
Context Aware Trace Clustering: Towards Improving Process Mining

Results

R. P. Jagadeesh Chandra Bose∗† Wil M.P. van der Aalst∗

Abstract

Process Mining refers to the extraction of process models

from event logs. Real-life processes tend to be less struc-

tured and more flexible. Traditional process mining algo-

rithms have problems dealing with such unstructured pro-

cesses and generate spaghetti-like process models that are

hard to comprehend. An approach to overcome this is to

cluster process instances (a process instance is manifested

as a trace and an event log corresponds to a multi-set of

traces) such that each of the resulting clusters correspond to

a coherent set of process instances that can be adequately

represented by a process model. In this paper, we propose a

context aware approach to trace clustering based on generic

edit distance. It is well known that the generic edit dis-

tance framework is highly sensitive to the costs of edit op-

erations. We define an automated approach to derive the

costs of edit operations. The method proposed in this paper

outperforms contemporary approaches to trace clustering in

process mining. We evaluate the goodness of the formed

clusters using established fitness and comprehensibility met-

rics defined in the context of process mining. The proposed

approach is able to generate clusters such that the process

models mined from the clustered traces show a high degree

of fitness and comprehensibility when compared to contem-

porary approaches.

1 Introduction

Process mining techniques can deliver valuable, factual
insights into how processes are being executed in real
life. Process mining refers to the extraction of process
models from event logs [1]. An event log corresponds to
a bag of process instances of a business process. A pro-
cess instance is manifested as a trace (a trace is defined
as an ordered list of activities invoked by a process
instance from the beginning of its execution to the end).
Real-life processes tend to be less structured and more
flexible. Traditional process mining algorithms have
problems dealing with such unstructured processes and

∗Department of Mathematics and Computer Science, Univer-
sity of Technology, Eindhoven, The Netherlands

†Philips Healthcare, Veenpluis 4-6, 5684 PC Best, The Nether-
lands

generate spaghetti-like process models that are hard
to comprehend. This is caused by the application of
discovery algorithms without preprocessing raw traces.
Since traces are captured for each execution of the
system, there can be instances where the system is
subjected to similar execution patterns/behavior, and
instances where unrelated cases are executed. Consid-
ering the set of traces in the event log all at once might
lead to ambiguities for the mining algorithms which
often result in spaghetti-like models. An approach to
overcome this is to cluster the traces such that each of
the resulting clusters corresponds to a coherent set of
cases that can be adequately represented by a process
model. Figure 1 illustrates the significance of trace
clustering in process mining. The process model on the
top right of Figure 1 is a process model mined from
the entire event log. The model is quite complex to
comprehend. The bottom rectangle of Figure 1 depicts
the process models mined from clustered traces. It is
evident that clustering enables the comprehension of
process models by reducing the spaghetti-ness.

Figure 1: Significance of trace clustering in Process
Mining

The basic principle in clustering is to define a notion
of similarity or dissimilarity between traces and then
partition the event log into k-clusters (for some k ≥ 2)

such that all traces within a cluster Ci are similar
in some sense, and traces belonging to two different
clusters are dissimilar. The goodness of the formed
clusters is largely dependent on the notion of similarity
used. A poor choice of similarity metric can lead to
bad clusters. We define two notions of goodness from
a process mining perspective. Process mining on traces
from good clusters should generate models that have a
(i) high degree of fitness and (ii) low degree of structural
complexity (less spaghetti like). Fitness quantifies how
much of the observed behavior is captured in the model.

Traditional approaches (to trace clustering) in the
literature were confined to transforming the traces into
a vector space and using a pool of clustering tech-
niques (agglomerative hierarchical clustering, k-means
clustering etc) with different distance metrics in the
vector space (Euclidean distance, Jaccard distance etc).
In this paper, we propose a new approach to trace
clustering based on generic edit-distance and show that
the proposed approach outperforms other approaches in
that it partitions the traces into clusters such that the
process models mined from those clusters show a high
degree of fitness and that the models are more compre-
hensible. Edit-distance is sensitive to the cost function
(of edit operations). In this paper, we define a method
to automatically derive the cost function and show that
the cost function thus derived has semantic significance.

Philips Healthcare looks at process mining as a
tool to deliver a powerful set of solutions for providing
factual and appropriate insights into their product
usage, and believes that the insights gained would
enable them to build efficient and customer-focused
product designs and maintenance processes. Philips
Healthcare collates logs from their medical systems
across the globe. These logs contain information about
user actions, system events etc. The number of such
log-recording systems in conjunction with the fine
grained nature of logging makes the data available not
just huge, but massively huge. Trace clustering assumes
utmost importance in dealing with such voluminous
data.

The rest of the paper is organized as follows. Section
2 defines the notations used in the paper. In Section
3, we discuss various approaches to trace clustering by
highlighting the advantages and pitfalls of each. In
Section 4, we present an algorithm to derive the cost
function for the generic edit distance framework. Sec-
tion 5 presents the clustering approach and introduces
the metrics used to evaluate the goodness of clusters.
In Section 6, we present and discuss the experimental

results. Related work is presented in Section 7. Finally,
Section 8 concludes with remarks on future directions.

2 Notations

Let A denote the set of activities. |A| is the number of
activities.
A+ is the set of all non-empty finite sequences of
activities from A. A trace, T is an element of A+.
The set of all n-length sequences over the alphabet A
is denoted by An. A trace of length n is denoted as Tn

i.e., Tn ∈ An, and |Tn| = n.
The ordered sequence of activities in Tn is denoted
as T (1)T (2)T (3) . . . T (n) where T (k) represents the
kth activity in the trace. Alternatively, for readability
purposes, we also denote the trace Tn as an ordered
list of activities (T (1), T (2), T (3), . . . , T (n)).
Tn−1 denotes the subsequence of Tn with the first n−1
activities. In other words Tn = Tn−1T (n).
A trace, T , without a superscript denotes an arbitrary
length trace, i.e., T ∈ A+.
An event log, L, corresponds to a multi-set (or bag) of
traces from A+.

As an example, let A = {a, b, c} be the set of ac-
tivities; |A| = 3. T =abcabb is a trace of length 6.
T (1)=a, T (2)=b, T (3)=c, T (4)=a, T (5)=b, T (6)=b.
T (2, 5) =bcab is a subsequence of T from positions 2
to 5. L = {aba, aba, abba, baca, acc, cac} represents
an event log.

3 Approaches to Trace Clustering: Issues and
Challenges

3.1 Bag-of-activities approach One of the most
often used techniques for analyzing (clustering) traces is
to transform a trace into a vector, where each dimension
of the vector correspond to an activity [6], [7], [12]. The
set of all activities present in the event log defines the
number of dimensions of the vector. For each trace,
the values of the vector correspond to the frequency
count of the activities in that trace. For example, the
traces abaac and badca correspond to the vectors [3,
1, 1, 0] and [2, 1, 1, 1] respectively; the dimensions of
the vector being [a,b,c,d]. Similarity between traces
is then estimated using the standard distance metrics
(such as the Euclidean distance) in the vector-space
model. This transformation, referred to as a bag-of-
activities transformation has a few drawbacks:

1. Lack of context information: Process execution is
characterized by a context. The bag-of-activities
representation does not capture the dynamics of
process execution. As an example, consider a
process model with a notification activity. The

different instances of notification within a trace
might have different connotations based on the
context in which it is invoked. For example, a
broad-cast notification, notification of information,
notification requesting a response.

2. Order of execution: The bag-of-activities represen-
tation also loses the information on the order of
execution of events. Any permutation of the bag
of activities of a given trace has the same vector
representation and thereby has a distance of 0 with
each other. However, in reality, a lot of these per-
mutations do not make any sense from a process
definition point of view. For example, one cannot
write to a file until the file is opened. Even in
cases where it makes sense, they might represent
two different use-cases.

3.2 k-gram model One means of incorporating con-
text into the vector space model is to consider subse-
quences of activities. These subsequences capture the
order of execution as well. However, it is important to
note that the notion of context can be much more than
a mere order of execution of activities. Henceforth, we
refer to a subsequence of k activities as k-gram. For
the trace abacaab, the set of 2−grams correspond to
{ab,ba,ac,ca,aa} while the set of 3-grams correspond
to {aba,bac,aca,caa,aab}. One can transform a trace
into a vector in the k-gram model, which now incor-
porates certain context information. The clustering of
traces is then performed in the k−gram space. How-
ever, it is to be noted that the size of this model in-
creases drastically as the size of the alphabet |A| and k
increase. For a system with 100 activities and consid-
ering 3-grams, we end up with potentially 1003 = 106

dimensions. In reality, one may not see all combina-
tions of 3-grams in the event log; thus the number of
dimensions would be less than 106. Nonetheless, work-
ing in the k-gram space incurs a huge computational
overhead. In addition, selecting a suitable value for k is
non-trivial.

3.3 Hamming Distance While the vector-space
model falls under the statistical processing domain,
Hamming distance and edit-distance [2] are two of the
most often used syntactic methods in text mining to
quantify the (dis-)similarity of two words/sequences.
Hamming distance, defined for two sequences of equal
length measures the count of character positions in
which the two sequences differ. For the sequences
abacaab and abcaaba, the Hamming distance is equal
to 4, since the two sequences differ at positions 3, 4, 6
and 7. One can adopt Hamming distance to event log
traces; instead of counting the character positions that

differ, one now needs to count the activities that differ
at a position. This notion though useful in certain cases,
is not flexible enough for a majority of event traces due
to the following reasons:

i. Hamming distance is not defined for sequences of
different lengths. In reality, event traces will have
different lengths.

ii. Even in cases where Hamming distance is defined,
two traces from the same process model can man-
ifest differently. Interleaving of activities in two
traces are punished too strongly in Hamming dis-
tance.

3.4 Edit distance Another fundamental mea-
sure of (dis-)similarity between two sequences is the
Levenshtein distance, also called as edit distance.
Levenshtein distance between two sequences is defined
as the minimum number of edit operations needed to
transform one sequence into the other, where an edit
operation is an insertion, deletion or substitution of an
element. Consider two sequences S and T ∈ A+. S and
T may contain (a) symbols common to both of them,
(b) symbols present only in S and (c) symbols present
only in T . For example, consider the two sequences
S = teach and T = tricky, |S| = 5 and |T | = 6. S
and T have the symbols t and c in common. a, e and
h are symbols present only in S while i, r, k and y
occur only in T . A transformation of sequence S to
sequence T will be the set of editing operations applied
to one of the sequences iteratively, which transform S
into T . There are many possibilities in which one can
transform S into T . One can delete symbols that occur
only in S and insert symbols that occur only in T or
one can replace certain symbols in S with symbols in
T .

For two sequences S and T , the following edit
operations are considered on the alphabet A ∪ {−},
where − denotes a gap. For a, b ∈ A, the pair

• (a, a) denotes a match of symbols between S and
T at some position S(i) and T (j). A match can be
considered as a substitution of a symbol with itself.

• (a,−) denotes the deletion of a in S at some
position S(i)

• (−, b) denotes the insertion of b in S

• (a, b) denotes the replacement/substitution of a in
S with b at some position S(i) where a 6= b

For the above example sequences S and T , the following
sequence of edit operations can transform S into T :

(t,t)(-,r)(e,-)(a,i)(c,c)(h,k),(-,y). The edit distance
framework works by assigning a cost or weight for each
of the edit operations defined above. The advantage
of using edit distance is that it considers a trace in
totality thereby preserving the context and ordering.

More formally, the generic string edit distance
can be characterized by a triple < A,B, c >1 consisting
of finite alphabets A and B and the primitive cost
function c : E → <+ where E = Ed ∪ Ei ∪ Ed is the
set of primitive edit operations on the alphabets and
<+ is the set of nonnegative real numbers. Es = A×B
is the set of substitutions, Ed = A × {−} is the set of
deletions, and Ei = {−}×B is the set of insertions. The
distance between two strings Sm and Tn, Sm ∈ Am,
Tn ∈ Bn (m ≥ 1, n ≥ 1), can be defined as:
(3.1)

dc(Sm, Tn) = min





c(S(m), T (n)) + dc(Sm−1, Tn−1),
c(S(m),−) + dc(Sm−1, Tn),
c(−, T (n)) + dc(Sm, Tn−1)

When either m = 0 or n = 0, only insertion/deletion
operations are defined. We denote S0 = T 0 = −; Thus

dc(Sm,−) = c(S(m),−) + dc(Sm−1,−),m ≥ 1

dc(−, Tn) = c(−, T (n)) + dc(−, Tn−1), n ≥ 1
dc(−,−) = 0;

(3.2)

The Levenshtein distance is a specific case of the generic
edit distance. In the Levenshtein distance, a unit cost
model is used for the edit operations. In other words,
under Levenshtein distance, c(a, a) = 0, c(a,−) =
c(−, a) = 1, and c(a, b) = 1 for a 6= b. Consider two
strings S = abcac and T = acacad. The Levenshtein
distance between S and T is 3. The sequence of edit
operations transforming S to T can be visualized as an
alignment between S and T and is depicted in Figure 2.

S: a b c a c − −
T: a − c a c a d

Figure 2: Sequence of edit operations transforming S to
T depicted as an alignment

Levenshtein distance, though noteworthy for its simplic-
ity, does not fit in many application scenarios. Consider
our case of event log traces, and the following scenarios
in diagnosing a patient using a CardioVascular medical
system:

• For the event traces T1 = (SetPhysician,
SetPatientType, StartExamination,

1In most applications, A = B

AddExamination, StopExamination) and
T2 = (SetPatientType, SetPhysician,
SetOperatorName, StopExamination,
AddExamination), the Levenshtein distance
would be 5. Figure 3 depicts two transformations
with Levenshtein distance of 5. However it is
to be noted, from an application point of view,
the sequence of events in traces T1 and T2 can
be abstracted to Presetting and Examination
functionality. The Set commands belong to
Presetting while the rest to Examination.
Also (a) it really may not matter whether the
Physician is set first or the Patient (b) one
cannot Stop an examination that is not Started
and (c) all examination commands should be
enclosed between Start and Stop commands.

• Now, consider another trace T3 =
(MoveDetectorFrontal, AngulateBeamFrontal,
RotateBeamFrontal, SelectInjectorControl).
The Levenshtein distance between T1 and T3 is 5.
The Levenshtein distance between T2 and T3 is
also 5. Although T3 represents a characteristically
distinct functionality when compared to T1 and
T2, clustering based on the Levenshtein distance is
likely to put all the three traces in a single cluster.

In other words, Levenshtein distance does not consider
the functional validity of any edit operation. Also, two
sequences of lengths n1 and n2, irrespective of their
similarity, will always have a Levenshtein distance of at
least |n1 − n2|, where |n| denotes the absolute value of
n. It is quite natural that event log traces would be of
different length. The Levenshtein distance applied as
is, would give a non-zero distance for two traces that
are functionally similar. For example, consider the two
traces abacd and abacacacd. These two traces are
similar in that they would have been generated from
the same process model where there is a loop construct
over the activities ac. Ideally, one would like to put
these two traces in the same cluster. However, if we
apply Levenshtein metric, we get a distance of 4. One
should consider the manifestations of process model
constructs to alleviate such problems.

In order to avoid edit operations that do not make sense
in a certain context, the cost function, c, needs to be
more robust. Substitution of uncorrelated/constrasting
activities or insertion/deletion of activities not con-
firming to a context should be penalized heavily. On
the other hand, ‘like’ events should be allowed to be
replaced/inserted at a minimal cost. However, deriving
such costs is nontrivial unless provided by a domain
expert. In the next section, we propose an approach

S e t P h y s i c i a n S e t P a t i e n t T y p e S t a r t E x a m i n a t i o n A d d E x a m i n a t i o n S t o p E x a m i n a t i o n

S e t P a t i e n t T y p e S e t P h y s i c i a n S e t O p e r a t o r N a m e S t o p E x a m i n a t i o n A d d E x a m i n a t i o n

a .

S e t P h y s i c i a n S e t P a t i e n t T y p e S t a r t E x a m i n a t i o n A d d E x a m i n a t i o n S t o p E x a m i n a t i o n

S e t P a t i e n t T y p e S e t P h y s i c i a n S e t O p e r a t o r N a m e S t o p E x a m i n a t i o n A d d E x a m i n a t i o n

b .

Figure 3: Different transformations with a Levenshtein distance of 5

to automatically derive the edit operation costs from
event log traces and show that the derived costs have
statistical as well as semantic significance.

4 Deriving Substitution and Indel Costs

Distance and similarity measures are interchangeable in
the sense that a small distance means high similarity,
and vice versa. For two sequences Sm and Tn (m ≥
1, n ≥ 1), the edit distance (3.1) defined in Section 3.4
can be transformed to a similarity function defined as
in (4.3).
(4.3)

Sim(Sm, Tn) = max





s(S(m), T (n)) + Sim(Sm−1, Tn−1),
i(S(m),−) + Sim(Sm−1, Tn),
i(−, T (n)) + Sim(Sm, Tn−1)

s : (A × B) → < defines the substitution scores.
s(S(m), T (n)) defines the score for substituting S(m)
with T (n). i defines the indel (insertion/deletion)
scores. i(S(m),−) defines the score for deleting
S(m) while i(−, T (n)) defines the score for inserting
T (n). On similar lines of (4.3), one can transform
(3.2) for the base condition when either m = 0 or n = 0.

In this section, we derive the scores for substitu-
tion and insertion/deletion of symbols for similarity
rather than the costs for distance. Before we discuss
the algorithm, let us first lay down the characteristics
that a substitution and indel scoring matrix should
hold:

1. substitution of uncorrelated activities should be
discouraged

2. substitution of contrasting activities should be pe-
nalized

3. insertion of activities out of context should be
discouraged

4. substitution of correlated/similar activities should
be encouraged in proportion to the degree of simi-
larity

The basic idea of substitution matrix derivation is to
compare the actual observed frequency of a pair of
activities sharing a particular context to their expected
frequency of co-occurrence if they occur independently.

We use the set of 3-grams in the event log as a notion
of context. In other words, we need to estimate:

1. the probability of observing an activity in the set
of all contexts

2. the probability of observing a pair of activities that
can occur within the same context

4.1 Substitution Scores Algorithm 1 presented
in this section generates the substitution scores. It
is to be noted that this algorithm tries to maximize
the score of two sequences based on the similarity. In
other words, it derives scores for substitution such that
sequences that are similar attains a high score and
sequences that are not similar gets a low score. The
edit-distance on the other hand assigns a low value for
similar sequences. We will later define a transformation
between the similarity score and the distance value.

Let us discuss the fundamental steps of the algorithm
(steps 2 to 5) with an example. Consider the event
log, L = { aabcdbbcda, dabcdabcbb, bbbcdbbbccaa,
aaadabbccc, aaacdcdcbedbccbadbdebdc} over the
alphabet A = {a, b, c, d, e}. The set of all 3-grams
over L is G3 = {aaa, aab, abb, aac, aad, abc, bad,
bbb, bbc, bcd, bed, caa, cba, cbb, cda, cdb, dab, dbb,
dbc, dbd, ebd,. . . }. The corresponding frequencies
of the 3-grams is represented by the vector F3 =
[2, 1, 1, 1, 1, 3, 1, 2, 4, 4, 1, 1, 1, 1, 2, 2, 3, 2, 1, 1, 1, . . .]. The
set of contexts of symbol a, Xa = {aa, ab, ac, ad,
bd, ca, db}. Similarly, the set of contexts for symbol
b, Xb = {ab, ac, bb, bc, ca, cb, db, dc, dd, ed}.
X(a,b) = {ab, ac, ca, db}. X(a,b) signifies the set of all
contexts common to a and b. To calculate the count of
co-occurrence combinations (step 5 of Algorithm 1), we
need to consider the frequency of 3-grams in the entire
event log. To calculate, Cdb(a, b), we need to consider
the 3-grams with db as the context for symbols a and
b. In other words, we need to consider the 3-grams dab
and dbb. Now, we have 3 occurrences of dab and 2
occurrences of dbb in the event log, L. Each occurrence
of the activity a can have a co-occurrence with each
occurrence of b in the context db as shown in Figure
4(a). The count of co-occurrence combinations for this
case is 6. Similarly, to calculate Cdb(a, a), we need to
consider the 3-gram dab. There are 3 occurrences of
dab in the event log. Each occurrence of the activity

Command 1 Command 2 Substitution Score
BLObjectShuttersStop StopStepImgFwd -25
BLWedge2RotateClockwise BLWedge2Reset 24
BLWedge2RotateClockwise BLCloseShutters -4
StartStepImgFwd StopStepImgFwd -30
AddAnnotation ShowFullScreen 19
CatheterEditBox SwitchToAnalysis 46

Table 1: Substitution scores for commands

Command 1 Command 2 Substitution Score
Repair(Simple)-start Repair(Complex)-start 5
Repair(Simple)-start Repair(Simple)-start 9
TestRepair-complete ArchiveRepair-complete -11
InformUser-complete ArchiveRepair-complete 0

Table 2: Substitution scores for a few activity pairs of the telephone repair process

a in the context db can co-occur with every other
occurrence of a other than itself as shown in Figure
4(b). Thus, the count of co-occurrence combinations
for this case is 3.

In other words, for the two symbols under consid-
eration in a given context, each occurrence of the
3-gram of one symbol in the given context can co-occur
with each occurrence of the 3-gram of the other symbol
in the same context. In general, if the estimation of co-
occurrence combinations is for ‘like’ symbols, then the
count of such combinations Cxy(a, a) =

(
n
2

)
= n(n−1)

2 ,
where n is the frequency of the 3-gram xay. The count
of co-occurrence combinations for ‘unlike’ symbols
Cxy(a, b) = ni.nj where ni and nj correspond to the
frequency of the 3-grams xay and xby respectively.

Proceeding further, one can estimate the count of
co-occurrence combinations of two symbols over all
contexts thereby completing step 6 of the algorithm.
Steps 7 and 8 of the algorithm normalize the counts
thus calculated for every pair of symbols. Step 9
calculates the probability of occurrence of every symbol
in the alphabet while Step 10 calculates the normalized
co-occurrence frequencies by chance (random). Step
11 computes the ratio of the actual frequency divided
by the chance frequency with which the pair occurs.
Such a ratio compares the probability of an event
occurring under two alternative hypotheses and is
called a likelihood or odds ratio. Scores that are the
logarithm of odds ratios are called log-odds score.
We have applied the algorithm over a large set of event
traces (of real systems) over varying alphabet sizes
and analyzed the resulting substitution matrices. In
all the cases the algorithm mentioned above yielded

d a b
d a b
d a b

d b b
d b b

(a)

d a b

d a b

d a b

(b)

C (a ,b) = 6
d b

C (a ,a) = 3
d b

Figure 4: Count of co-occurrence combinations

substitution scores having a high semantic significance.
We present one such study here where we have con-
sidered a set of 1372 event traces of a health care
system. The traces correspond to the commands of
clinical usage logged by the system. There were a total
of 213 commands in the event traces (alphabet size,
|A| = 213). Table 1 lists the substitution scores for a
few command pairs. It can be seen here that the two
wedge related commands BLWedge2RotateClockWise
and BLWedge2Reset assume a high score, signify-
ing their functional closeness. The command pair,
BLWedge2RotateClockWise and BLCloseShutters
belonging to two different components of the system
viz., Wedge and Shutters assumes a negative score.
It is also important to notice that the scores are
assigned relatively in proportion to their degree of
closeness. Consider the scores for the command pairs,
(BLWedge2RototeClockWise, BLCloseShutters) and
(BLObjectShuttersStop, StopStepImgFwd). The
former command pair is assigned a relatively higher
score than the latter. As is obvious from the names,
the former pair though belonging to different com-
ponents (Wedge and Shutters), still are used for the
same higher level functionality (viz., adjusting the
beam). However, the latter pair where one command
belongs to the shutter component and the other to an
image processing operation, being totally uncorrelated

Algorithm 1 Algorithm to derive substitution scores
1: Let A be the alphabet; x, y, a,b ∈ A
2: Let G3 denote the set of all 3-grams present in

the event log and let F3 denote their corresponding
frequencies.

3: Define Xa to be the set of all contexts of symbol a.
A context of a symbol a is the subsequence xy such
that xay ∈ G3

4: Define X(a,b) to be the set of contexts common to
symbols, a and b. i.e., X(a,b) = Xa ∩ Xb

5: Define Cxy(a, b) to be the count of co-occurrence
combinations (explained in the description) of sym-
bols, a and b in the given 3-gram context, xy ∈
X(a,b).

6: Define C(a, b) to be the count of co-occurrence
combinations of symbols a and b over all contexts
X(a,b)

C(a, b) =
∑

xy∈X(a,b)

Cxy(a, b)

7: Define NC to be the norm of the count of co-
occurrence combinations

NC =
∑

a,b∈A
C(a,b)

8: Define matrix M over A×A to be

M(a, b) = [C(a,b)/NC]

9: Define pa to be the probability of occurrence of
symbol a ∈ A

pa = M(a, a) +
∑

b 6=a

M(a, b);
∑

a∈A
pa = 1

10: Define matrix E to be the expected value of occur-
rence of pair of symbols

E(a, b) = [p2
a] if a = b

= [2papb] otherwise

11: Define the matrix of substitution scores S overA×A
to be the log-odds ratio

S(a, b) = log2

(M(a, b)
E(a, b)

)

assumes a high negative score. Another important
point to consider is the score for the command pair
(StartStepImgFwd, StopStepImgFwd). These two
commands signify contrasting operations viz., start and
stop of an activity. These two contrasting commands

are assigned a high negative score of −30 discouraging
their substitution. Remember that this is one of the
objectives that we started with.

As another example, let us consider the telephone
repair process depicted in ProM tutorial2. The repair
process starts by registering a telephone device sent
by a customer. After registration, the telephone is
sent to the Problem Detection department where it is
analyzed and its defect is categorized. There are 10
different categories of defects that the phones fixed by
this company can have. Once the problem is identified,
the telephone is sent to the Repair department and
a letter is sent to the customer to inform him/her
about the problem. The Repair department has two
teams. One of the teams can fix simple defects and
the other team can repair complex defects. However,
some of the defect categories can be repaired by both
teams. Once a repair employee finishes working on a
phone, this device is sent to the Quality Assurance
department. There it is analyzed by an employee to
check if the defect was indeed fixed or not. If the
defect is not repaired, the telephone is again sent to the
Repair department. If the telephone is indeed repaired,
the case is archived and the telephone is sent to the
customer. To save on throughput time, the company
only tries to fix a defect a limited number of times.
If the defect is not fixed, the case is archived anyway
and a brand new device is sent to the customer. In the
event log, there were a total of 12 activities for this
data set. Table 2 depicts the substitution scores for a
few activity pairs of this log. It is to be noted that a
high positive value is assigned for activities of similar
functionality. The value is also relative to the degree of
similarity. For example the score for the activity pair
(Repair(Simple)Start, Repair(Simple)Start) is rel-
atively higher than for the pair (Repair(Simple)Start,
Repair(Complex)Start). On the other hand, unre-
lated activities have a low/negative score.

One can consider not just 3-grams, but contexts
of larger length as well. The basic idea of substitution
matrix derivation still holds.

4.2 Indel Scores Event traces from a process model
can have different manifestations based on the use
case. The differences can be attributed to an execu-
tion of a different path or functionality or optional
activities within a functionality. As an example,

2ProM is an extensible framework that provides a comprehen-
sive set of tools/plugins for the discovery and analysis of process
models from event logs. See http://www.processmining.org for
more information and to download ProM and the dataset.

consider the sub-process ‘image processing’, in the
process model of medical image acquisition. A lot
of activities pertaining to image processing (such as
zooming, filtering, segmenting) would be provided
by the image processing component of the medical
system. Depending on the type of patient and the
diagnosis prescribed, a subset of these functionalities
would be triggered. When we analyze event traces
from the medical system, we see traces with variation
in the usage of the image processing component. The
invocation or non-invocation of certain activities can
be thought of as insertion or deletion of activities in
the traces. For example, consider the two traces T1 =
acbcabaa and T2 = acbcabdaa. The difference between
the two traces is that in the second trace, T2, there is
an invocation of activity d between b and a. One can
transform trace T1, to trace T2, by inserting d between
b and a. Alternatively, we can transform trace T2 to
T1 by deleting activity d. It is important to note that
insertions and deletions are complementary. Therefore,
we will consider only insertions henceforth.

Insertion of activities cannot take place at random. It
is natural to see insertion of activities pertaining to
a functionality between activities related to the same
or similar functionality than otherwise. Even within
a functionality the presence/absence of an activity
largely depends on its neighbors. For example, it
is highly unlikely to see a image processing activity
between activities pertaining to beam positioning.
Similarly, it is relatively highly likely to see an edge
detection activity between activities pertaining to
imageSegmentation than between those pertaining to
imageAnnotation. Therefore, one should have different
scores for insertion of activities based on the context.

We define two kinds of insertion operations: (i)
insertion of an activity to the right of an activity (ii)
insertion of an activity to the left of an activity. For
example, in abc, activity b can be considered as an
insertion to the right of activity a or to the left of
activity c. We now define an approach to determine
the scores of insertion. We define two sets of scores

a. insertionRightGivenLeft

b. insertionLeftGivenRight

insertionRightGivenLeft(a/b) signifies the insertion of
activity a to the right of activity b (or insertion of
activity a given that the left activity is b). Similarly
insertionLeftGivenRight(a/c) signifies the insertion of
activity a to the left of activity c (or given that the
right activity is c).

Algorithm 2 Algorithm to derive insertion scores
1: Let A be the alphabet; x, y, a, b ∈ A
2: Let G3 denote the set of all 3-grams present in

event log and let F3 denote their corresponding
frequencies.

3: Define Xa to be the set of all contexts of symbol a.
A context of a symbol a is the subsequence xy such
that xay ∈ G3

4: Let Cxy(a) be the count of occurrences of the 3-gram
xay ∈ G3

5: For each symbol a, x ∈ A, define

countRightGivenLeft(a/x) =
∑

y|xy∈Xa

Cxy(a)

6: Define

norm(a) =
∑

x∈A
countRightGivenLeft(a/x)

7: For all a ∈ A, let pa denote the probability of
occurrence of a.

8: Define

normCountRightGivenLeft(a/b) =
countRightGivenLeft(a/b)/norm(a)

9: The insertion scores are defined as the log-odds ratio

insRightGivenLeft(a/b) =

log2

(
normCountRightGivenLeft(a/b)

papb

)

Algorithm 2 generates the scores for the insertion
of activities to the right of a given activity i.e.,
insertionRightGivenLeft. The insertion scores for
insertionLeftGivenRight can be derived in a similar
fashion.

Table 3 lists a few insertion scores for the inser-
tion of command 2 to the right of command 1. It
is to be noted that related command pairs such as
(SetPatientWeight, SetPatientType), (SetContrast,
SetEdgeGain) assume a high positive score. The latter
pair belonging to image processing functionality. It is
important to closely look at the score for the command
pair (StartStepImgRev, StartStepImgFwd) assuming
a negative value. This signifies that it is discouraged
to start an ImageForward operation immediately after
starting an ImageReverse operation. The ImageReverse
operation should be stopped first. This is reflected
in the score for the command pair (StopStepImgRev,

StartStepImgFwd).

Command 1 Command 2 insRightGiven
LeftScore

SetPatientWeight SetPatientType 7
BLOpenShutters BLCloseShutters 3
StartStepRunFwd StopStepRunFwd 2
StartStepImgRev StartStepImgFwd -1
StopStepImgRev StartStepImgFwd 1
SetContrast SetEdgeGain 4

Table 3: insRightGivenLeft scores for commands

The algorithms defined above derives scores for
substitution/indel operations such that similar traces
have a high score. One can compute the similarity be-
tween traces using these scores and take the reciprocal
of that as a measure of distance. In other words for two
traces S and T , the generic edit distance, d, between
them can be defined as

d(S, T) =
|S|+ |T |

Sim(S, T)

where the numerator denotes the normalization factor.

5 Clustering event traces

We adopted the agglomerative clustering (or hierarchi-
cal clustering) technique with minimum variance crite-
ria [5] for our analysis. Agglomerative clustering works
by initially placing each data item (here, an event trace)
into a different cluster and iteratively combining clusters
that are closest until we obtain a single cluster. Differ-
ent criteria can be used in choosing the two clusters to
combine in an iteration. We use the minimum variance
criteria which tries to optimize the variance within a
cluster. A detailed description of this approach is be-
yond the scope of this paper and the interested reader
is referred to [3, 4].

5.1 Evaluating the significance of clusters: A
process mining perspective Statistical metrics such
as the average cluster density, silhouette width etc.,
have been proposed in the literature to evaluate the
goodness of the clusters. The underlying motive for
all these metrics is to prefer clusters that are compact.
Compact clusters have a lot of significance in pattern
classification where the objective is to enable the discov-
ery of decision boundaries. The objective for clustering
event logs is to ease the discovery of process models by
grouping together traces that conform to similar execu-
tion patterns/behavior. To evaluate the significance of
the clusters formed, one can compare the process models

that are discovered from the traces within each cluster.
In this paper, we propose two hypotheses to evaluate
the goodness of clusters from a process mining point of
view. Good clusters tend to cluster traces such that:

1. the process models mined show a high degree of
fitness

2. the process models mined are less complex

The rationale behind these evaluation criteria is that if
the clusters formed are meaningful (all traces belonging
to related cases are in the same cluster and traces that
are unrelated are not), then the process models result-
ing from the traces in each cluster should be less com-
plex (more comprehensible and less spaghetti like). Al-
gorithm 3 depicts the evaluation approach. Algorithm
3 is run over various clustering criteria/techniques and
choice of cluster size.

Algorithm 3 Evaluating the significance of clusters
Require: Given an event log L consisting of M traces,

and a clustering algorithm C
Ensure: Partition the M traces into N -clusters (for

some N ≥ 2) using C
1: Discover the process model Pi for each cluster, Ci,

1 ≤ i ≤ N
2: Evaluate the fitness of the process models Pi

3: Evaluate the complexity of the process models. The
number of control-flows, and/xor joins/splits and
the size of the model defined in terms of the nodes,
transitions and arcs signify the complexity of a
process model.

The following clustering techniques are studied:

• A1: Bag-of-activities approach, Euclidean distance,
agglomerative clustering

• A2: k-gram model, Euclidean distance, agglomera-
tive clustering

• A3: Levenshtein distance, agglomerative clustering

• A4: Generic edit distance; substitution/indel
scores as derived in Section 4, agglomerative clus-
tering

6 Experimental Results and Discussion

We evaluate the above techniques using the telephone
repair process event log (described in Section 4.1).
There were a total of 1104 process instances in this data
set. In addition to the whole data set, we have chosen
random subsets of this data set for analysis. Subsets of
40%, 50%, 60%, 70%, 80%, 90% of instances have been

Cluster No A1 A2 A3 A4
i ni fi ci si ni fi ci si ni fi ci si ni fi ci si

1 47 .84 13 9 57 1.0 0 0 43 .91 10 7 57 1.0 0 0
2 89 .84 10 8 120 .95 1 1 89 .84 10 8 34 1.0 0 0
3 240 .89 5 5 95 .86 12 9 74 .84 21 12 190 .91 12 9
4 31 .82 21 12 138 .89 12 8 127 .88 5 5 52 .91 8 7
5 39 .91 7 5 36 .95 1 1 113 1.0 0 0 113 1.0 0 0

Table 4: Fitness and complexity metrics of the process models from the four clustering techniques for a random
subset of 40% of the repair data set. The number of clusters is 5.

chosen randomly. For each such set of instances, we
have applied the above clustering techniques. We have
generated process models using the Alpha++ mining
algorithm [8] (available in the ProM framework) over
the traces in each cluster. The conformance checker
plugin in ProM is used to measure the fitness of the
process models thus generated. Further, we used the
Petri-Net Complexity Analysis plugin in ProM over
the process models. The complexity analysis plugin
generates metrics such as the number of control-flows,
and-joins, and-splits, xor-joins, xor-splits, arcs, places
and transitions in the process model. The larger
the value of these metrics, the more complex is the
model. The relationship between these metrics and
comprehensibility has been reported in [9] while their
relationship with defect/errors was reported in [10].

Table 4 depicts the fitness and complexity metrics
of the process models mined from the traces clustered
using the four techniques on 40% of the repair example
data set. The data set has been partitioned into five
clusters. In Table 4, ni signifies the number of instances
in cluster i while fi signifies the fitness of the process
model mined using the instances of cluster i. ci signifies
the number of control flows in the process model
mined from instances of cluster i while si signifies
the sum of and/xor joins/splits. It is interesting to
note that the generic edit distance based clustering
outperforms other techniques i.e., this technique is able
to cluster the traces more coherently. The coherency
is reflected in the fact that three process models with
a fitness of 1.0 can be generated using this technique.
Further, the comprehensibility of the process models
is significantly better since these models have less
control flows and and/xor join/splits. Clustering using
Euclidean distance on k-grams (k is chosen to be 3) has
the next best performance. This boosts the argument
that incorporating context improves the goodness of
clusters. Clustering using Euclidean distance on the
bag-of-activities has the worst performance amongst
the four while the Levenshtein distance based technique
performs on par with the bag-of-activities.

We define two metrics viz., average fitness - favg and
weighted average fitness - wfavg as follows (here, N is
the number of clusters):

favg =
1
N

N∑

i=1

fi wfavg =
N∑

i=1

(ni ∗ fi)/
N∑

i=1

ni

Weighted average fitness balances the fitness over
imbalanced clusters3. For example, consider the
scenario where 100 instances are partitioned into
four clusters with n1 = 5, n2 = 6, n3 = 9, n4 = 80
instances. Assume that the process models mined
from the first three clusters has a fitness value of
1.0 while the model from the fourth cluster has a
fitness value of 0.8. The average fitness value would
be (1.0 + 1.0 + 1.0 + 0.8)/4 = .95. However, the
distribution of instances is skewed in the clusters and
the average fitness value does not reflect the reality.
The weighted average fitness value for this partitioning
would be (5 ∗ 1.0+6 ∗ 1.0+9 ∗ 1.0+80 ∗ 0.8)/100 = .84,
a realistic summarization of the goodness of clusters.

Table 5 illustrates the minimum, maximum and
average fitness of the process models mined from the
traces clustered using the four techniques on different
subsets (varying between 40% and 100%) of the repair
example data set. Each subset has been partitioned
into five clusters. It is to be noted that the generic
edit distance based technique performs consistently
superior over the other techniques. The k-gram based
approach which incorporates certain context is second
best while the bag-of-activities based technique has the
least fitness.

Figure 5 depicts the average and weighted aver-
age fitness of the process models mined from the
traces clustered using the four techniques on different
subsets of the telephone repair process log. It is to be
noted that the generic edit distance based clustering

3The partitioning of instances is skewed in that the number of
instances in some clusters are much less compared to others

Data Set Size A1 A2 A3 A4
% min avg max min avg max min avg max min avg max
40 .82 .86 .91 .85 .93 1.0 .84 .89 1.0 .91 .96 1.0
50 .82 .88 .92 .88 .92 .95 .84 .89 .95 .91 .96 1.0
60 .80 .83 .89 .84 .93 .95 .80 .84 .95 .80 .93 1.0
70 .82 .87 .91 .86 .91 .95 .80 .88 .95 .89 .96 1.0
80 .80 .83 .86 .80 .90 .95 .80 .84 .95 .83 .95 1.0
90 .82 .88 .92 .85 .93 1.0 .82 .88 .95 .87 .93 1.0
100 .82 .87 .92 .86 .92 .95 .80 .88 .95 .89 .96 1.0

Table 5: The minimum, average and maximum fitness values of the process models from the four clustering
techniques for different subsets of the repair dataset. The number of clusters is 5.

yields better clusters over others techniques on both
the metrics. Figure 6 depicts the complexity viz.,
average control flow and the total number of and/xor
join/splits in the process models mined from the traces
clustered using the four techniques on different subsets
of the telephone repair process log. Again it can be
observed that the context aware clustering techniques
such as the generic edit distance and k-gram approach
tend to generate process models that are less complex
compared to the bag-of-activities approach.

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 40 50 60 70 80 90 100

% of Instances

A1
A2
A3
A4

(a) Average Fitness

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 40 50 60 70 80 90 100

% of Instances

A1
A2
A3
A4

(b) Weighted Average Fitness

Figure 5: Average and weighted average fitness of the
process models mined from the traces clustered using
the four techniques on different subsets of the telephone
repair process log

The results presented in this section are for the scenario
where the data set is partitioned into 5 clusters. We
have varied the number of clusters into which the data

 2

 4

 6

 8

 10

 12

 14

 16

 40 50 60 70 80 90 100

% of Instances

A1
A2
A3
A4

(a) Average number of control flows

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 40 50 60 70 80 90 100

% of Instances

A1
A2
A3
A4

(b) Total number of and/xor join/splits

Figure 6: Complexity of process models mined from the
traces clustered using the four techniques on different
subsets of the telephone repair process log

set is partitioned into and in all the cases a similar
result was obtained.
In this study, we have used the Alpha++ mining
algorithm to generate process models. However, other
mining algorithms that yield process models amenable
for analysis of the evaluation metrics defined in this
paper can be used. Similarly, one can use other
clustering techniques [4] instead of the agglomerative
hierarchical clustering.

6.1 Computational Complexity The vector space
approaches with Euclidean distance has a linear time
complexity with respect to the number of features. For
distance between two traces, this amounts to O(|A|)

and O(|A|k) respectively for the bag-of-activities and
k-gram approaches. Edit distance computation (both
Levenshtein and generic edit distance) between two
traces takes quadratic time.

7 Related Work

Data clustering is one of the most important fields of
data mining and a lot of techniques exist in the litera-
ture [3], [4], [5]. There is a growing interest in process
mining and many case studies have been performed to
show the applicability of process mining e.g., [11]. The
significance of trace clustering to process mining has
been discussed in [6], [12]. Greco et al. [6] used trace
clustering to partition the event log and this way dis-
covered more simple process models. They used the
vector space model over the activities and their transi-
tions to make clusters. Transitions can be considered as
a specific case of the k-gram model where the value of
k is 2. On similar lines, Song et al. [7] have proposed
the idea of clustering traces by considering a combina-
tion of different perspectives of the traces (such as ac-
tivities, transitions, data, performance etc) as the fea-
ture vector. For the activities and transition perspec-
tives, this approach can be thought of as a combination
of the bag-of-activities and the k-gram approach (with
k = 2). Though this combined approach might yield
better results than either of the approaches in isolation,
it still suffers from the pitfalls highlighted in Section
3. The generic edit distance based approach proposed
in this paper is shown to outperform the vector-space
model on these two perspectives. Further more, the
generic edit distance considers the entire trace in to-
tality thereby preserving the complete context of the
process instance. Distances on other perspectives (such
as data, performance etc) can be seamlessly combined
with the generic edit distance just like in [7]. This helps
in further boosting the results of process mining algo-
rithms by leveraging the superior performance of the
generic edit distance. A comprehensive list of metrics
that influence the comprehensibility of process models
was reported in [9].

8 Conclusions and Future Directions

In this paper, we have proposed a generic edit distance
based approach to trace clustering. In order to tackle
the sensitivity of the cost function (of edit operations)
in the generic edit distance framework, we proposed an
algorithm that automatically derives the cost of edit
operations. The costs derived using this approach are
shown to be effective. Further, we have proposed a
process mining perspective to evaluate the goodness of
clusters. It was shown that the proposed clustering ap-
proach outperforms contemporary approaches to trace

clustering in process mining. The Alpha++ mining al-
gorithm and conformance checker have been used to
evaluate the goodness of clusters. However, there is a
bias associated with a mining algorithm over the class
of process models that it can generate and thereby the
evaluation metrics. So far, little research has been done
in this area. As future work, we would like to investi-
gate the influence (bias) of a mining algorithm on the
evaluation criteria.
Acknowledgments The authors are grateful to Philips
Healthcare for funding the research in Process Mining.

References

[1] W.M.P. van der Aalst, A.J.M.M. Weijters, and L.
Maruster, Workflow Mining: Discovering Process Mod-
els from Event Logs, IEEE Trans. Knowl. Data Eng.,
16(9) (2004), pp. 1128-1142.

[2] E. S. Ristad and P. N. Yianilos, Learning String-Edit
Distance, IEEE Trans. PAMI., 20-5 (1998), pp. 522-
532.

[3] A. K. Jain, M. N. Murty, and P. J. Flynn, Data
Clustering: A Review, ACM Computing Surveys, 31-3
(1999), pp. 264-323.

[4] A. K. Jain and R. C. Dubes, Algorithms for Clustering
Data, Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1988.

[5] J.H. Ward, Hierarchical Grouping to Optimize an Ob-
jective Function, J. Amer. Stat. Assoc., 58 (1963), pp.
236-244.

[6] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, Dis-
covering Expressive Process Models by Clustering Log
Traces, IEEE Trans. Knowl. Data Eng., (2006), pp.
1010-1027.

[7] M. Song, C.W. Gunther, and W.M.P. van der Aalst
Trace Clustering in Process Mining, BPM Workshops
(2008) (to appear)

[8] L. Wen, W.M.P. van der Aalst, J. Wang, and J.
Sun, Mining Process Models with Non-Free Choice
Constructs, Data Min. Knowl. Discov., 15-2 (2007),
pp. 145-180.

[9] J. Mendling, and M. Strembeck, Influence Factors of
Understanding Business Process Models, BIS (2008),
pp. 142-153.

[10] J. Mendling, G. Neumann, and W.M.P. van der Aalst,
Understanding the Occurrence of Errors in Process
Models Based on Metrics, OTM Conferences 1 (2007),
pp. 113-130.

[11] W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Wei-
jters, B.F. van Dongen, A.K. Alves de Medeiros, M.
Song, and H.M.W. Verbeek. Business Process Mining:
An Industrial Application, Info. Sys., 32-5: (2007), pp.
713-732.

[12] A.K. Alves de Medeiros, A. Guzzo, G. Greco, W.M.P.
van der Aalst, A.J.M.M. Weijters, B.F. van Dongen,
and D. Sacca, Process Mining Based on Clustering: A
Quest for Precision, BPM Workshops (2007), pp. 17-
29.

