequence of

3In practice, the worker’s contextual description would be passed to an administra-
tor, who would add the new rule.

software or hardware failure or may be triggered by the user themselves
as a means of signalling failure to the workflow engine;

Deadline Expiry where a deadline that is associated with a work
item (either for commencement or completion) is not met;

Resource Unavailability where the resources that are required in
order to commence or complete a work item are not available;

External Trigger where signals are received from the operating envi-
ronment that an event has occurred that impacts on the work item or
process instance and requires some form of handling; and

Constraint Violation where constraints have been specified in rela-
tion to elements in the control-flow, data or resource perspectives that
need to be maintained to ensure the integrity and operational consis-
tency of the workflow process is preserved.

The actual recovery response to any given class of exception can be
specified as a pattern which succinctly describes the form of recovery
that will be attempted. Specific exception patterns may apply in mul-
tiple situations in a given process model (i.e. for several distinct con-
structs), possibly for different types of exception. Exception patterns
take the form of tuples comprising the following elements:

e How the task on which the exception is based should be handled;

e How the case and other related cases in the process model in
which the exception is raised should be handled; and

e What recovery action (if any) is to be undertaken.

Ezxception handling at work item level. In general an exception will
relate to a specific work item in a process instance and the way in which
the exception is handled depends on the current state of execution of
the work item. Figure 2 illustrates as solid arrows the states through
which a work item progresses during normal execution. Figure 2 also
shows fifteen strategies as dashed arcs from one work item state to
another, which to distinct approaches for handling the current item in
various states when a specific type of exception is detected.

Exception handling at case level. Exceptions always occur in the con-
text of one or more cases (process instances) that are in the process
of being executed. In addition to dealing with the specific work item
to which the exception relates, there is also the issue of how the case
should be dealt with in an overall sense, particularly in regard to other
work items that may currently be executing or will run at some future
time. There are three alternatives for handling workflow cases:

(1) continue workflow case (CWC) — the workflow case can be
continued, with no intervention occurring in the execution of
any other work items;

P ’reoffer:s (SRO) force—fail-a (AFF)\ ~

N
~
- < ~
- ~ ~
4 e N e S S
’ - ~

N
- RS
continue-offer (OCO) , /" coptinue-allocation (ACA) AN 7 continue—execution (SCE)
g P b N = .)
// AN // v // AN /\/\ // \\force falIESfF failed
! Voo ’ !) / N ! ! s L
14 / .

" ail

=~ \force—complete (SFC)
N

 reoffer-a (ARO) N

4 \ 'N
\) withdraw™ ~ - N ") S R 3 ! complete
N2 N N2 S o N4
reoffer (6RO) withdrawn o~ \:re\allocate (ARA) ~ < _restart(SRS) - w
N \fgrce—complete\—; (7&!503:/ -7

S~ _ - force—complete-o (OFC)

FIGURE 2. Options for handling work items

(2) remove current case (RCC) — selected or all remaining work
items in the case can be removed (including those currently
executing); or

(3) remove all cases (RAC) — selected or all remaining work
items in both this and all other currently executing cases which
correspond to the same process model can be removed.

In the latter two scenarios, a selection of work items to be removed
can be specified using both static design time information relating to
the corresponding task definition (e.g. original role allocation) as well
as relevant runtime information (e.g. actual resource allocated to, start
time).

Recovery action. The final consideration in regard to exception han-
dling is what action will be taken to remedy the effects of the situation
that has been detected. There are three alternate courses of action:

(1) no action (NIL) — do nothing;

(2) rollback (RBK) — rollback the effects of the exception; or

(3) compensate (COM) — compensate for the effects of the ex-
ception.

Rollback and compensation are analogous to their usual definitions.
When specifying a rollback action, the point in the process (i.e. the
task) to which the process should be undone can also be stated. By
default this is just the current work item. Similarly with compensation

actions, the corresponding compensation task(s) must also be identi-
fied.

5. IMPLEMENTATION

The Worklet Service has been implemented as a YAWL Custom Ser-
vice (van der Aalst & ter Hofstede, 2005; van der Aalst et al., 2004).
The YAWL environment was chosen as the implementation platform

YAWL

— - Editor
e
Worklet Specs x

YAWL Service
engine Selection ,<:| -

| T Rues

Editor

s

YAWL
worklist J

)

user

FI1GURE 3. External Architecture of the Worklet Service

since it provides a very powerful and expressive workflow language
based on the workflow patterns identified together with a formal se-
mantics (van der Aalst et al., 2003). It also provides a workflow en-
actment engine, and an editor for process model creation, that support
the control flow, data and resource perspectives. The YAWL environ-
ment is open-source and has a service-oriented architecture, allowing
the worklet paradigm to be developed as a service independent to the
core engine. Thus the deployment of the Worklet Service is in no way
limited to the YAWL environment, but may be ported to other envi-
ronments (for example, BPEL engines) by making the necessary links
in the service interface.

Custom YAWL services interact with the YAWL engine through
XML/HTTP messages via certain interface endpoints. Specifically,
custom services may elect to be notified by the engine when certain
events occur in the life-cycle of nominated process instantiations (for
example: when a workitem becomes enabled, when a workitem is can-
celled, when a case completes), to signal the creation and completion
of process instances and workitems, or to notify of certain events or
changes in the status of existing workitems and cases.

The Worklet Service (including its rules editor), source code and
accompanying documentation, can be freely downloaded from http:
//www.yawl-system.com.

5.1. Service Architecture. The service consists of a number of J2EE
classes and servlet pages, organised in a series of packages.

The external architecture of the Worklet Service is shown in Figure 3.
The entities ‘Worklet Specs’, ‘Rules’ and ‘Logs’ comprise the worklet
repository. The service uses the repository to store rule sets, worklet

specifications for uploading to the engine, and generated process and
audit logs. Any YAWL specification may have an associated rule set.
The rule set for each specification is stored as XML data in a disk file
within the worklet repository. The YAWL Process Editor is used to
create new worklet specifications, and may be invoked from the Worklet
Rules Editor, which is used to create new or augment existing rule sets,
making use of certain selection logs to do so, and may communicate
with the Worklet Service via a JSP/Servlet interface to override worklet
selections following rule set additions. The service also provides servlet
pages that allow users to directly communicate with the service to raise
external exceptions and to create and carry out administration tasks.
The Worklet Service comprises two discrete but complementary sub-
services: a Selection Service, which enables dynamic flexibility for pro-
cess instances, and an Fzception Service, which provides facilities to
handle both expected and unexpected process exceptions at runtime.

The Selection Service. The Selection Service enables dynamic flex-
ibility by allowing a process designer to designate certain workitems
to each be substituted at runtime with a dynamically selected worklet,
which contextually handles one specific task in a larger, composite
process activity. Each worklet is a complete extended workflow net
(EWF-net) compliant with Definition 1 of the YAWL semantics (van
der Aalst & ter Hofstede, 2005). Each worklet may be designed and
provided to the Selection Service at any time, even while a parent pro-
cess instance is executing, as opposed to a static sub-process that must
be defined at the same time as, and remains a static part of, the main
process model.

An extensible repertoire of worklets is maintained by the service
for each task in a specification. Each time the service is invoked for a
workitem, a choice is made from the repertoire based on the contextual
data values within the workitem and other sources, using a set of ripple-
down rules to determine the most appropriate substitution.

The workitem is checked out of the workflow enactment engine, the
corresponding data inputs of the original workitem are mapped to the
inputs of the worklet, and the selected worklet is launched in the engine
as a separate case. When the worklet has completed, its output data
is mapped back to the original workitem, which is then checked back
into the engine, allowing the original process to continue.

From an engine perspective, the worklet and its parent are two dis-
tinct, unrelated cases. The Worklet Service tracks the relationships,
data mappings and synchronisations between cases, and creates a pro-
cess log that may be combined with the engine’s process logs via case
identifiers to provide a complete operational history of each process
instance and may be used as a data source for the evaluation of rule
conditions.

Each task that is associated with a worklet repertoire is said to
be ‘worklet-enabled’. This means that a process may contain both
worklet-enabled tasks and non-worklet-enabled (or ordinary) tasks.
Any process instance that contains a worklet-enabled task will become
the parent process instance for any worklets invoked from it.

Importantly, a worklet-enabled task remains a valid (ordinary) task
definition, rather than being considered as a vacant 'placeholder’ for
some other activity (i.e. a worklet). The distinction is crucial because,
if an appropriate worklet for a worklet-enabled task cannot be found at
runtime (based on the context of the case and the rule set associated
with the task), the task is allowed to run as an ‘ordinary’ task, as it
normally would in a process instance. So, instead of the parent process
being conceived as a template schema or as a container for a set of
placeholders, it is to be considered as a complete process containing
one or more worklet-enabled tasks, each of which may be contextually
and dynamically substituted at runtime.

Worklets may be associated with either an atomic task, or a multiple-
instance atomic task. Any number of worklets can form the repertoire
of an individual task, and any number of tasks in a particular specifi-
cation can be associated with the Worklet Service. A worklet may be
a member of one or more repertoires — that is, it may be re-used for
several distinct tasks within and across process specifications. In the
case of multiple-instance tasks, a separate worklet is launched for each
child workitem. Because each child workitem may contain different
data, the worklets that substitute for them are individually selected,
and so may all be instances of different worklet specifications.

The Exception Service. The Exception Service allows designers to
define exception handling processes (called exlets for parent workflow
instances, to be invoked when certain events occur. It has been de-
signed so that the enactment engine, besides providing notifications at
certain points in the life cycle of a process instance, needs no knowledge
of an exception occurring, or of any invocation of handling processes
— all exception checking and handling is provided by the service.

The exception service uses the same repertoire and dynamic rules
framework as the selection service. There are, however, two fundamen-
tal differences between the two sub-services. First, where the selection
service selects a worklet as the result of satisfying a rule in a rule set,
the result of an exception service rule being satisfied is an ezlet. Second,
while the selection service is invoked for certain nominated tasks in a
process, the exception service, when enabled, is invoked for every case
and task instance executed by the enactment engine, and will detect
and handle up to ten different kinds of process exceptions.

As part of the exlet definition, a process designer may choose from
various actions (such as cancelling, suspending, completing, failing and

restarting) and apply them at a workitem, case and/or specification
level. And, since the exlets can include compensatory worklets, the
original parent process model only needs to reveal the actual business
logic for the process, while the repertoire of exlets grows as new excep-
tions arise or different ways of handling exceptions are formulated.

An extensible repertoire of exlets is maintained by the service for
each type of potential exception within each workflow specification.
Each time the service is notified of an exception event, either actual or
potential (i.e. a constraint check) the service first determines whether
an exception has in fact occurred, and if so, where a rule tree for that
exception type has been defined, makes a choice from the repertoire
based on the type of exception and the context of the workitem/case.

If an exlet executed by the exception service contains a compensation
action (i.e. a worklet to be executed as a compensatory process) it is
run as a separate case in the enactment engine, so that from an engine
perspective, the worklet and its ‘parent’ (i.e. the process that invoked
the exception) are two distinct, unrelated cases. Figure 4 shows the
relationship between a ‘parent’ process, an exlet repertoire and a com-
pensatory worklet, using an Organise Concert process as an example.
Since a worklet is launched as a separate case, it is treated as such by
the Worklet Service and so may have its own worklet /exlet repertoire.

The Service responds to the following exception types:

Constraint Types. Constraints are rules that are applied to a workitem
or case immediately before and after execution. Thus, there are four
sub-types of constraint exception: CasePreConstraint, ItemPreCon-
straint, ItemPostConstraint, and CasePostConstraint.

The service receives notification from the workflow engine when each
of these constraint events occurs within each case instance, then checks
the rule set associated with the specification to determine, firstly, if
there are any rules of that exception type defined for the specification,
and if so, if any of the rules evaluate to true using the contextual data
of the case or workitem. If the rule set finds a rule that evaluates to
true for the exception type and data, an associated exlet is selected
and invoked.

TimeOut. A timeout event occurs when a deadline set for a workitem
is reached. In this case, the workflow engine notifies the service of the
timeout event, passing to the service a reference to the workitem. If
the workitem has an associated timeout rule set, the relevant exlet is
invoked.

Externally Triggered Types. Externally triggered exceptions occur, not
through context internal to the process instance, but because of the
occurrence of an event in the external environment, that may have an
effect on the continuing execution of the process. Notification of these
events is typically triggered by a user or administrator. Depending on
the actual event and the context of the case or workitem, a particular

compensation worklet

cancel stadium book theatre aavise fans

ChangeToMidVenue

®_7// s 7/7—>/W_@ |TemPreCe))(()|r;f;raint
(B—/IT}—c/—/> }—(m)
W/} o/—/a]—®)
{1} /3]—®)

‘parent’ process

book stadium sell tickets do show

OrganiseConcert

FI1GURE 4. Process — Exlet — Worklet Hierarchy

exlet will be invoked if the associated rule exists. There are two types of
externally triggered types, CaseFEzternalTrigger (for case-level events)
and ItemFEzternalTrigger (for item-level events).

ItemAbort. An ItemAbort event occurs when a workitem reports that
it has been aborted before normal completion.

ResourceUnavailable. This event occurs when an attempt has been
made to allocate a workitem to a resource and the resource reports
that it is unable to accept the allocation or the allocation cannot pro-
ceed.

ConstraintViolation. This event occurs when a data constraint has been
violated for a workitem during its execution (as opposed to pre- or post-
execution).

When any of the above exception event notifications occur, an appro-
priate exlet for that event, if defined, will be invoked. Each exlet may
contain any number of steps, or primitives, and is defined graphically
using a Rules Editor (cf. Figure 5.

The set of primitives that may be used to construct an exlet (as seen
left to right on the left of Figure 5) are:

‘;i Worklet Rules Editor: =<Mew Conclusion> g@

® (1] [n C)

| = =)/=]=]

= (3 |[-[=[=]

.] |2] [~ =] =]

Save | Align | LClear | Cancel |

F1GURE 5. Example Handler Process in the Rules Editor

e Remove Workltem: removes (or cancels) the workitem; execu-
tion ends, and the workitem is marked with a status of can-
celled. No further execution occurs on the process path that
contains the workitem.

e Remowve Case: removes the case. Case execution ends.

e Remove All Cases: removes all case instances for the specifica-
tion in which the task of which the workitem is an instance is
defined, or of which the case is an instance.

o Suspend Workltem: suspends (or pauses) execution of a workitem,
until it is continued, restarted, cancelled, failed or completed, or
the case that contains the workitem is cancelled or completed.

o Suspend Case: suspends all ‘live’ workitems in the current case
instance (a live workitem has a status of fired, enabled or exe-
cuting), effectively suspending execution of the entire case.

e Suspend All Cases: suspends all ‘live’ workitems in all of the
currently executing instances of the specification in which the
task of which the workitem is an instance is defined, effectively
suspending all running cases of the specification.

e Continue Workltem: un-suspends (or continues) execution of
the previously suspended workitem.

e Continue Case: un-suspends execution of all previously sus-
pended workitems for the case, effectively continuing case exe-
cution.

e Continue All Cases: un-suspends execution of all workitems
previously suspended for all cases of the specification in which
the task of which the workitem is an instance is defined or of
which the case is an instance, effectively continuing all previ-
ously suspended cases of the specification.

e Restart Workltem: rewinds workitem execution back to its
start. Resets the workitem’s data values to those it had when
it began execution.

e Force Complete Workltem: completes a ‘live’ workitem. Exe-
cution of the work-item ends, and the workitem is marked with
a status of ForcedComplete, which is regarded as a successful
completion, rather than a cancellation or failure. Execution
proceeds to the next workitem on the process path.

e Force Fail Workltem: fails a ‘live’ workitem. Execution of the
workitem ends, and the workitem is marked with a status of
Failed, which is regarded as an unsuccessful completion, but not
as a cancellation — execution proceeds to the next workitem
on the process path.

e Compensate: run one or more compensatory processes (i.e.
worklets). Depending on previous primitives, the worklets may
execute simultaneously to the parent case, or execute while the
parent is suspended.

Optionally, an array of worklets may be defined for a particular com-
pensation primitive — when multiple worklets are defined for a partic-
ular compensation primitive via the Rules Editor, they are launched
concurrently as a composite compensatory action when the exlet is
executed.

The Selection and Exception sub-services can be used in combina-
tion within particular case instances to achieve dynamic flexibility and
exception handling simultaneously.

6. EXEMPLARY STUDY

Film and television production is a multi-billion dollar industry. In
Australia alone, there are over two thousand film and video production
services actively employing almost twenty thousand people (Trewin,
2004). However, the industry is extremely competitive and has be-
come progressively global in its scope. Even though the work processes
of the industry are highly creative and goal-oriented, organisations are
increasingly recognising the value of more conventional business man-
agement strategies, such as PAIS, to gain and maintain a competitive
edge (Lee & Holt, 2006; Irving & Rea, 2006).

That is not to say that any workflow solution is able to be applied
across the board to support all aspects of a film production process.
But there are many aspects of the industry where meaningful benefits
can be gained through the use of a workflow solution to assist in the
management of a project, including:

e back-office administrative and support processes;

e the allocation of resources to tasks;

e routing of film stock, documentation and other materials amongst
employees; and

o facilitating inter-team communication and goal-setting.

This study will examine a process occurring in the post-production
phase and discuss the applicability of implementing a worklet-service-
based solution. The process originates from a cooperative project be-
tween the Queensland University of Technology (QUT) and the Aus-
tralian Film, Television, and Radio School (AFTRS) within the context
of QUT’s Centre of Excellence for Creative Industries and Innovation.

Rather than coming at the end of production (as the name might
imply), work within the post-production phase operates concurrently
with several other phases of production. Tasks in this phase include
the merging of video and audio components (voice, sound effects, music
and so on) and editing to produce a coherent, final piece, and as such
includes tasks that are both acutely technical and highly creative. The
process, referred to as the Master process, can be logically divided into
three phases:

e Pre-Edit: The pre-edit phase begins with the delivery of the
day’s footage (‘the rushes’) to the post-production team. There
are two possible entry points into the process, one for each type
of media that may be used (film and videotape). It may be
the case that both types of media are used for a particular set
of rushes, so in terms of the model’s entry points, inputs may
arrive at both simultaneously. Videotape does not require the
same degree of processing as film, but for both media types, a
low resolution copy is digitised and stored on computer file to
be used as a guide for the remaining process. Accompanying
the film and/or tape is the ‘rushes paperwork’; a set of docu-
mentation which may include items such as an annotated script,
and video and audio reports. This documentation is regarded
as an important source of information about the footage, and
is thus made available throughout the post production process.

e Edit: In the edit phase, the video and audio components are
handled separately. Further, video editing is divided into low
and high resolution edits. Low resolution editing is represented
by the Offline task, which allows editing decisions to be made
and documented before the high resolution editing begins. The
result of the Offfine task is the EDL (Edit Decision List). Video
Effects Production takes place concurrently with the Offiine
task. When the Offline task completes, the high-resolution
editing, along with the sound and music editing, can begin.
For film, the high resolution editing takes place in the Film Fin-
1shing task, where the original negative is spliced into pieces,
some of which are rejoined; for tape, it occurs in the Online
task, where the video is rearranged using an editing suite and
recorded to a tape master. Both take the EDL output from the
low resolution edit and each performs the actions listed in the
respective EDL on distribution quality media.

e Post-Edit: After the edit phase, an edited, high resolution,
distribution quality film and/or tape, together with completed
visual effects and sound and music, is completed, and now must
be ‘finished’ for distribution. The finishing may be required for
any or all of the film, tape and disk mediums, which are output
in the form of a release print, master tape or release version
respectively.

The process description reveals some of the complicating factors that

come in to play when rendering this process to a particular modelling
framework. For instance, it contains constraints which are designed
to remove some tasks from the eventual process if certain preceding
tasks were not included in a particular configuration of the process.
For example, the removal of the Prepare Film for Edit and Film Finish
tasks is required if the rushes were not received on film; similarly, the
Online task will not be required if tape media was not received. In
addition, because there are two entry points, there are three possible
media combinations that may start a case instance (i.e. tape, film, or
both tape and film), and so a nominal model will require a number of
OR splits and joins to accommodate the various combinations and the
tasks they entail.

A representation of the process in the YAWL language shows com-
plications in the describing the process and its possible flow paths via
a static model (Figure 6). There are several OR splits and joins; con-
ditionals are required to be embedded into each OR split output arc
to determine whether they ‘fire’ or not. All are dependent simply on
which media formats have been supplied to the process. For example,
the first OR split task controls whether one or both arcs fire (one for
tape, one for film); the OR split preceding the Online and File Finish
tasks has a similar function, and so on. Thus in static representations
such as this, the control flow logic is embedded into the business pro-
cess logic. As a result, it is not obvious from the model which path
may be taken during a particular instance.

With the flexibility mechanisms available through the Worklet Ser-
vice, the process can be modelled without much of the complexity,
particularly by negating the need for the OR splits and joins. Figure 7
shows the worklet-enabled process. Immediately apparent is the fact
that, in this case, all of the OR splits and joins have been removed
from the process model.

The first task in the process, PrepareForEdit, is worklet-enabled.
Associated with this task is the Selection rule tree shown in Figure 8.
The rule tree shows that, if either tape or film has been supplied,
the corresponding rule will be satisfied and the service will launch the
appropriate worklet for that media. If the rushes have been delivered
on both film and tape media, node 2 will be last satisfied, resulting in
the launching of two discrete worklets, one for each medium (the two

(%) PostProduction o o

Process Film Prepare Film for Edit

Tape Finish

[e
L

Release Printing

Online

Disk Finish Film Finish

FIGURE 6. Static Post Production Master Process
(YAWL language)

®) PostProduction G e el

Release To Finalise

Offline Sound And Music

FIGURE 7. Post Production Master Process (Worklet-Enabled)

worklets are shown in Figure 9). Note that the conditional expressions
for nodes 2 and 3 are identical in this tree, but their conclusions differ
— node 3 will be tested if node 1 evaluates to false (i.e. there is no tape
media), while node 2 will be tested only if node 1 evaluates to true.

The worklet-enabled Master task performs a similar service to Pre-
pareForEdit — it will launch a worklet to carry out the Online process
if tape media is provided, and/or for the Film Finish process if film
media is provided.

The Finalise task models the processing of ‘finishing’” the output
for distribution. There are three possible sub-processes to perform:
tape finish, disk finish and release printing — each has a corresponding
worklet in the specification’s repertoire. Therefore, there are six possi-
ble worklet launch combinations, as specified in the selection rule tree
for the Finalise task (Figure 10). Each worklet consists of one task,
corresponding to each of the three tasks at the post-edit end of the
original static process model.

o

true

default

»| TapeShoot = True

select ppPrepareTapeForEdit

: |

FilmShoot = True FilmShoot = True

select ppPrepareTapeForEdit,

select ppPrepareFilmForEdit ppPrepareFilmForEdit

FIGURE 8. Selection Rule Tree for the PrepareForEdit task

@ ppPrepareFilmForEdi

oA @

Process Film Prepare Film

@ ppPrepareTapeForEdit

®— —@

Prepare Tape

Ficure 9. Worklets ppPrepareFileForEdit and ppPre-
pareTapeForEdit

In summary, the Worklet Service allows a parent or master process
to be defined without much of the explicit branching mechanisms nec-
essary in the control flow of static models. As a result, the parent
process models are cleaner, easier to verify and maintain, and easier
for stakeholders to gain an understanding of the process logic. Once the
parent process is worklet-enabled, it is able to access all the features of
the worklet paradigm, including support for exception handling. Some
exceptions that may occur in a post production process include dam-
aged film or tape stock, equipment malfunctions and breakdowns, and
time and budget overruns, to name but a few. All of these exceptions

g

ToDisk = True

o I

true

default

- I

ToTape = True

\ 4

>

ToFilm = True

select ppTapeFinish

select ppFilmFinish

select ppDiskFinish

A

A 4

ToFilm = True

B

select ppTapeFinish,

ppFilmFinish

- I

ToDisk = True

select ppDiskFinish,
ppFilmFinish

- I

ToDisk = True

select ppDiskFinish,
ppTapeFinish,
ppFilmFinish

FIGURE 10. Selection Rule Tree for the Finalise Task

may be handled by adding an appropriate exlet to the specification’s
repertoire.

7. CONCLUSION

This chapter began by identifying key problems that describe the
fundamental limitations of current workflow technologies with respect
to the rigidity enforced by the inflexible frameworks employed, and the
consequent difficulties in placing more dynamic, information intensive
processes within those frameworks. Then, a description of ten prin-
ciples derived from Activity Theory that represent an interpretation
of its central themes applicable to understanding organisational work
practices was provided.

Based on the derived principles of Activity Theory, the Worklet Ser-
vice was then conceptualised, implemented and validated. A primary
feature of the service is that it has been designed and implemented
as a discrete service, and so offers all of its benefits to a wide range
of workflow management systems, allowing them to fully ‘worklet-ise’
their otherwise static processes. The Worklet Service:

e Keeps the parent model clean and relatively simple;

e Promotes the reuse of sub-processes in different models;

e Allows standard processes to be used as exception handling
compensation processes, and vice versa;

e Maintains an extensible repertoire of actions that can be con-
structed during design and/or runtime and can be invoked as
required;

e Allows a specification to implicitly build a history of executions,
providing for a learning system that can take the appropriate
actions for certain contexts automatically;

e Maintains a repertoire of fully encapsulated, discrete worklets
that allow for easier verification and modification;

e Allows a model to evolve without the need to stop and modify
the design of the whole specification when an exception occurs;

e By de-coupling the monolithic process model, models can be
built that vary from loosely to tightly defined and so supports
late binding of processes; and

e Allows a model to be considered from many levels of granularity.

There are a number of further research topic possibilities that arise
from this work, such as: deeper empirical studies comparing the worklet
approach to classic workflow approaches and measuring the relative
benefits of each; porting the Worklet Service to other workflow systems
(for example, IBM Websphere and/or Oracle BPEL); exploring the ad-
vantages of mixing different modelling styles and approaches, leading to
recommendations of in what circumstances the various approaches are
best used; and stronger support for process mining analysis using both
the process logs generated by the service and the structure, content
and evolution of the various ripple-down rule sets of specifications.

In summary, through a combination of the framework on which it is
built and the mechanisms available through both its selection and ex-
ception handling sub-services, the Worklet Service offers a wide-ranging
solution to the issues of flexibility and exception handling in process-
aware information systems. In fact, the benefits offered through each
sub-service can be combined to deliver a far-reaching set of capabili-
ties that serve the needs of a wide variety of work environments and
processes.

REFERENCES

van der Aalst, W. (2001). Exterminating the dynamic change bug: A
concrete approach to support workflow change. Information Systems
Frontiers, 3(3), 297-317.

van der Aalst, W., Aldred, L., Dumas, M., & ter Hofstede, A. (2004).
Design and implementation of the YAWL system. In A. Persson, &
J. Stirna (Eds.) Proceedings of The 16th International Conference on
Advanced Information Systems Engineering (CAiSE 04), vol. 3084

of Lecture Notes in Computer Science, (pp. 142-159). Riga, Latvia:
Springer Verlag.

van der Aalst, W., & Basten, T. (2002). Inheritance of workflows:
An approach to tackling problems related to change. Theoretical
Computer Science, 270((1-2)), 125-203.

van der Aalst, W., & Berens, P. (2001). Beyond workflow management:
Product-driven case handling. In S. Ellis, T. Rodden, & I. Zigurs
(Eds.) Proceedings of the International ACM SIGGROUP Confer-
ence on Supporting Group Work, (pp. 42-51). New York: ACM
Press.

van der Aalst, W., & van Hee, K. (2004). Workflow Management:
Models, Methods and Systems. Cambridge, Massachusetts: The MIT
Press, New Ed ed.

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., & Barros, A.
(2003). Workflow patterns. Distributed and Parallel Databases,
14(3), 5-51.

van der Aalst, W., & ter Hofstede, A. (2005). YAWL: Yet Another
Workflow Language. Information Systems, 30(4), 245-275.

van der Aalst, W., Weske, M., & Griinbauer, D. (2005). Case handling:
A new paradigm for business process support. Data & Knowledge
Engineering, 53(2), 129-162.

Adams, M. (2007). Facilitating Dynamic Flezibility and Exception Han-
dling for Workflows. Phd thesis, Queensland University of Technol-
ogy.

Adams, M., Edmond, D., & ter Hofstede, A. H. (2003). The application
of activity theory to dynamic workflow adaptation issues. In Pro-
ceedings of the 2003 Pacific Asia Conference on Information Systems
(PACIS 2003), (pp. 1836-1852). Adelaide, Australia.

Bardram, J. E. (1997). I love the system - I just don’t use it! In
Proceedings of the International ACM SIGGROUP Conference on
Supporting Group Work (GROUP’97), (pp. 251-260). Phoenix, Ari-
zona, USA: ACM.

Barthelmess, P., & Wainer, J. (1995). Workflow systems: a few defini-
tions and a few suggestions. In Proceedings of the ACM Conference
on Organizational Computing Systems (COOCS’95), (pp. 138-147).
Milpitas, California, USA: ACM.

Berens, P. (2005). The FLOWer Case Handling Approach: Beyond
Workflow Managment, chap. 15, (pp. 363-395). In Dumas et al.
(2005).

Bider, I. (2005). Masking flexibility behind rigidity: Notes on how
much flexibility people are willing to cope with. In J. Castro, &
E. Teniente (Eds.) Proceedings of the CAiSE’05 Workshops, vol. 1,
(pp. 7-18). Porto, Portugal: FEUP Edicoes.

Bodker, S., & Greenbaum, J. (1993). Design of information systems:
Things versus people. In E. Green, J. Owen, & D. Pain (Eds.)

Gendered by Design?: Information Technology and Office Systems,
chap. 3, (pp. 53-63). London: Taylor and Francis.

Borgida, A., & Murata, T. (1999). Tolerating exceptions in workflows:
a unified framework for data and processes. In Proceedings of the
International Joint Conference on Work Activities, Coordination and
Collaboration (WACC’99), (pp. 59-68). San Francisco, California,
USA: ACM Press.

Casati, F. (1998). A discussion on approaches to handling exceptions
in workflows. In Proceedings of the CSCW Workshop on Adaptive
Workflow Systems. Seattle, USA.

Compton, P., & Jansen, B. (1988). Knowledge in context: A strategy
for expert system maintenance. In J.Siekmann (Ed.) Proceedings of
the 2nd Australian Joint Artificial Intelligence Conference, vol. 406
of Lecture Notes in Artificial Intelligence, (pp. 292-306). Adelaide,
Australia: Springer-Verlag.

COSA (2005). COSA BPM product description. http://www.
cosa-bpm. com/project/docs/COSA_BPM_5_Productdescription_
eng.pdf. Accessed 13 March, 2008.

Drake, B., & Beydoun, G. (2000). Predicate logic-based incremental
knowledge acquisition. In P. Compton, A. Hoffmann, H. Motoda, &
T. Yamaguchi (Eds.) Proceedings of the sizth Pacific International
Knowledge Acquisition Workshop, (pp. 71-88). Sydney, Australia.

Dumas, M., van der Aalst, W., & ter Hofstede, A. (Eds.) (2005).
Process-Aware Information Systems: Bridging People and Software
through Process Technology. New York: Wiley-Interscience.

Georgeff, M., & Pyke, J. (2003). Dynamic process orchestration. White
paper, Staffware PLC.

Greiner, U., Ramsch, J., Heller, B., Loffler, M., Miiller, R., & Rahm, E.
(2004). Adaptive guideline-based treatment workflows with adapt-
flow. In K. Kaiser, S. Miksch, & S. Tu (Eds.) Proceedings of the
Symposium on Computerized Guidelines and Protocols (CGP 2004),
(pp. 113-117). Prague: 10S Press.

Hendriks-Jansen, H. (1996). Catching ourselves in the act : situated
activity, interactive emergence, evolution, and human thought. Cam-
bridge, Mass: MIT Press.

Holt, A. W. (1997). Organized Activity and Its Support by Computer.
Kluwer Academic Publishers, Dordrecht.

IBM (2005). IBM WebSphere MQ Workflow: Concepts and architec-
ture. http://publibfp.boulder.ibm.com/epubs/pdf/h1262857.
pdf. Accessed 14 March, 2008.

Irving, D. K., & Rea, P. W. (2006). Producing and Directing the Short
Film and Video. Burlington, Oxford, United Kingdom: Focal Press,
3rd ed.

Joeris, G. (1999). Defining flexible workflow execution behaviors.
In P. Dadam, & M. Reichert (Eds.) Enterprise-wide and Cross-
enterprise Workflow Management: Concepts, Systems, Applications,
vol. 24 of CEUR Workshop Proceedings, (pp. 49-55). Paderborn,
Germany.

Joeris, G., & Herzog, O. (1998). Managing evolving workflow specifica-
tions. In Proceedings of the 3rd IFCIS International Conference on
Cooperative Information Systems (CooplS ’98), (pp. 310-319). New
York, New York, USA: IEEE Computer Society.

Kammer, P., Bolcer, G., Taylor, R., Hitomi, A., & Bergman, M. (2000).
Techniques for Supporting Dynamic and Adaptive Workflow. Com-
puter Supported Cooperative Work (CSCW), 9(3), 269-292.

Kang, B. H., Preston, P., & Compton, P. (1998). Simulated expert
evaluation of multiple classification ripple down rules. In Proceed-
ings of the 11th Workshop on Knowledge Acquisition, Modeling and
Management. Banff, Alberta, Canada.

Klein, M., & Dellarocas, C. (2000). A systematic repository of knowl-
edge about handling exceptions. ASES Working Paper ASES-WP-
2000-03 ASES-WP-2000-03, Massachusetts Institute of Technology,
Cambridge, MA, United States.

Kradolfer, M., & Geppert, A. (1999). Dynamic workflow schema evo-
lution based on workflow type versioning and workflow migration. In
Proceedings of the 1999 IFCIS International Conference on Cooper-
ative Information Systems (CoopIS’99), (pp. 104-114). Edinburgh,
Scotland: TEEE Computer Society.

Kuutti, K. (1996). Activity Theory as a Potential Framework for
Human-Computer Interaction Research, (pp. 17-44). In Nardi
(1996).

Lee, J. J., & Holt, R. (2006). The Producer’s Business Handbook.
Burlington, Oxford, United Kingdom: Focal Press, 2nd ed.

Leontiev, A. (1974). The problem of activity in psychology. Soviet
Psychology, 13(2), 4-33.

Leymann, F. (2006). Workflow-based coordination and cooperation in
a service world. In R. Meersman, & Z. Tari (Eds.) Proceedings of the
14th International Conference on Cooperative Information Systems
(CooplS’06), vol. 4275 of Lecture Notes in Computer Science, (pp.
2-16). Montpellier, France: Springer-Verlag.

Manago, M. V., & Kodratoff, Y. (1987). Noise and knowledge acquisi-
tion. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, vol. 1, (pp. 348-354). Milano, Italy: Morgan
Kaufmann.

zur Muehlen, M. (2004). Workflow-based Process Controlling. Foun-
dation, Design, and Implementation of Workflow-driven Process In-
formation Systems, vol. 6 of Advances in Information Systems and
Management Science. Berlin: Logos.

Muller, R., Greiner, U., & Rahm, E. (2004). AgentWork: a workflow
system supporting rule-based workflow adaptation. Data € Knowl-
edge Engineering, 51(2), 223-256.

Mumford, L. (1963). Technics and Civilization. Harcourt Brace Jo-
vanovich, New York.

Nardi, B. A. (1996). Activity Theory and Human-Computer Interac-
tion, (pp. 7-16). In Nardi (1996).

Nardi, B. A. (Ed.) (1996). Contezt and Consciousness: Activity The-
ory and Human-Computer Interaction. MIT Press, Cambridge, Mas-
sachusetts.

Oberweis, A. (2005). Person-to-Application Processes: Workflow Man-
agement, chap. 2, (pp. 21-36). In Dumas et al. (2005).

Pacific Knowledge Systems (2003). Products: Rippledown, http:
//www.pks.com.au/products/validator.htm. Accessed 23 April,
2002.

Palmer, N. (2007). A survey of business process initiatives. http:
//wfmc.org/researchreports/Survey_BPI.pdf. Accessed 4 April,
2008.

Pesic, M., & van der Aalst, W. (2006). A declarative approach for flex-
ible business processes. In J. Eder, & S. Dustdar (Eds.) Proceedings
of the First International Workshop on Dynamic Process Manage-
ment (DPM 2006), vol. 4103 of Lecture Notes in Computer Science,
(pp. 169-180). Vienna, Austria: Springer-Verlag, Berlin, Germany.

Reichert, M., & Dadam, P. (1997). A framework for dynamic changes
in workflow management systems. In Proceedings of the 8th Inter-
national Workshop on Database and FExpert Systems Applications
(DEXA 97), (pp. 42-48). Toulouse, France: IEEE Computer Soci-
ety Press.

Reichert, M., Dadam, P., & Bauer, T. (2003). Dealing with forward
and backward jumps in workflow management systems. Software and
Systems Modeling, 2(1), 37-58.

Reichert, M., Rinderle, S., Kreher, U., & Dadam, P. (2005). Adaptive
process management with ADEPT2. In Proceedings of the 21st In-
ternational Conference on Data Engineering (ICDE05), (pp. 1113—
1114). Tokyo, Japan: IEEE Computer Society Press.

Rinderle, S., Reichert, M., & Dadam, P. (2004). Correctness criteria for
dynamic changes in workflow systems: a survey. Data and Knowledge
Engineering, 50(1), 9-34.

Rinderle, S., Weber, B., Reichert, M., & Wild, W. (2005). Integrating
process learning and process evolution a semantics based approach.
In W. van der Aalst, B. Benatallah, F. Casati, & F. Curbera (Eds.)
Proceedings of the 3rd International Conference on Business Process
Management (BPM’05), vol. 3649 of Lecture Notes in Computer Sci-
ence, (pp. 252-267). Nancy, France: Springer Verlag.

Russell, N.; van der Aalst, W., & ter Hofstede, A. (2006). Workflow
exception patterns. In E. Dubois, & K. Pohl (Eds.) Proceedings of
the 18th International Conference on Advanced Information Systems
Engineering (CAISE 2006), (pp. 288-302). Luxembourg: Springer.

SAP (2006). SAP advanced workflow techniques. https:
//www.sdn.sap.com/irj/servlet/prt/portal/prtroot/docs/
library/uuid/82d03e23-0a01-0010-b482-dccfelc877c4. Ac-
cessed 17 March, 2008.

Scheffer, T. (1996). Algebraic foundation and improved methods of
induction of ripple down rules. In Proceedings of the 2nd Pacific
Rim Workshop on Knowledge Acquisition, (pp. 279-292). Sydney,
Australia.

Stein, L. A. (1999). Challenging the computational metaphor: Impli-
cations for how we think. Cybernetics and Systems, 30(6).

TIBCO (2006). TIBCO iProcess Suite whitepaper. http:
//www.staffware.com/resources/software/bpm/tibco_
iprocess_suite_whitepaper.pdf. Accessed 13 March, 2008.

Trewin, D. (2004). Televison, film and video production in Aus-
tralia (publication 8679.0). Australian Bureau of Statistics http:
//www.ausstats.abs.gov.au/ausstats/subscriber.nsf/0/
14F1A528655E8486CA256EDE00782780/File/86790_2002-03.pdf.
Accessed 13 April, 2008.

Turing, A. (1936). On computable numbers, with an application to
the entscheidungsproblem. Proceedings of the London Mathematical
Society, 2(42), 230-265.

Weber, B., Wild, W., & Breu, R. (2004). CBRFlow: Enabling adap-
tive workflow management through conversational case-based rea-
soning. In P. Funk, & P. A. Gonzélez Calero (Eds.) Proceedings of
the 7th Furopean Conference for Adavances in Case Based Reason-
ing (ECCBR’04), vol. 3155 of Lecture Notes In Computer Science,
(pp. 434-448). Madrid, Spain: Springer.

Workflow Management Coalition (2002). Introduction to workflow.
http://www.wfmc.org/introduction_to_workflow.pdf. Accessed
14 November 2004.

Yan, J., Yang, Y., & Raikundalla, G. (2004). Towards incompletely
specified process support in SwinDeW - a peer-to-peer based work-
flow system. In W. Shen, Z. Lin, J. Barthes, & T. Li (Eds.) Proceed-
ings of the 8th International Conference on Computer Supported Co-
operative Work in Design (CSCWD 2004), vol. 3168 of Lecture Notes
in Computer Science, (pp. 328-338). Xiamen, China: Springer.

KeEYy TERMS

Activity Theory. A meta-model or framework used to describe, the-
orise and research organised human activities, originating from Soviet
cultural-historical psychology in the 1920’s.

Exlet. An exception handling process, consisting of a number of ex-
ception handling primitives such as Suspend WorkItem, Remove Case,
Compensate, and so on, which defines what action should be taken in
the event of an exception of a certain type and context.

Process-Aware Information System (PAIS). A software system
that manages and executes operational processes involving people, ap-
plications, and/or information sources on the basis of process models
(Dumas et al., 2005, 7).

Ripple-Down Rules (RDR). A hierarchical, extensible set of rules
of the form “if condition then conclusion”, together with cornerstone
case data, conceptually arranged in a binary tree structure.

Service-Oriented Architecture. A software architecture consisting
of a number of discrete (usually web-based) services (software compo-
nents that are accessed or communicate via standard network proto-
cols), that link together as required in order to achieve some task.

Worklet. A (usually) small, self-contained, complete process defini-
tion which is designed to be invoked as a substitute for one specific task
in a larger, composite process. Each worklet is a complete extended
workflow net (EWF-net) compliant with Definition 1 of the YAWL se-
mantics. A set of zero or more worklets may form the repertoire of a
task.

