
Augmenting a Workflow Management System with
Planning Facilities using Colored Petri Nets

R.S. Mans1,2, N.C. Russell1, W.M.P. van der Aalst1, A.J. Moleman2, P.J.M. Bakker2

1 Department of Information Systems, Eindhoven University of Technology, P.O. Box 513, NL-5600
MB, Eindhoven, The Netherlands. {r.s.mans,n.c.russell,w.m.p.v.d.aalst}@tue.nl

2 Academic Medical Center, University of Amsterdam, Department of Quality Assurance and
Process Innovation, Amsterdam, The Netherlands. {p.j.bakker,a.j.moleman}@amc.uva.nl

Abstract. Traditional workflow management systems distribute workitems to users
via a worklist and leave the actual timing of workitem execution to the individual
resource(s) performing the task. In work environments in which resources are scarce,
expensive and multiple resources are necessary to undertake the workitem, often an
appointment-based approach is utilized in order to maximize resource utilization. To
this end, we propose the extension of a workflow management system with planning and
monitoring facilities in order to guarantee effective resource utilization and minimize
dead-time for resources as a result of canceled appointments. This paper describes
the approach taken in which first a conceptual model for these extensions has been
developed which is based on Colored Petri Nets. Second, based on the conceptual model,
a prototype has been developed using YAWL and the collaborative software product
Microsoft Exchange Server 2007. The applicability of the approach for the development
of large scale systems will be demonstrated by elaborating on the conceptual model
and the experiences that have been gained. Finally, the operation of the system is
demonstrated in the context of a real-life healthcare scenario.

1 Introduction

Nowadays, hospitals are focusing on improving the quality of care and the service that is
delivered to a patient. Typically, when making appointments for a patient, patient preferences
are taken into account. Examples of this include considering whether appointments can all
be scheduled on one day, and querying the availability of the patient. Similarly, constraints
imposed by doctors, nurses, rooms, and medical equipment also need to be considered.

Usually, the scheduling of these appointments is done on a manual basis and does not take
into account which preceding tasks are necessary and whether they have been performed.
For example, in order to perform surgery it is important that the patient is first seen by an
anaesthetist in order to determine the anaesthetics that are needed. Moreover, prior to surgery
a last check is performed before proceeding with the final preparations for the operation. If
these tasks are not performed in time, this can lead to a delay in performing the operation.
Another example occurs where during a regular meeting to discuss the status of patients and
plan subsequent treatment, a doctor finds out that not all required information is available.
The above mentioned examples lead to the inefficient use of scarce, expensive resources, and
necessitate the rescheduling of appointments.

Workflow management systems support process execution by managing the flow of work
such that individual workitems are done at the right time by the proper person [1]. The
benefits being that processes can be executed faster, more efficiently, and their progress can
be monitored. Based on business process definitions, which define the ordering between the

tasks which need to be performed, so called workitems are distributed to resources (typically
people) for execution. A workitem is an indivisible task of work and corresponds to a task
which needs to be performed in the context of a given case. An example of a workitem is the
performance of a “CT-scan” for patient “Rose”. Typically, the user sees available workitems
via a so called worklist, which can be seen as a to-do list in which people can view the various
workitems that they need to perform. At an arbitrary point in time, a user can pick a workitem
and perform the task associated with it.

In healthcare the actual execution of a workitem is often linked to an appointment in
which several people can be involved. In other words, an appointment-based approach is of-
ten utilized for scheduling workitem execution due to the scarce and limited availability of
resources that are involved. However, this schedule-based way of working is not supported by
the worklist approach offered by current workflow management systems. Moreover, patient
preferences need to be taken into account when making these appointments. Consequently, we
need to extend workflow management systems with planning facilities. Furthermore, planned
appointments need to be monitored to ensure that preceding tasks, in the corresponding pro-
cess definition, are performed on time. If limited time is left to complete them, this needs
to be signalled. If they can not be performed on-time, the appointment and possibly subse-
quent appointments will need to be rescheduled, which is highly undesirable. So, in addition
to planning facilities there is the need to incorporate monitoring facilities as well. Note that
the focus is on how workflow management can be integrated with scheduling and monitor-
ing facilities instead of extending the functionalities of a workflow management system or a
planning system.

In this paper, we present the approach taken to design and implement a workflow system
offering (re)scheduling and monitoring facilities. Moreover, the appointments made can also
be shown to the people involved. Figure 1 sketches the approach that has been used.

First of all, we started by augmenting a workflow language with planning functionality.
Then, we created a conceptual model of a workflow management system augmented with plan-
ning and monitoring facilities. The conceptual model is based on Colored Petri Nets (CPNs)
[9] thus providing a complete and formal specification of the system to be implemented. The
complete specification of the system in CPNs consists of 27 pages, 377 transitions, 169 places,
and over 1000 lines of ML code. The construction of the whole model was undertaken by one
person, with advanced knowledge about CPNs and CPN Tools, in about 3 months. This, to-
gether with the size of the model, illustrates the overall complexity of the system. Finally, we
build a prototype of the system. For this prototype we used the open-source, service-oriented
architecture of YAWL [2] and the Microsoft Exchange Server 2007 together with several Out-
look 2003 clients. The implementation of the system was done by one person, having already
built several software tools, in around three months.

The paper proceeds as follows: Section 2 introduces the research approach that was fol-
lowed. Section 3 describes how a workflow language can be augmented with planning func-
tionality, followed by a description of the conceptual model, constructed in CPNs, in Section

Conceptual model

(CPN)

Implementation
(YAWL + Exchange Server 2007

+ Outlook 2003)

Workflow language

(planning WF-net)

input
(manual)

translation

Fig. 1. Overall approach. The workflow language serves as input for the conceptual model. The
conceptual model is used as design model for the implementation of the system.

2

4. Section 5 elaborates on the implementation of the system and outlines a concrete applica-
tion of the realized system. Section 6 presents related work. Finally, Section 7 discusses the
experiences of following the aforementioned approach and concludes the paper.

2 Approach

In this section, we elaborate on the approach that has been followed, as shown in Figure
1, to provide a concrete implementation of a workflow management system augmented with
planning and monitoring facilities. As can be seen in the figure, a model-based approach has
been used, in which intermediate models are used in order to obtain the final implementation.

The first step was to get insight into how a workflow language could be augmented with
planning functionality. As Petri nets are extensively used in Workflow (WF) modeling, pri-
marily because of their mathematical definition and graphical representation, WF-nets were
chosen as the basis for these extensions. The main advantage of this choice was that it as-
sisted in the formalization of the augmented workflow language. Note that in principle these
extensions can be applied to any workflow language.

Next, we constructed the conceptual model of the system to be realized. A conceptual
model serves in understanding a problem domain and identifying how functionality can be
added which should collaborate with already existing functionality. The conceptual model
that has been constructed is based on CPNs [9]. CPNs provide a well-established and well-
proven language suitable for describing the behavior of systems involving characteristics such
as concurrency, resource sharing, and synchronization. In this way, they are an excellent
candidate for the formalization of such a system.

The CPN language is supported by the CPN Tools offering [9] which we used for creating,
simulating and analyzing the model being constructed. This setting allows for experimentation,
during which deep insights and a good understanding of the design and behavior of the system
can be gained. Additionally, it allows for rapid prototyping. A complete model of the system can
be executed, simulated and analyzed. Flaws in the design can be detected and fixed, leading
to a more complete specification. Finally, the system has been implemented using YAWL,
Microsoft Exchange Server 2007 and several Outlook 2003 clients by (manually) translating
the conceptual model into a working system.

It is important to note that the workflow language is at a different level of abstraction to
the conceptual model and the implementation. The workflow language is used as input for
the conceptual model. However, the conceptual model and the implementation operate at a
similar level. The conceptual model is in such a level of detail that it completely specifies
the behavior of the system to be implemented. So, on the basis of the conceptual model, we
immediately implement the desired functionality and no other graphical models have been
used other than the conceptual model and the implementation. The difference between them
is that the conceptual model abstracts from implementation details and language specific
issues. The advantage of this is that for the conceptual model we only need to consider the
functionality that will be provided by the system and that for the implementation we only
need to focus on realizing a working system.

3 Workflow Language

In order to extend workflow systems with planning functionality some new terminology and
concepts need to be introduced. We will use a running example for this purpose. It is assumed

3

that the reader is familiar with basic workflow management concepts, like “case”, “role”, and
so on [1].

3.1 Flow and Schedule tasks

Figure 2 outlines a hospital process in which a patient suspected to be suffering from a lung
disease is diagnosed.

endstart

admission
register
patient

make documents
and patient card give information

and brochures

assistant doctor nurse

Jane Marc

Nick

Sue

Rose

d:15
r:nurse

d:15
r:nurse

d:30
r:nurse

diagnosis

d:30
r:nurse

d:30
r:doctor

radiologist

Anne
Arthur

p1

p4

p5

p7

p6

p2

p3

p8

p10

p11

p9

CT-scan

lung function test

bronchoscopy
first consult

d:60
r:doctor

d:30
r:radiologist

d:45
r:assistant,nurse

d:60
r:assistant,nurse

Fig. 2. WF-net for the running example showing schedule (S) and flow (F) tasks. The prefix “d:”
indicates the average time needed for performing the task and prefix “r:” indicates which roles are
necessary to perform the task. From each associated role, exactly one person needs to be assigned
to the task. Note that the “register patient” and “give information and brochures” tasks have XOR
split and join semantics associated with them. Moreover, the “give information and brochures” and
“diagnosis” tasks have OR split and join semantics. Furthermore, for all of the schedule tasks, the
patient is required to be present.

As can be seen in the figure, first the admission is done by a nurse, i.e., some patient
related data is recorded and an appointment is made for the first visit of the patient (task
“admission”). The next step is that the patient arrives at the outpatient clinic for the first
appointment with the doctor (task “register patient”), followed by the first appointment
with the doctor (task “first consult”). In this step, a decision is made about the tests to be
performed before the second visit of the patient. In parallel, a nurse prepares the documents
and the patient card (task “make documents and patient card”). Afterwards, a nurse provides
information and brochures to the patient (task “give information and brochures”). Next, the
diagnostic tests are performed which are needed for the diagnosis of the patient which is
performed by a doctor (task “diagnosis”). For these diagnostic tests a choice can be made
from the following tests: CT-scan (task “CT-scan”), lung function test (task “lung function
test”), or bronchoscopy (task “bronchoscopy”).

From this example, it can be seen that two kinds of tasks can be distinguished: flow tasks
and schedule tasks. In the figure, a flow task is labeled by an “F” and a schedule task is
labeled by an “S”.

4

Tasks with an “F” annotation should be performed as soon as a resource is able to under-
take them. For example, task “make documents and patient card” can be performed by any
nurse when task “register patient” is finished. Basically, a flow task can be performed at an
arbitrary point in time when a resource becomes available and there is no reason to postpone it
to a specific point in time. These tasks can be presented in an ordinary worklist where a given
resource can start working on the task when it becomes available. Therefore, as only a single
resource is needed to perform the task, it is sufficient to define only one role for them. For
example, for the flow task “make documents and patient card” only a single nurse is needed
which explains why the “nurse” role has been defined.

The tasks annotated by an “S” in the figure correspond to schedule tasks. For these tasks
typically multiple resources are required, with different capabilities. A schedule task needs
to be performed by one or more resources at a specified time. As multiple resources can be
involved in the actual performance of a schedule task, at least one role needs to be defined
for each of them. For each role specified, only one resource may be involved in the actual
performance of the task. For example, for task “lung function test” an appointment is needed
in which one assistant and one nurse are involved which explains why the “assistant” and
“nurse” roles are defined. Note that for the schedule tasks the patient may also be involved
which means that the patient is also a required resource for these tasks. The patient is not
involved in the actual execution of a task but is only a passive resource who needs to be
present. For that reason, the patient is not added to any of the roles for the task, nor are they
defined in terms of a separate role. Instead, it is necessary to identify which schedule tasks
the patient needs to be present for.

Flow tasks are presented in an ordinary worklist. However, schedule tasks are presented
in a calendar as for each of them specific appointments need to be made involving multiple
resources. Each resource has its own specific calendar in which the appointments made for
schedule tasks can be seen. In this way, a single appointment made for a schedule task can
appear in multiple calendars but only in the calendars of the resources which are involved
in the actual performance of the task even though a workitem does not yet exist. When the
workitem becomes available, the schedule task can be performed. Note that an appointment
in a calendar may also refer to an activity which is not workflow related.

For the booking of appointments in a calendar, it is important to mention that a calendar
consists of blocks of equal length. So, all blocks represent the same timeperiod. So, a block may
either represent one hour but also one minute. Depending on the length of an appointment
and the timeperiod of a block, an appointment may occupy several blocks. For example, the
“first consult” task has a duration of 60 blocks if a block represents one minute.

To be more precise, for the correct scheduling of appointments for schedule tasks it must
be known at runtime what the estimated duration is of the appointment and what the earliest
time is that the appointment may be booked. Therefore, for every task in the process model
an average duration needs to be specified. As we use the notion of blocks in calendars, we
specify the duration of tasks in terms of blocks. In Figure 2 for each task this is indicated by
prefix “d:”. For example, one blocks takes 1 minute and task “make documents and patient
card” requires 30 blocks which means that the task takes 30 minutes on average to complete.

For reasons of simplicity we only include the average task duration for a task to complete.
Ideally, more information on the probability distribution could be used, e.g., the standard
deviation.

5

3.2 Formalization

In this section, a formalization of the augmented workflow language will be presented. A WF-
net is a Petri net with one initial and one final place such that every place or transition is on
a directed path from the initial to the final place [1]. The execution of a case is represented
as a firing sequence that starts in the initial marking, consisting of a single token in the
initial place. The token in the final place with no tokens left in the other places indicates
proper termination of case execution. A model is called sound if every reachable marking can
terminate properly.

WF-net extended with the schedule and flow tasks is called a planning WF-net (pWF-net).
A pWF -net is a tuple N = (P, Tf , Ts, F, CR, Res,Role,R, Rtf,Rts, D), where

– P is a non-empty finite set of places;
– Tf is a finite set of flow tasks;
– Ts is a finite set of schedule tasks;
– Tf ∪ Ts = T and Tf ∩ Ts = ∅ and Tf ∪ Ts 6= ∅, i.e., Ts and Tf partition T . So, a task

is either a flow task or a schedule task, but not both. Moreover, the set T may not be
empty;

– F ⊆ (P × T) ∪ (T × P) is a set of arcs (flow relation);
– CR ⊆ Ts is a set of schedule tasks for which the human resource for whom the case is

being performed is also required to be present. For our healthcare example this means the
schedule tasks for which the patient is required to be present during their execution.

– Res is a non-empty finite set of resources;
– Role is a non-empty finite set of roles;
– R: Res→ P(Role) is a function which maps resources onto sets of roles;
– Rtf : Tf 9 Role is a partial function which maps flow tasks onto roles;
– Rts: Ts → P(Role)\{∅} is a function which maps schedule tasks onto at least one role;
– D: T → N is a function which maps tasks onto a the number of blocks that are needed

for the execution of the task. This value indicates the average time it takes to execute the
task. One block corresponds to a specific actual duration, e.g. a block can be half an hour
or one minute3.

The running example in Figure 2 can be easily mapped onto this formalization. For ex-
ample, the “lung function test” task belongs to Ts, and where Rts(lung function test) =
{assistant, nurse} and D(lung function test) = 60.

4 Conceptual Model in Colored Petri Nets

The conceptual model which defines the precise behavior of a workflow management system
augmented with planning facilities is defined in terms of a CPN model. The complete CPN
model consists of a series of CPNs in which several layers can be distinguished. Figure 3 shows
the hierarchy of CPNs in the CPN model, together with the relationships between them. In
total, there are 27 distinct CPNs. An indication of the complexity of each net is expressed
by the p and t value included for each them, showing the number of places and transitions
they contain. It is not possible to discuss all the nets in details in this paper. Only the blocks
in Figure 3 which are colored grey will be discussed. However, this is sufficient to give an
overview of the operation of the model. At the end of the section, Section 4.4, we will focus
on the analysis of the conceptual model.
3 Currently, we only use the average value for (re)planning. However, in the future we plan to utilize

more information (variance etc).

6

 p:31 t:4

architecture

 p:16 t:18

planning service

 p:45 t:2

workflow client
application

 p:30 t:15

workflow engine

 p:7 t:5

book into calendar

 p:49 t:33

worklist
management

 p:4 t:2

connect / disconnect

 p:3 t:1

available processes

 p:2 t:1

data start case

 p:5 t:2

allocate workitem

 p:7 t:3

allocated workitems

 p:5 t:2

deallocate workitem

 p:6 t:1

beginning start
case

 p:2 t:1

response
schedule service

 p:15 t:7

user request
appointment

 p:9 t:2

regular check
schedule status

 p:5 t:1

available workitems

 p:24 t:5

graphical user
interface

 p:17 t:10

available processes

 p:7 t:6

log on and off

 p:9 t:6

available workitems

 p:31 t:20

calendar

 p:18 t:12

allocated workitems

 p:14 t:7

check in workitem

 p:9 t:6

data workitem

 p:5 t:2

cancel case

 p:4 t:1

update rush
status tasks

(see Figure 4)

(see Figure 6)

(see Figure 7)

Fig. 3. CPN hierarchy of the conceptual model: each square represents a (sub)net containing places
and transitions.

4.1 Overview

Figure 4 shows the topmost net in the CPN model and gives an idea of the main compo-
nents in the system and the interfaces between them. It can be seen in the figure that there
are three substitution transitions. They represent the major functional units in the system,
namely: workflow engine, workflow client application and planning service. Each place which
is connecting two components forms part of the interface between the two components, except
for the place “calendars users” which stores the calendars for each user. The components of
the system are set-up in a service-oriented way such that the workflow client application and
planning service can interchange data with the workflow engine on a loosely coupled basis.
In order to guarantee this, the interface, which defines how two components should interact,
should be as minimal as possible. However, this has the advantage that the components can
easily be coupled with any other workflow engine component.

The conceptual model consists of three main components.

– The workflow engine is the most important component of the workflow system as it
is the heart of the system. Based on the business process definition, the engine routes
cases through the organization and ensures that the tasks of which they are comprised
are carried out in the right order and by the right people. Next to this, the engine takes
care of offering workitems to users, once they become available for execution.

– The workflow client application communicates the distributed workitems to the users
so that they can select and perform them. In our case, workitems that correspond to flow
tasks are advertised via the worktray. The appointments that are created for schedule
tasks are advertised via a calendar. Once a workitem becomes available for such an ap-
pointment, the work can be performed. However, where appointments have been made,
users can express their dissatisfaction with the nominated scheduling by requesting: (1)
the rescheduling of the appointment, (2) the rescheduling of the appointment to a spec-
ified data and time, or (3) the reassignment of the appointment to another employee.

7

1`[{piID="1",ciID=0,
graph=(["A","E","F","B","C","D","p1","p2","p3","p4","p5","end"],
[("A","p1"),("A","p2"),("p1","B"),("p2","C"),("B","p3"),("C","p4"),
("p3","D"),("p4","D"),("D","p5"),("p5","E"),("p5","F"),("E","end"),("F","end")]),
netp=[("manipulateType","non_user")],
nodep=[("B",[("duration","7"),("splitType","XOR"),("joinType","XOR"),
("typeTask","schedule"),("roles","[assistant,nurse]")]),
("C",[("duration","2"),("splitType","XOR"),("joinType","XOR"),("typeTask","schedule"),
("roles","[assistant]")]),("D",[("duration","6"),("splitType","XOR"),("joinType","AND"),
("typeTask","schedule"),("roles","[doctor]")]),("A",[("duration","1"),("splitType","AND"),
("joinType","XOR"),("typeTask","flow")]),("E",[("duration","1"),("splitType","XOR"),
("joinType","XOR"),("typeTask","flow")]),("F",[("duration","1"),("splitType","XOR"),
("joinType","XOR"),("typeTask","flow")]),("p1",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p2",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p3",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p4",[("duration","0"),("splitType","XOR"),
("joinType","XOR"),("typeTask","dummy")]),("p5",[("duration","0"),("splitType","AND"),
("joinType","XOR"),("typeTask","dummy")]),("end",[("duration","0"),("splitType","XOR"),
("joinType","AND"),("typeTask","dummy")])],arcp=[(("A","p1"),[]),(("A","p2"),[]),(("p1","B"),[]),
(("p2","C"),[]),(("B","p3"),[]),(("C","p4"),[]),(("p3","D"),[]),(("p4","D"),[]),(("D","p5"),[]),
(("p5","E"),[]),(("p5","F"),[]),(("E","end"),[]),(("F","end"),[])]}]

workflow client
application

workflow client application

workflow
engine

workflow engine

planning service

planning service

response allocated
schedule tasks

ResWorkItemIdentifiers

request allocated
schedule tasks

Resource

notification
task

[]

ScheduleStatusTasks

disconnect

Resource

connect

Resource

response user
request

ResponseUser

planning
problem

[]

ListNodeArcGraphProps

continue
workitem

WorkItemIdUser

Time

0

smallint

available
cases

ProcessesUser

get available
cases

Resource

response

ResponseUser

allocated
workitems

WisUser

get allocated
workitems

WisTaskType

cancel
case

CaseID

allocate
workitem

WorkItemIdUser

get available
wi user

Resource

complete
data start

case
DataStartCase

data attr
start case

DataStartCase

start
case

StartCase

calendars users

[]

Calendars

user request:
move

appointment

UserReschedule

user request:
reject

appointment

UserRejectedAppointment

user request:
reschedule

appointment

UserRescheduleFromTo

check
in workitem

WorkitemUser

available
wi user

WisUser

deallocate
workitem

WorkItemIdUser

wi_data
user

WorkitemUser

workflow engine

workflow client application

planning service

Fig. 4. Overview of the conceptual model.

In addition, the workflow client also indicates whether limited time is left in which to
undertake workitems related to preceding tasks for an appointment.
The users who utilize the workflow system interact with it via the workflow client appli-
cation. All allowed user actions are modeled in subnets of the “graphical user interface”
net, which in its turn is a subnet of the “workflow client application” net (see Figure 3).

– The planning service component provides the planning capabilities needed by the sys-
tem. The planning service behaves in a passive way and its operation must be explicitly
triggered. Its operation is initiated by the engine which sends a planning problem for a
specific case. This planning problem is represented as a graph indicating the planning con-
straints which hold between the tasks in the corresponding process definition for the case,
e.g. the ordering between tasks. Based on this graph, the planning service is responsible
for determining whether appointments need to be (re)scheduled. Moreover, the planning
service identifies whether limited time is left for the completion of workitems for preceding
tasks of an appointment. For such workitems, a warning is forwarded to the users via the
workflow engine.

An example of a planning problem that is sent from the workflow engine to the planning
service can be found in Figure 5. As can be seen in the figure, the planning graph is formulated
as a graph having nodes and directed arcs between the nodes. Additionally, the graph, the
nodes and the arcs may have properties. These properties are represented as name-value
attributes. In this way, we can add additional constraints to the graph which are relevant for
the planning activity. For correct planning of a case, the ordering of tasks in a given process

8

(duration,30)
(roles,nurse)

(typeTask,flow)
(splitType,OR)
(joinType,AND)
(status,enabled)

p1
register
patient p3

p2

make documents
and patient

card

first
consult

p4

p5

give
information

and
brochures

p6 CT-scan

broncho
scopy

end

p8

p9

p11

diagnosis

start admission

p7 p10
lung function

test

Fig. 5. Planning graph for the running example in Figure 2. The “give information and brochures”
task is currently enabled.

definition is relevant. Therefore, for the corresponding process definition of a case, we map
all nodes and arcs of the process definition to the graph. If the human resource for which the
case is being performed is also required in order to perform some of the schedule tasks, then
the name of the calendar for this resource is included together with the names of the relevant
schedule tasks. If a workitem exists for a certain node, this is also included in the graph as only
this task or subsequent tasks need to be (re)scheduled. Additionally, the following information
for a task is included: split and join semantics, whether the node represents a schedule, flow,
or dummy (i.e. routing) task, and the roles which are involved in performing the task. So, in
Figure 5, we can see how the graph of Figure 2 is mapped to a planning graph. For the “give
information and brochures” task it is shown that the average duration is 30 minutes, only a
single nurse is needed to execute the task, it is a flow task exhibiting OR split and AND join
semantics, and a workitem exists which is in the enabled state. In order to simplify the graph,
the properties of the other nodes have not been shown.

4.2 Workflow Engine

Figure 3 shows that the workflow engine comprises of 15 distinct CPNs. In total, they consist
of 125 places and 54 transitions thus illustrating that the engine demonstrates fairly complex
behavior. The naming of the different subnets in the workflow engine CPN gives a good
overview of the functionality that is provided by the workflow engine as they all appear as
substitution transition on the workflow engine subpage. It is not possible to describe all aspects
of these subnets in detail. Hence, we focus on a specific subnet, the checking in of workitems
(substitution transition “check in workitem”), which will be discussed in detail.

Before discussing the operation of this subnet, it is important to mention that a workitem
passes through a series of states during execution. We make a distinction between the following
three states: enter, execution, and completion. A workitem is in the entered state when it may
be executed, but it is not yet been allocated to a resource. A workitem is the execution state,
when it has been allocated. A workitem is in the completed state, when it has been checked
back into the engine, indicating that its execution is completed.

The process associated with the checking in of a workitem is depicted in Figure 6. The
thick black lines in the figure shows the paths that can be followed when a request for checking
in a workitem arrives at the “check in workitem” place for a given case. Starting from this
place it is checked whether: (1) there is a corresponding workitem with the same id in the
executing state (place “state cases”), (2) the case is active (place “active cases”), and (3)

9

om

lnagp

lnagp

pd
lnagp2

ru

1`S(s2) ++
1`enWIs(eWIs3) ++
1`exWIs(execWIs3)++
1`resAllF(resAlloc5)

1`S(s3) ++
1`enWIs(eWIs4) ++
1`exWIs(execWIs4)++
1`resAllF(resAlloc6)

cids

cids2pcu

1`psS(s1) ++
1`psenWIs(eWIs2) ++
1`psexWIs(execWIs2)++
1`psresAllF(resAlloc2)

cids2

cids2

1`psS(s)++
1`psenWIs(eWIs2)++
1`psexWIs(execWIs2)++
1`psresAllF(resAlloc2)

pcu 1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psresAllF(resAlloc2)

ru

cids2

1`S(s3)
1`S(s2)

pcu

pd

cids

1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psfwi(fuwi)

1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psresAllF(resAlloc2)

pcu

pd

cids
1`psS(s)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs)++
1`psresAllF(resAlloc2)

cids

1`psS(s1)++
1`psenWIs(eWIs2)

pd

1`psS(s)++
1`psenWIs(eWIs)

ru

exWIs(execWIs)

widata

cids

cids ^^
[#ciID widata]

(#piID widata,
#ciID widata,#user widata)

1`S(s)++
1`enWIs(eWIs)++
1`exWIs(execWIs)++
1`resAllF(resAlloc)

1`psS(s1)++
1`psenWIs(eWIs)++
1`psexWIs(execWIs2)++
1`psresAllF(resAlloc3)

pd

widata

change state and
calculate

planninggraph

input (pcu,s1,s2,eWIs2,eWIs3,execWIs2,execWIs3,resAlloc2,resAlloc5,cids,pd,lnagp,om);
output (s3,eWIs4,execWIs4,resAlloc6,cids2,ru,lnagp2);
action
changeState_and_Calc_planningGraph (pcu,s1,s2,eWIs2,eWIs3,
execWIs2,execWIs3,resAlloc2,resAlloc5,cids,pd,lnagp,om)

executing state
for schedule

tasks

input (eWIs,execWIs,pcu);
output (eWIs2,execWIs2);
action
exec_schedule_tasks
(eWIs,execWIs,pcu)

case
completed

[check_case_completed(cids,s,pd,pcu)]

input (s,pcu,cids);
output (s3,cids2,ru);
action
completeCase(s,pcu,cids)

finish
creating

workitems

[no_workitems_case_not_finished(pd,s,cids,pcu)]

create
workitem

[workitems_creation(pd,s,cids)]

input (s,eWIs,pd,cids,vsmint);
output (s1,eWIs2);
action
createWorkItem(s,eWIs,pd,cids,vsmint)

workitem
can not be
checked in

[wi_not_exists(widata,execWIs,cids2)]

input (widata);
output (ru);
action
not_existing_wi(widata)

check in
workitem

[check_in_enabled(widata,lnagp,execWIs,cids,cids2)]
input (widata,pd,s,execWIs,resAlloc);
output (s1,execWIs2,resAlloc3);
action
checkInWorkItem(widata,pd,s,execWIs,resAlloc)

organizational
model

I/O
OrgModel

blocked
cases2

blocked cases

[]

CaseIDs

NodeArcs
Graph

I/O

ListNodeArcGraphProps

active
cases2

active cases

[]

CaseIDs

new state
schedule

StateProcPlan

finished creating
workitems StateProcPlan

active
cases

active cases

[]

CaseIDs

response
Out

ResponseUser

blocked
cases

blocked cases

[]

CaseIDs

pid cid
user

pid cid user piIDxCiIDxUser

state
cases

I/O

StateProcess

partial update
state case

updated state process StateProcPlan

Process
Repository

I/O

ProcessDeclarations

check in
workitem

In WorkitemUserIn

I/O

updated state process

I/O

pid cid user

blocked cases

Out

active cases

active cases

I/O

blocked cases

I/O

Fig. 6. Checking in of a workitem.

the case is not blocked (place “blocked cases”). If one of the first two prerequisites are not
fulfilled, the “workitem can not be checked in” transition will be fired which informs the
requester that checking the workitem into the engine was not successful (place “response”).
If the prerequisites are fulfilled, the “check in workitem” transition fires and the following
actions are taken:

10

1. the case is blocked (place “blocked cases”).
2. the new state of the case is calculated.
3. the resource allocation information for the workitem, being checked into the engine is

removed from the state information in the “state cases” place.
4. four tokens are produced in the “partial update state case” place containing the following

information: the state of the case, the workitems in entered or executing state, and the
resource allocations for the flow workitems in state executing.

5. a token is produced in the “pid cid user” case which contains the ProcessID, CaseID and
the user id of the requester.

Several things can happen now. The “create workitem” transition fires when a workitem can
be created for a case. When it fires, the following actions are taken:

1. a workitem is created for the task which will be in the entered state.
2. the state of the case, in the “state cases” place, will be updated.

If no workitems can be created for the case, the “finish creating workitems” transition will fire
which moves the token to place “finished creating workitems”. However, it could also happen
that no new workitems can be created because the case is complete. In that situation the
“case completed” transition fires and the following actions are taken:

1. all case related information is removed from the “state cases” place.
2. the case is deactivated by removing the case id from the “active cases” place.
3. the requester is informed about case completion by putting a token in the “response”

place.

After the “finish creating workitems” transition has fired, two steps remain. The first step
relates to the “executing state for schedule tasks” transition. This transition changes the
state of the schedule workitems, which just have been created, from entered into executing.
The resource allocation for them is done by the planning service.

The second step relates to the “change state and calculate planning graph” transition.
When fired, the following actions are taken:

1. a planning problem is formulated and sent to the planning service via place “NodeArcs-
Graph”.

2. the updated state of the case and the updated resource allocation for the flow workitems
is saved in place “state cases”.

3. the case is unblocked (“blocked cases2” place).
4. the requester is informed about the successful completion of the workitem by putting a

token in place “response”.

4.3 Planning Service

Figure 7 shows the uppermost model of the planning service. Looking back at Figure 3, we
can see that this model consists of 21 places and 13 transitions. However, modeling all the
required behavior necessitated writing hundreds of lines of ML code which indicates that this
component is fairly complex in its behavior.

Three different parts can be distinguished in the model shown in Figure 7. First, at the top,
there is the part which is responsible for receiving a planning problem, (re)scheduling tasks
if needed, and generating warnings that limited time is left for performing tasks preceding a
schedule task. Second, the “cancel case” substitution transition is responsible for removing all

11

ttbs2RD
ttbsRD

ssts

timeVal

lnagp

ssts2

margin2

lnagp2

lnagp

lpc
pc::lpc

lpclpc2

margin

margin

timeVal

ttbs2RD

nagp::lnagp

lnagp2

lnagp2

lnagp

ttbsRD

lnagp

ttbs2RD

lnagp

lnagp2 ^^
[nagp2]

get appointments
for resource

get appointments for resource

cancel
case

cancel case

finished2

input (pc,lnagp);
output (lnagp2);
action
finishPlanningImm(pc:PC,lnagp:ListNodeArcGraphProps)

finished

[finishedPlanning(piIDsmall,ciIDsmall,ttbsRD,lnagp)]

input (ttbsRD,lnagp,piIDsmall,ciIDsmall);
output (ttbs2RD,lnagp2);
action
finishPlanning(ttbsRD,lnagp,piIDsmall,ciIDsmall)

calculate next
schedule tasks

[check_continue_scheduling(piIDsmall,ciIDsmall,ttbsRD,lnagp)]

input (lnagp,ttbsRD,piIDsmall,ciIDsmall,calendars,margin,timeVal);
output (ttbs2RD,ttbs3RD);
action
continue_planning
(lnagp,ttbsRD,piIDsmall,ciIDsmall,calendars,margin,timeVal)

start
off

[checkFirstTasksToBeScheduled(piIDsmall,ciIDsmall,ttbsRD,lnagp,lpc)]

input (piIDsmall,ciIDsmall,ttbsRD,lnagp,
timeVal,margin,margin2,lpc,ssts,calendars);
output (ttbs2RD,lpc2,ssts2);
action
calcFirstTasks
(piIDsmall,ciIDsmall,ttbsRD,lnagp,timeVal,
margin,margin2,lpc,ssts,calendars)

book into
calendar

book into agenda

convert

[checkPlanningCaseBegin(nagp,lnagp)]

input (nagp);
output (nagp2);
action
convertGraph(nagp)

response allocated
schedule tasks

Out ResWorkItemIdentifiers

request allocated
schedule tasks

In Resource

warning
Margin

2

INT

notification
task

I/O ScheduleStatusTasks

nothing
to do

[]

lPC

response user
request

Out ResponseUser

margin

4

INT

Time
I/O

0

smallint

converted
graph

1`[]

ListNodeArcGraphProps

NodeArcs
Graph

I/O

ListNodeArcGraphProps

cancel
case

In CaseID

tasks to be
scheduled

1`[]

TasksToBeScheduledRD

Calendars users

I/O

Calendars

I/O

In

I/O

I/O Out

I/O

In

Out

book into agenda

cancel case
get appointments for resource

ttbsRD
calendars

calendars

Fig. 7. Top level model of the planning service.

appointments for a case. Third, the “get appointments for resource” substitution transition
is responsible for finding all appointments for a specific resource.

For the remaining part of this section we restrict our discussion to the process of receiving
a planning problem from the engine and the steps that are taken afterwards. The sequence of
these steps are indicated by a path of thick black lines starting from the “NodesArcGraph”
place. When a planning problem is sent to the planning service, the required data for the
planning problem is added to the “NodesArcGraph” place. The planning problem is repre-
sented by a graph containing the planning constraints which hold between the tasks in the
corresponding process definition for the case, e.g. the ordering between the tasks. Once this
has occurred, the “convert” transition can fire if the planning service is not busy handling
another planning problem for the same case. When it fires, nodes are removed from the graph,
which represent a task that has already been performed for the case. Also nodes are removed
which represent tasks which we are not sure they will ultimately be executed. So, no opti-
mistic planning takes place. The first nodes in the graph, which do not have an incoming arc,
represent tasks in the case for which a workitem exists. Note that our algorithm does not take
into account any constraints which may hold between tasks that already have been performed
and succeeding tasks, which justifies that the nodes for already performed tasks are removed
from the graph. However, for more advanced algorithms it might be the case that this removal
step is not allowed.

When the “convert” transition fires, a token containing the converted graph is put into
the “converted graph” place. Next, the “start off” transition can fire and the following actions
are taken:

12

1. determine whether the first schedule tasks in the graph, viewing it from the start, need to
be (re)scheduled or if a warning should be generated. For a user request, the task which is
selected for rescheduling is considered to be the first schedule task as only this task needs
to rescheduled and possibly subsequent schedule tasks.

2. for the schedule tasks which need to be (re)scheduled, the earliest time is calculated at
which they may be executed. This is dependent on any preceding tasks which need to be
completed.

3. other relevant information for scheduling the task is determined, such as the defined roles
and the duration of the task.

4. for every first schedule task, that is a schedule task in the graph for which no preceding
schedule task exists, which needs to be (re)scheduled a token containing the information
mentioned above is put in the “tasks to be scheduled” place. An example of such a first
schedule task is the “first consult” node in Figure 5.

5. for the first schedule tasks in the graph, that are the schedule tasks in the graph for which
no preceding schedule task exists, it is determined whether a warning needs to generated
because (too) little time is left for performing preceding tasks. If a warning is needed, a
notification is sent to the engine via the “notification task” place. The value for deciding
how early such a warning needs to be generated, is stored in the “warning margin” place.

6. for each task that needs to be rescheduled, a notification is sent to the engine via the
“notification task” place.

The first tasks which need to be (re)scheduled are added to the “tasks to be sched-
uled” place, and the substitution transition “book into calendar” is responsible for the actual
(re)scheduling. The (re)scheduling is done automatically, which means that there is no user
involvement. It should be noted that multiple roles can be specified for a schedule task and
that for each role specified only one resource may be involved in the actual performance of
the task. In the “book into calendar” substitution transition a search is started for the first
opportunity that for one resource for every required role an appointment can be booked for the
respective workitem. If found, an appointment is booked in the calendars of these resources.
If the patient for which the case is performed also needs to be present at the appointment,
then this is also taken into account.

However, it can also be that no tasks needs to be (re)scheduled at all. This is determined by
the “start off” transition which then puts a token into the “ nothing to do” place. Afterwards,
the “finished2” transition fires removing the planning problem from the “converted graph”
place, indicating that the planning problem has been dealt with.

If all schedule tasks for a case that are present in the “tasks to be scheduled” place are
(re)scheduled, then it is checked by the guard of the “calculate next schedule tasks” transition
whether succeeding schedule tasks in the planning problem graph need to be (re)scheduled.
If the transition fires, the following actions are taken:

1. it is determined which subsequent schedule tasks need to be (re)scheduled.
2. for the schedule tasks which need to be (re)scheduled, the earliest time is determined at

which they may be executed.
3. the same relevant information for scheduling the task is determined as when the “start

off” transition happens.

For each schedule task which needs to be (re)scheduled, a token containing the informa-
tion described above is put in the “tasks to be scheduled” place triggering another cycle of
(re)scheduling and checking. When no subsequent schedule tasks need to be (re)scheduled,

13

transition “finished” fires. If this transition fires, the planning problem present in the “con-
verted graph” place is removed, indicating that the planning problem has been dealt with.

4.4 Analysis

A serious drawback that we faced was that no meaningful verification of the CPN model was
possible due to its size and complexity. Even more, as an unlimited number of business process
models and users can be represented, state space analysis would be impossible. Therefore, we
have tested the model by manually simulating a well-chosen set of scenarios. Although this
approach revealed several errors, it does not guarantee that the final model is indeed error-
free. An example of such a test scenario is that a case is executed from begin to end during
which some appointments are rescheduled as consequence of a user action.

5 Implementation

In this section, we will elaborate on the development of a concrete implementation of a work-
flow management system augmented with planning facilities. First, we elaborate on the ar-
chitecture of the implemented system, followed by a discussion of its application to a realistic
healthcare scenario.

5.1 Architecture

Figure 8 shows the architecture of the system that has been realized. We can see the compo-
nents and services that are used, and the means by which they interact with each other. The
open-source workflow system YAWL has been chosen as the workflow engine [2]. For storing
the calendars of users, we selected Microsoft Exchange Server 2007 which offers several in-
terfaces for viewing and manipulating these calendars. Together with this system we could
easily use Microsoft Outlook 2003 clients for obtaining a view on an individual users calendar.
Moreover, these clients are configured in such a way that they can interact with the YAWL
system via an adaptor. By doing so, an Outlook client can act as a full workflow client ap-
plication. Finally, the planning service is implemented as a Java service which communicates
with both YAWL and the Microsoft Exchange Server 20074.

The dashed rectangles around the components in Figure 8 indicate how each substitution
transition in Figure 4 has been realized. For example, the “workflow engine” substitution
transition of Figure 4 has been realized using the YAWL workflow engine and an adaptor which
communicates with the workflow client application and the planning service. For implementing
the system, we clearly benefitted from the knowledge contained in the CPN model. As the
model is a complete specification of the system that needs to be implemented, while abstracting
from implementation details, we could immediately start coding from it. Particularly, given
the ML-code and the logic, e.g. ordering of transitions, in the CPN model, the code has directly
been written. However, if existing third party software could provide the desired functionality
of a (part of a) substitution transition, then of course this software is chosen. For example,
YAWL has been chosen as workflow engine as it provides the majority of the functionality that
4 Of course one could argue that for the implementation of the planning service the corresponding

part of the CPN model itself could be used. However, pursuing this approach introduces other
complex issues like opening and starting a CPN model without opening CPN Tools, communication
with external systems, and so on.

14

YAWL
planning
service

(Axis2 service)

Microsoft
Exchange

Server 2007

adaptor
(Axis2 service)

outlook
2003
client

outlook
2003
client

YAWL
Interface B

Workflow engine Planning service

workflow client application
Agendas users

SOAP
messages

SOAP
messages

MAPI

Fig. 8. Architecture of the implemented system. The dashed rectangles indicate how each substitution
transition of Figure 4 has been realized. For example, the workflow engine substitution transition has
been realized using the YAWL workflow engine together with custom written adaptor.

.

needs to be provided by the “workflow engine” substitution transition. On the other hand,
the “planning service” substitution transition has been implemented completely in Java code.

In total, it took around three months for a single person to implement the whole system
which involved both component selection and coding. As part of this effort, over 8000 lines of
code was written.

5.2 Application

In the remainder of this section, we demonstrate the operation of the system that we realized
in the context of a real-life healthcare scenario. As a candidate care process, we have taken
the diagnostic process of patients visiting the gynecological oncology outpatient clinic at the
AMC hospital, a large academic hospital in the Netherlands. The healthcare process under
consideration is a large process consisting of around 325 activities. This healthcare process
deals with the diagnostic process that is followed by a patient who is referred to the AMC
hospital for treatment, up to the point where the patient is diagnosed. For our scenario we
will only focus on the initial stages of the process shown in Figure 9.

At the beginning of the process, a doctor in a referring hospital calls a nurse or doctor at
the AMC hospital resulting in an appointment being made for the first visit of the patient.
Several administrative tasks need to be finished before the first visit of the patient (task
“first consultation doctor”). For example, the referring hospital needs to be asked to send
the radiology data to the AMC (task “call for radiology data”). When the patient visits the
outpatient clinic for the first time, the doctor decides whether an “MRI”, “CT” or “pre-
assessment” or a combination of these tasks is necessary. After performing these diagnostic
tests, the results will be discussed during the next visit of the patient (task “consultation
doctor”). Note that for the MRI, CT and pre-assessment tasks we do not show the preceding
tasks at the respective departments that need to performed in order to simplify the presented
model.

15

Fig. 9. Screenshot of the YAWL editor showing the initial stages of the gynaecological oncology
healthcare process. The flow tasks are indicated by a person icon and the schedule tasks are indicated
by a calendar icon. For all schedule tasks, the patient is required to be present.

.

In this scenario, we assume that the task “additional information and brochures” has been
performed in which a nurse provides the patient with information and brochures prior to the
execution of the diagnostic tests. Furthermore, it has also been confirmed that the doctor
requires an MRI and a pre-assessment for the patient. So, by looking at the process model it
becomes clear that the tasks “MRI”, “pre-assessment” and “consultation doctor” need to be
scheduled. The result of the scheduling performed by the system for these tasks is shown in
Figure 10. Note that our case has “Oncology” as a process identifier and has “126” as case
identifier. Moreover, for the “consultation doctor”, “pre assessment”, and “MRI” examination,
a doctor, an anaesthetist, and MRI machine are needed respectively. Consequently, these
tasks have role “doctor”, “anaesthetist”, and “MRI” respectively. Moreover, the patient is
also required to be present.

In Figure 10, going from left to right, we can see that the “MRI” has been scheduled for
8:00 till 8:45, the consultation with the doctor has been scheduled for 13:00 till 13:30 in the
calendar of doctor “Nick” and that the pre-assessment has been scheduled for 11:00 till 11:30
in the calendar of anaesthetist “Jules”. At the far right, we can see the agenda of patient
Fred who also needs to be present during these appointments. All the previously mentioned
appointments are also present in his agenda. Moreover, it is important that the “consultation
doctor” is scheduled after the “MRI” and “pre-assessment” task, which is also consistent with
the corresponding process definition, where the “consultation doctor” task also occurs after
them.

16

Fig. 10. Screenshot of the calendars for the MRI, consultation with doctor “Nick”, and the pre-
assessment done by anaesthetist “Jules”.

.

However, a problem is now identified: the patient now has been scheduled for an MRI in
which they have to lie in a tube. Unfortunately, the patient is suffering from claustrophobia
which means that the patient can only be scanned in an MRI having an open system design,
a so-called “open-MRI”. As the role “MRI” includes both the open and closed MRI, we need
to reschedule the patient to use the open-MRI by rejecting the current appointment for the
(closed) MRI. Rejecting the appointment means that the appointment must be rescheduled
and that the resource who rejected the appointment may not be involved anymore. The effect
of this specific rescheduling request can be seen in Figure 11.

In this figure, the messagebox indicates that the MRI has been successfully rescheduled.
Moreover, the calendar of the open MRI is now shown on the right hand side. It can be seen,
that an appointment for the open MRI has been made, taking place from 14:00 to 14:45.
However, as can be seen in the second column of the calendar, which shows the calendar of
doctor “Nick”, it was also necessary to reschedule the appointment with the doctor which
will now occur from 15:00 to 15:30. These changes are also reflected in the agenda of patient
“Fred”, which is shown in the third column. As can be seen in Figure 9, this rescheduling step
is necessary as the task “consultation doctor” occurs after the “MRI” task and the “register
patient” task falls in between these two tasks and takes 15 minutes. Moreover, in the left top
of the figure, we see the form that is generated automatically for performing the “MRI” task.

6 Related Work

A review of relevant literature shows that extensive research has been done into the problem
of appointment scheduling in healthcare, e.g. in areas such as appointment scheduling for out-
patient service services [6], operating room scheduling [5] and diagnostic resources. However,
these approaches tend to focus on specific facilities and not on the complete careflow process.
Another approach is described in [22] in which the online problem of scheduling multiple ap-
pointments on a single day is considered. In our approach, the whole careflow is taken into
account and appointments are scheduled when it is clear that they need to be executed.

Much effort has been put into experimenting and developing workflow management sys-
tems so that they can be applied in the healthcare domain [18, 14]. These efforts vary in the

17

Fig. 11. Result after rescheduling the “MRI” task.
.

sense that they support evidence-based medical procedures, therapies and hospital admin-
istrations [16, 15, 21, 4]. One of the most important challenges that needs to be addressed is
flexibility support [20]. Unfortunately, current workflow management systems are falling short
in providing flexibility [10, 11] which seriously hampers the application of workflow technology
in the healthcare domain. In addition to this, support is needed for the cross-departmental
nature of healthcare processes [12]. Currently, administrative workflows are typically limited
to single departments [19]. Successful implementation of workflow management exists but
widespread adoption and dissemination is the exception rather than the rule [14]. It is ex-
pected that the use of workflow technology by healthcare institutions will grow dramatically
in the future [14] and it is likely that it will become a core component in future healthcare
systems [7].

Despite all these efforts, no work has been performed on the combination of appointment
scheduling and workflow management systems, i.e., existing approaches are either focusing
on planning with little consideration for workflow aspects or are focusing on workflow while
ignoring that much work is done via appointments rather than worklists. We are not aware
of any research looking at the mixture of flow and schedule tasks.

For various systems, CPNs have been used to formalize and validate functional require-
ments. For example, the formalization of the design of the so-called worklet service, which
adds flexibility and exception handling capabilities to the YAWL workflow system [3], for-
malizing the implementation of a healthcare process in a workflow management system [13],
and presenting a model-based approach to requirements engineering for reactive systems, in
which CPNs are used for validating the functional requirements [8]. Related to this is [17],
in which CPNs are used for specifying the operational semantics of newYAWL, a business
process modeling language founded on the well-known workflow patterns5.

5 For more information about workflow patterns see http://www.workflowpatterns.com

18

7 Experiences and Conclusions

In this paper, we have discussed the design and implementation of a workflow management
system offering planning and monitoring facilities. As approach, we started with a workflow
language, followed by a conceptual model in CPNs and finally a concrete implementation of
the system. The conceptual model consists of 27 distinct nets, 377 transitions, 169 places and
over 1000 lines of ML code. The construction of the whole model took around three months
of work. These figures indicate that a workflow system augmented with planning facilities is
a fairly complex system and the task of developing it is far from trivial.

One of the main benefits of building the conceptual model in CPNs is that it can be
executed in the CPN Tools offering. In this way, it allows for experimentation during which
comprehensive insights can be obtained about the design and behavior of the system to be
realized which probably would not have been possible to obtain by pursuing other approaches
to designing the system. Parts of the system can be tested early in the development process,
thus enabling early detection of design errors. The costs of repairing these errors in this phase
of the development process is far less than would be the case in a later phase. For example,
when experimenting with the subnet of the planning service we identified errors with regard
to the correct planning of appointments.

Another advantage of modeling the conceptual model in CPNs is that it completely spec-
ifies the behavior of the system to be implemented while abstracting from implementation
details and language specific issues. So, for the conceptual model we only needed to worry
about the behavior of the system, while for the implementation we focused on the realization.
In this way, these kinds of issues are distinguished, allowing for a separation of concerns. The
importance of this distinction can probably best be illustrated by the fact that it took more
than 3 months to build the conceptual model, and just 3 months to implement the whole
system. For the implementation of the system it was necessary to produce over 8000 lines of
code by hand. Although the main functionality of the system was fully implemented during
the implementation phase, a significant amount of time still needs to be spent on component
selection, coding, and dealing with residual implementation issues.

The fact that we started completely from scratch ending up with a concrete implementation
of the system with the proposed functionality shows both the applicability and feasibility of
our approach. However, the developed system has only been tested in a limited set of scenarios.
As future work, we plan to systematically test parts of the system by “replacing” one or more
components in the conceptual model by a complete implementation for it, based on third party
software, allowing for the testing of thousands of scenarios. In this way by simply executing
the CPN model, we are able to identify errors in the components which probably would not
have been found with using a scenario based approach of testing. In addition to this, we
plan to use the conceptual model for evaluating alternative planning approaches using various
performance indicators.

References

1. W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods, and Systems.
MIT press, Cambridge, MA, 2002.

2. W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language.
Information Systems, 30(4):245–275, 2005.

3. M.J. Adams. Facilitating Dynamic Flexibility and Exception Handling for Workflows. PhD thesis,
Faculty of Information Technology, Queensland University of Technology, 2007.

19

4. L. Ardissono, A.D. Leva, G. Petrone, M. Segnan, and M. Sonnessa. Adaptive medical workflow
management for a context-dependent home healthcare assistance service. Electronic Notes in
Theoretical Computer Science, 146(1):59–68, 2006.

5. B. Cardoen, E. Demeulemeester, and J. Beliën. Operating room planning and scheduling: A
literature review. FEB Research Report KBI 0807, Katholieke Universiteit Leuven, Leuven,
2008.

6. T. Cayirli and E. Veral. Outpatient scheduling in health care: a review of literature. Product
Operations Management, 12(4):519–549, 2003.

7. A. Dwivedi, R. Bali, A. James, and R. Naguib. Workflow Management Systems: the Healthcare
Technology of the Future? In the 23rd Annual International Conference of the IEEE Engineering
in Medicine and Biology Society, volume 4, pages 3887–3890, 2001.

8. J.M. Fernandes, S. Tjell, and J.B. Jorgensen. Requirements Engineering for Reactive Systems
with Coloured Petri Nets: the Gas Pump Controller Example. In K. Jensen, editor, Proceedings
of the Eight Workshop and Tutorial on Practical Use of Coloured Petri Nets and the CPN Tools,
pages 207–222, 2007.

9. K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling
and Validation of Concurrent Systems. STTT, 9(3-4):213–254, 2007.

10. M. Klein, C. Dellarocas, and A. Bernstein, editors. Adaptive Workflow Systems, Special Issue of
Computer Supported Cooperative Work, 2000.

11. R. Lenz, T. Elstner, H. Siegele, and K. Kuhn. A Practical Approach to Process Support in Health
Information Systems. JAMIA, 9(6):571–585, December 2002.

12. R. Lenz and M. Reichert. IT Support for Healthcare Processes - Premises, Challenges, Perspec-
tives. Data and Knowledge Engineering, 61:49–58, 2007.

13. R.S. Mans, W.M.P. van der Aalst, P.J.M. Bakker, A.J. Moleman, K.B. Lassen, and J.B. Jor-
gensen. From Requirements via Colored Workflow Nets to an Implementation in Several Work-
flow Systems. In K. Jensen, editor, Proceedings of the Eight Workshop and Tutorial on Practical
Use of Coloured Petri Nets and the CPN Tools, pages 187–206, 2007.

14. M. Murray. Strategies for the Successful Implementation of Workflow Systems within Healthcare:
A Cross Case Comparison. In Proceedings of the 36th Annual Hawaii International Conference
on System Sciences, pages 166–175, 2003.

15. M. Poulymenopoulou and G. Vassilacopoulos. A Web-based Workflow System for Emergency
Healthcare. In Proceedings of the MIE 2002 conference, 2002.

16. S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso, and S. Panzarasa. Flexible Guideline-based
Patient Careflow Systems. Artificial Intelligence in Medicine, 22(1):65–80, 2001.

17. N.C. Russell, A.H.M. ter Hofstede, and W.M.P. van der Aalst. newYAWL: specifying a workflow
reference language using coloured petri nets. In K. Jensen, editor, Proceedings of the Eight
Workshop on the Practical Use of Coloured Petri Nets and CPN Tools (CPN 2006), volume 584
of DAIMI, pages 107–126, Aarhus, Denmark, October 2007. University of Aarhus.

18. G. Russello, C. Dong, and N. Dulay. Consent-Based Workflows for Healthcare Management. In
Proceedings of 2008 IEEE Workshop on Policies for Distributed Systems and Networks (Policy
08), pages 153–161, Palisades, NY, US, 2008.

19. X. Song, B. Hwong, G. Matos, and A. Rudorfer. Understanding and classifying requirements
for computer-aided healthcare workflows. In COMPSAC (1), pages 137–144. IEEE Computer
Society, 2007.

20. M. Stefanelli. Knowledge and Process Management in Health Care Organizations. Methods Inf
Med, 43:525–535, 2004.

21. S.W. Tu, M.A. Musen, R. Shankar, J. Campbell, K. Hrabak, J. McClay, S.M. Huff, R. McClure,
C. Parker, and R. Rocha. Modeling Guidelines for Integration into Clinical Workflow. Studies in
Health Technology and Informatics, 107:174–178, 2005.

22. I. Vermeulen, H. La Poutré, S.M. Bohte, S.G. Elkhuizen, and P.J. Bakker. Decentralized Online
Scheduling of Combination-Appointments in Hospitals. In Proceedings of ICAPS-2008, the In-
ternational Conference on Automated Planning and Scheduling, Sydney, Australia, 2008. AAAI
Press.

20

