
Mining Process Models with Prime Invisible
Tasks

Lijie Wen1,2, Jianmin Wang1,4,5, Wil M.P. van der Aalst3, Biqing Huang2, and
Jiaguang Sun1,4,5

1 School of Software, Tsinghua University, Beijing, China
wenlj00@mails.thu.edu.cn,{jimwang, hbq, sunjg}@tsinghua.edu.cn

2 Department of Automation, Tsinghua University, Beijing, China
3 Department of Mathematics & Computer Science, Eindhoven University of

Technology, Eindhoven, The Netherlands.
w.m.p.v.d.aalst@tue.nl

4 Key Laboratory for Information System Security, Ministry of Education
5 Tsinghua National Laboratory for Information Science and Technology (TNList)

Abstract. Process mining is helpful for deploying new business pro-
cesses as well as auditing, analyzing and improving the already enacted
ones. Most of the existing process mining algorithms have problems in
dealing with invisible tasks, i.e., such tasks that exist in a process model
but not in its event log. This is a problem since invisible tasks are mainly
used for routing purpose but must not be ignored. In this paper, a new
process mining algorithm named α# is proposed, which extends the min-
ing capacity of the classical α algorithm by supporting the detection of
prime invisible tasks from event logs. Prime invisible tasks are divided
into three types according to their structural features, i.e., SKIP, REDO
and SWITCH. After that, the new ordering relation for detecting men-
dacious dependencies between tasks that reflects prime invisible tasks
is introduced. A reduction rule for identifying redundant “mendacious”
dependencies is also considered. Then the construction algorithm to in-
sert prime invisible tasks of SKIP/REDO/SWITCH types is presented.
The proposed α# algorithm has been evaluated using both artificial and
real-life logs and the results are promising.

1 Introduction

Process mining aims at the automatic discovery of valuable information from an
event log. The first dedicated process mining algorithms were proposed in [10,
11]. The discovered information can be used to deploy new systems that support
the execution of business processes or as an analytical tool that helps in auditing,
analyzing and improving already enacted business processes. The main benefit
of process mining techniques is that information is objectively compiled. In other
words, process mining techniques are helpful because they gather information
about what is actually happening according to an event log of an organization,
and not what people think is happening in this organization.

The scenarios of applying process mining technology are illustrated in Fig-
ure 1. This figure shows that process mining can be used in two ways, i.e., before
and after an information system supporting business processes is deployed. In
the first scenario, the event logs are collected manually. Process mining can be
used to mine a process model (i.e., process visualization) from a given log and
compare the behaviors of the mined model with the given log (i.e., conformance
testing). In the second scenario, process mining can be used in a similar way
except that the event logs are recorded by information systems automatically.
Moreover, we can compare the mined process model with the predefined one to
find the discrepancies between them (i.e., delta analysis).

Predefined and Mined Process Models Event Logs4. Process Mining

Operational Processes

5.1 Conformance Testing

2. Config

5.2 Delta Analysis

Information Systems
Support/Control

a. Collect1. Model3. Record
Mined Process Models

b. Process Mining
c. Conformance Testing

Scenario 1Scenario 2

Fig. 1. The scenarios of applying process mining technology

Although quite a lot of work has been done on process mining, there are
still some challenging problems left [4–7, 20], i.e., short loops, duplicated tasks,
invisible tasks, non-free-choice constructs, time, noise, incompleteness, etc. The
issue of short loops is solved in [21]. For discussions about duplicated tasks,
readers are referred to [16, 17, 22]. [22, 27, 28] attempt to resolve most kinds of
non-free-choice constructs. Time aspects are partially considered in [2]. Noise
and incompleteness are discussed in [19]. In this paper, we will investigate how
to mine process models with prime invisible tasks from event logs.

1.1 Motivation

Invisible tasks are such tasks that exist in a process model but not in its event
log. They are difficult to mine because they do not appear in any event trace of
an event log. However, they are very common in real-life process models. The
following situations can lead to process models containing invisible tasks:

– There are tasks in process models that are used for routing purpose only. The
executions of such routing tasks are not recorded automatically or manually.

– There are real tasks that have been executed but they are systematically
lost in event traces (i.e., not recorded).

– The enactment services of processes allow skipping or redoing current task
and jumping to any previous task as a result of human interventions to
improve the flexibility of execution[8]. But such human interventions cannot
be expressed in the control flow of the process model in order to keep the
model as simple and clear as possible.

There are quite a number of real-life business processes containing invisi-
ble tasks. When deploying our Product Lifecycle Management system named
TiPLM6 for Shaoxing Electric Power Bureau7, Zhejiang Province, China, we
found that the deployed 43 process models corresponding to business processes
in this organization all contain many invisible tasks. TiPLM contains a busi-
ness process management subsystem named TiWorkflow and there are routing
tasks in process models whose executions are not recorded in event traces. Fig-
ure 2 shows one of these process models, which is modeled in the system specific
language of TiWorkflow.

For each process model in TiWorkflow similar to that shown in Figure 2, there
should be only one start node (the green circle) and only one end node (the red
round rectangle). The diamonds represent the task nodes and the other kinds of
nodes are routing nodes, i.e., AND-split, AND-join, XOR-split and XOR-join. It
is the change process of design drawings. There are totally three kinds of virtual
or real objects in this process, i.e., change request, change task and changed
drawings. The change request will pass through apply, audit tasks. If the result of
audit is negative, the process ends. Otherwise, the change task will pass through
dispatch, assign, modify and verify tasks. After that, the changed drawings will
pass through review, review technically and print and dispatch tasks. If one of
the results of the two review tasks is negative, the process will come back to the
assign task. When the process instances are executed, TiWorkflow engine only
records the executions of task nodes. The executions of routing nodes are totally
ignored. In the business environment before TiPLM was deployed, similar things
happened and the event traces were recorded manually on paper.

For the process model shown in Figure 2, it can be easily seen that the number
of routing nodes is about half of the number of all nodes, i.e., 12/27≈44.4%.
Table 1 shows the proportions for routing nodes out of all nodes in each of the
above-mentioned 43 process models taken from Shaoxing Electric Power Bureau.
The average proportion nearly approaches 40%. In other organizations (such as
Xiamen King Long United Automotive Industry Co. Ltd.8 and Hebei Zhongxing
Automobile Manufacture Co. Ltd.9, etc.) that have deployed TiPLM, similar
ratios are found. It shows that the need for mining process models with invisible
tasks from event logs is high, i.e., one cannot assume that the mined process
only contains visible tasks.
6 http://www.thit.com.cn/TiPLM/TiPLM.htm
7 http://www.sx.zpepc.com.cn
8 http://www.xmklm.com.cn/english/js6.jsp
9 http://www.zxauto.com

Fig. 2. The change process of design drawings defined in TiWorkflow

Table 1. The proportion for routing tasks out of all tasks in real-life process models:
NRT -the number of routing tasks, NAT -the number of all tasks

The name of each process model NRT NAT Proportion

Change process 7 40 17.5%

Technical change notification process 8 39 20.5%

Change process of design drawings 12 27 44.4%

Debug process of drawings in control center 21 40 52.5%

Debug process of drawings in circuitry work area 21 40 52.5%

Debug process of drawings in remedy work area 21 40 52.5%

Debug process of drawings in operation work area 21 40 52.5%

Process for checking completion on rebuilt engineering 62 136 45.6%

Process for checking completion on new engineering 64 139 46.0%

· · · · · · · · · · · ·
Summary 1317 3306 39.8%

1.2 Problems related to invisible tasks

The problems encountered when mining process models using the classical α
algorithm [7] from event logs generated by WF-nets (see [1]) containing invisible
tasks will be investigated in this subsection. For example, in Figure 3 and Figure
4, N1 to N6 are the original WF-nets and N ′

1 to N ′
6 are the corresponding mined

models derived from the complete event logs W1 to W6 respectively by using α
algorithm10. The black block transitions without labels represent invisible tasks.
All the original WF-nets are sound, but the mined models have various problems.

BC ED
BC ED

W1={BDE, DBE, BCE, CBE}N1 N1'=α(W1)

BA C
N2 W2={AC, ABC}

BA C
BA C

N3 W3={ABC, ABBC}
BA C

N2'=α(W2)
N3'=α(W3)

Fig. 3. Problems encountered when mining process models using α algorithm: case one

Tasks B and C as well as B and D are parallel in N1, while they are mutually
exclusive in N ′

1. Here N ′
1 is not a sound WF-net because a deadlock will always

10 A log is complete if it contains information about all causal dependencies [7]. This
notion will be explained later.

occur. Although N ′
2 is a sound WF-net, C cannot directly follow A and N ′

2

contains an implicit place. As a result, the behavior of N ′
2 is not equivalent with

that of N2 because it cannot produce the event trace AC. In N3, B behaves
like a length-one-loop task. However, C never directly follows A. There will not
a place connecting A and C in N ′

3, which should be the only place associated
with B. Here N ′

3 is not a WF-net at all. N ′
4, N ′

5 and N ′
6 are all WF-nets but not

sound. N4 is more general than N2 and N3 is a special case of N5. The invisible
task in N6 connects two separate execution branches.

BA C D BA C D
N4 W4={AD, ABCD} N4'=α(W4)

BA C D
N5 W5={ABCD, ABCBCD}

BA C D
N5'=α(W5)

A C
B D

A C
B D

N6 W6={AC, AD, BD} N6'=α(W6)

Fig. 4. Problems encountered when mining process models using α algorithm: case two

The steps for constructing the mined model in α algorithm result in the above
issues. Each mined process model has one of the following features.

1. It is a sound WF-net, but it cannot reproduce the given log, e.g., N ′
2.

2. It is a WF-net but not sound and cannot reproduce the given log, e.g., N ′
1,

N ′
4, N ′

5 and N ′
6.

3. It is not a WF-net at all. It cannot reproduce the given log and may even
generate lots of redundant event traces, e.g., N ′

3.

In this paper, a new mining algorithm will be proposed based on the α algo-
rithm, in which most invisible tasks can be derived correctly and efficiently. We
choose the α algorithm as a base for its theoretical foundation. Still the correct-
ness of detection method for invisible tasks will be proved and the classification
of invisible tasks will be provided.

The remainder of the paper is organized as follows. Section 2 introduces
related work on mining invisible tasks. Section 3 gives the classification of invisi-
ble tasks according to their structural features, i.e., typical patterns encountered
when dealing with invisible tasks. The detection methods of invisible tasks are
proposed in Section 4. The new mining algorithm α# is presented in Section 5.
Section 6 shows the evaluation results on the new algorithm using both artificial
and real-life event logs. Section 7 concludes the paper and gives future work.

2 Related work

Here only process mining algorithms based on Petri nets [12, 23] are considered.
For other process mining algorithms not based on Petri net, which do not need to
concern invisible tasks, their emphases are focused on the efficient identification
of relationships (i.e., AND-split, XOR-split, AND-join and XOR-join) between
each pair of input/output arcs of the same task [9–11, 14, 15, 26].

A Synchro-net based mining algorithm is proposed in [18]. The authors state
that short loops and invisible tasks can be handled with ease. However, neither
the original model nor the mined model contains any invisible task. In the mining
algorithm, no steps seem to handle invisible tasks.

[25] attempts to mine decisions from process logs, which emphasizes detect-
ing data dependencies that affect the routings of cases. When interpreting the
semantics of the control flows in the mined decisions, the authors propose a de-
scriptive method to identify decision branches starting from invisible tasks. This
method cannot handle all kinds of invisible tasks. Even when there are other
decision points with join nodes on one decision branch, the method fails.

The genetic mining algorithm (GA for short) is the only method that natively
supports the detection of invisible tasks [22]. It uses the basic idea of the genetic
algorithm and defines two genetic operators for process mining, i.e., crossover
and mutation. It aims at supporting all the common control flow constructs in
current business processes, especially duplicated tasks, invisible tasks, non-free-
choice constructs. The genetic mining algorithm can partially handle these three
constructs. However, this algorithm needs many user-defined parameters and it
cannot always guarantee to return the most appropriate results within limited
time. The number of invisible tasks in the mined model is often much greater
than that of the original model. As a result, the behavior of the mined model is
not equivalent with that of the original model or does not conform to the event
log. Furthermore, the biggest disadvantage of the genetic mining algorithm is its
huge time consumption. Even for a small event log generated by a simple process
model, the algorithm takes at least several minutes to mine an acceptable model.

In summary, there is still no efficient mining algorithm that can handle in-
visible tasks well. This paper will focus on mining process models from event
logs with invisible tasks based on the classical α algorithm proposed in [7]. It is
also an extension of the work done in [29] by extending the motivation, related
definitions and theorems and the experimental results.

3 Definitions and classification of invisible tasks

First some definitions about invisible tasks in a WF-net will be given (Subsec-
tion 3.1). After that, we will introduce the classification of invisible tasks in detail
(Subsection 3.2). Note that we assume the reader to be familiar with WF-nets
and soundness. WF-nets are a special class of Petri nets with a source place and
a sink place. A WF-net is sound if it is always possible to move a token from
the source place to the sink place, i.e., no deadlocks and livelocks. Moreover, all

parts of the WF-net are executable (i.e., there are no dead tasks) and the net is
safe (i.e., a place should never hold two or more tokens).

3.1 Definitions about invisible tasks

Before going into the details about invisible tasks, a function about all traces of
a WF-net should be introduced first.

Definition 1 (Trace function traces). Let N = (P, TV

⋃
TIV , F) be a sound

WF-net. traces(N) ⊆ T ∗V is the set of all firing sequences leading from the
marking with a token in the source place i to the marking with a token in
the sink place o by removing all tasks in TIV from each firing sequence, i.e.,
∀t ∈ TV ,∃σ ∈ traces(N) : t ∈ σ and ∀σ ∈ traces(N),∀t ∈ TIV : t 6∈ σ. Such a
WF-net N is call IWF-net, here we use a new notation N = (P, TV , TIV , F).

Based on an IWF-net and the trace function traces, the conceptual invisible
task can be defined as follows.

Definition 2 (Invisible task). Let N = (P, TV , TIV , F) be a sound IWF-net
and W ⊆ traces(N) be an event log of N . For any task t ∈ TIV , t is an invisible
task with respect to W .

Not all invisible tasks can be rediscovered from the corresponding event logs.
In fact, if an invisible task does not affect the behavior of a WF-net, it cannot
be detected by any mining algorithm. We will define so-called “prime invisible
task” formally in the following, which has effects on the behavior of a WF-net.
Before this, the following concept and two auxiliary notations are given.

Definition 3 (Invisible elementary path). Let N = (P, TV , TIV , F) be a
sound IWF-net. An elementary path is a sequence EP = (n0, n1, . . . , nk) where
∀0≤i<k : (ni, ni+1) ∈ F , n0, nk ∈ P and ∀0≤i,j≤k : (ni = nj) ⇒ (i = j). IEP is
invisible iff ∀0≤i≤k : (ni ∈ TV

⋃
TIV) ⇒ ni ∈ TIV . IEPi and IEPo denote the

start place and the end place of IEP respectively.

An elementary path in an IWF-net is a directed acyclic path, which starts
from a place and walks along the direction of the arc between each pair of
successive nodes and ends with another place. No two nodes on the path are the
same. An invisible elementary path contains only invisible tasks. This concept
will be used in the forthcoming notations. All invisible elementary paths of an
IWF-net N is denoted as IEPN .

Definition 4 (Input/output visible task set). Let N = (P, TV , TIV , F) be
a sound IWF-net. For any p ∈ P , we have:

– ◦p = {t ∈ TV |t ∈ •p ∨ ∃IEP ∈ IEPN : (t ∈ •IEPi ∧ p = IEPo)}, i.e., p’s
input visible task set.

– p◦ = {t ∈ TV |t ∈ p • ∨∃IEP ∈ IEPN : (t ∈ IEPo • ∧p = IEPi)}, i.e., p’s
output visible task set.

Definition 5 (Prime invisible task). Let N = (P, TV , TIV , F) be a sound
IWF-net and t ∈ TIV be an invisible task. t is prime if the following requirements
hold at the same time:

1. Surround. ∀p ∈ •t,∃t′ ∈ •p : t′ ∈ TV and ∀p ∈ t•,∃t′ ∈ p• : t′ ∈ TV , i.e.,
each invisible task should have at least one direct preceding visible task and
one direct successive visible task.

2. Succession. ∀t′ ∈ {◦p|p ∈ •t},∀t′′ ∈ {p ◦ |p ∈ t•} : (∃σ ∈ traces(N), 0 <
i < |σ| : t′ = σi ∧ t′′ = σi+1), i.e., if two visible tasks a and b are connected
via an invisible elementary path, b can directly follow a in some traces.

3. Necessity. ∃t′ ∈ {◦p|p ∈ t•},∃t′′ ∈ {p ◦ |p ∈ •t} : (∀σ ∈ traces(N), 0 < i <
|σ| : t′ = σi ⇒ t′′ 6= σi+1), i.e., the invisible task cannot be removed directly
by merging its input and output places without introducing additional causal
dependencies between visible tasks.

Figure 5 lists some WF-nets containing invisible tasks that are not prime
because these WF-nets can be further reduced by simply removing some invisible
tasks or being changed to other ones with equivalent behaviors.

a
t1

ba
(c)

(d) (e)
ba c
t1
t2

ba (a) a(b)
b

t3 t2
e

d
c

a b
(f)

Fig. 5. Some invisible tasks that are not prime

For the WF-net shown in Figure 5(a), the only invisible task violates Require-
ment 3 and it can be removed directly. The invisible task shown in Figure 5(b)
does not obey Requirement 2 and can be removed too. While for the WF-net
shown in Figure 5(c), t1 and t2 violate requirements 2 and 3 at the same time.
But t3 only violates Requirement 3. The invisible task shown in Figure 5(d)
also violates Requirement 3. In Figure 5(e), t1 and t2 have the same function
and both are prime. But none of them violates requirements 2 and 3. However,
one of them should be removed to avoid redundency. The reduction rule will be
illustrated in Section 4.2. All invisible tasks in Figure 5(f) are not prime because
they all violate Requirement 3.

The problem of mining prime invisible tasks can be formalized as follows.

Definition 6 (Mining problem). Let N = (P, TV , TIV , F) be a potential
sound IWF-net and W ⊆ traces(N) be an event log of N . The problem of mining
prime invisible tasks is to construct an IWF-net N ′ = (P ′, TV , T ′IV , F ′) from W
such that N ′ is behavior equivalent with N with respect to W and contains only
minimal prime invisible tasks.

To tell the truth, the original IWF-net N is not necessary to be present and
the log W is enough for a mining algorithm. We can compare the mined model
N ′ and W to determine whether the mining result is good enough.

3.2 Classification of prime invisible tasks

Before detecting prime invisible tasks from event logs, we will first classify prime
invisible tasks into several types by their structural features. All types (i.e., SKIP,
REDO and SWITCH) of prime invisible tasks were already shown in Figure 3
and Figure 4. The formal definitions are given one by one in the following.

Definition 7 (Invisible task of SKIP type). Let N = (P, TV , TIV , F) be an
IWF-net with the source place i and the sink place o. For any task t ∈ TIV , t
is an invisible task of SKIP type iff there is an elementary path (n0, n1, . . . , nk)
such that n0 6= i, nk 6= o, n0 ∈ •t, nk ∈ t• and ∀0≤i≤k : ni 6= t. If k = 2, t is of
SHORT-SKIP type. Otherwise (k > 2), t is of LONG-SKIP type.

The invisible task in N2 is of SHORT-SKIP type and the one in N4 is of
LONG-SKIP type. The union of these two subtypes is the SKIP type. Invisible
tasks of this type are used to skip the executions of one or more tasks.

Definition 8 (Invisible task of REDO type). Let N = (P, TV , TIV , F) be
an IWF-net. For any task t ∈ TIV , t is an invisible task of REDO type iff there
is an elementary path (n0, n1, . . . , nk) such that n0 ∈ t• and nk ∈ •t. If k = 2, t
is of SHORT-REDO type. Otherwise (k > 2), t is of LONG-REDO type.

The invisible task in N3 is of SHORT-REDO type and the one in N5 is
of LONG-REDO type. The union of these two subtypes is of the REDO type.
Invisible tasks of this type are used to repeat the executions of one or more tasks.
A WF-net only containing invisible tasks of SHORT-REDO type may generate
behaviors similar (but not the same) to another WF-net only containing length-
1-loops. So the new mining algorithm should have the ability to distinguish the
two totally different structures but with similar behaviors.

Definition 9 (Invisible task of SWITCH type). Let N = (P, TV , TIV , F)
be an IWF-net. For any task t ∈ TIV , t is an invisible task of SWITCH type iff
there are two elementary paths (n0, n1, . . . , nk) and (m0,m1, . . . , mj) such that
∀0<u<k,0<v<j : nu 6= mv, ∃0<x<k : nx ∈ •t, ∃0<y<j : my ∈ t• and there is no
elementary path from nx to my.

The invisible task in N6 is of SWITCH type and invisible tasks of this type
are used to switch the execution chances among multiple alternative branches.

Although the definitions of invisible tasks of SKIP, REDO and SWITCH
type are different, they have similar effects on the behaviors of WF-nets. We can
see this from the detection method illustrated in the next section.

In fact, there are still some invisible tasks that are not prime but can affect
the behavior of an IWF-net, e.g., the invisible task in N1 in Figure 3. Such an
invisible task takes either the source place i as its input or the sink place o as
its output but not both (i.e., invisible task of SIDE type). By manually adding
a begin event to the begin and an end event to the end of each event trace of a
given event log (i.e., pre-processing), such an invisible task can be transformed
to a prime one or just be replaced. In post-processing, the manually added tasks
can be just removed or reserved as an invisible task. For the added begin task,
if it has more than one output arcs or the only output place has more than one
input arc in the mined model, it must be reserved. For the added end task, the
similar post-processing happens.

4 Detection of prime invisible tasks

In this section, the detection methods for invisible tasks will be introduced.
Based on basic ordering relations between tasks, advanced ordering relations for
mendacious dependencies between tasks associated with invisible tasks are de-
rived (Subsection 4.1). The reduction rule for identifying redundant mendacious
dependencies is given in Subsection 4.2.

4.1 Ordering relations for mendacious dependencies

When there are invisible tasks in process models, the causal dependencies be-
tween tasks detected from event logs are not always correct any more. Such
dependencies are called mendacious dependencies. The most important step of
detecting invisible tasks from event logs is identifying all the mendacious de-
pendencies out of the causal dependencies. The basic ordering relations between
tasks derived from event logs are first listed below. For a more detailed expla-
nation about these basic ordering relations, readers are referred to [7, 21].

Definition 10 (Basic ordering relations). Let N = (P, TV , TIV , F) be a
potential sound IWF-net and W ⊆ traces(N) be an event log of N . Let a, b ∈ TV ,
then:

– a >W b iff ∃σ = t1t2t3 · · · tn ∈ W, i ∈ {1, . . . , n− 1} : ti = a ∧ ti+1 = b,
– a4W b iff ∃σ = t1t2t3 · · · tn ∈ W, i ∈ {1, . . . , n− 2} : ti = ti+2 = a∧ ti+1 = b,
– a ¦W b iff a4W b ∧ b4W a,
– a →W b iff a >W b ∧ (b ≯W a ∨ a ¦W b),
– a#W b iff a 6>W b ∧ b ≯W a, and
– a ‖W b iff a >W b ∧ b >W a ∧ a 6 ¦W b.

From Definition 10, it can be seen that >W and 4W are the most basic
ordering relations. All other four ordering relations are based on them. >W

reflects that two tasks can are executed successively and 4W will be used to
distinguish length-2-loop from parallel routing. To prove the correctness of the
detection method for invisible tasks, it should be assumed that any given event
log is complete. Otherwise the minimal ordering relations between tasks cannot
be identified successfully. The requirement for the completeness of an event log
is the same as the one proposed in [21] (i.e., loop-complete). The definition of
completeness is just based on >W and 4W .

Definition 11 (Complete event log). Let N = (P, TV , TIV , F) be a potential
sound IWF-net and W ⊆ traces(N) be an event log of N . W is complete iff:

1. ∀W ′ ⊆ traces(N) :>W ′⊆>W ,
2. ∀W ′ ⊆ traces(N) : 4W ′ ⊆ 4W , and
3. ∀t ∈ TV ,∃σ ∈ W : t ∈ σ.

Definition 11 shows that completeness does not require an event log to contain
all traces that could be generated by the corresponding process model. It only
demands that the event log contains all possible basic relations (i.e., >W and
4W) between any pair of tasks and each visible task should appear in some event
trace. This completeness notion has shown to be realistic in real-life applications.

Now an advanced ordering relation for mendacious dependencies can be de-
rived from the basic ordering relations. This ordering relation will serve as the
basis for detecting invisible tasks of SKIP, REDO, and SWITCH type.

Definition 12 (Advanced ordering relation). Let N = (P, TV , TIV , F) be a
potential sound IWF-net and W ⊆ traces(N) be an event log of N . For ∀a, b ∈
TV , a ÃW b iff a →W b ∧ ∃x, y ∈ TV : a →W x ∧ y →W b ∧ y ≯W x ∧ x ∦W

b ∧ a ∦W y.

ÃW reflects the mendacious dependencies associated with invisible tasks of
SKIP, REDO and SWITCH types and this kind of ordering relation can be
used to construct invisible tasks. Figure 6 illustrates the basic idea behind ÃW .
Because of the invisible task t, task a can be directly followed by task b in the
log. Hence, existing mining algorithms (such as the α algorithm) try to connect
a and b via a place. This leads to incorrect results as shown in figures 3 and 4.
Consider for example logs W2 to W6 shown in these two figures. For log W2, we
distinguish the mendacious dependency A ÃW C, i.e., A may be followed by C
but this cannot be modeled by inserting a place as done by the α algorithm.

xa y bt
Fig. 6. Illustration for the derivation of ÃW

In Figure 6, there is an invisible task t in the snippet of a WF-net and
assume that t can be detected from the corresponding log. The correctness of

the detection method corresponding to ÃW can be proved theoretically as will
be shown later. If y is equal to x, t is of SHORT-SKIP type. If y is reachable
from x, t is of LONG-SKIP type. If a is equal to b, t is of SHORT-REDO type.
If a is reachable from b, t is of LONG-REDO type. Otherwise, t is of SWITCH
type, i.e., a to x and y to b are two alternative paths.

To prove the correctness of the detection method for the relationship between
an invisible task and a mendacious dependency, we provide the related theorem
and derive the mining capacity of the detection method to be a subclass of
WF-net named DIWF-net.

Definition 13 (Direct WF-net with prime invisible tasks). Let N =
(P, TV , TIV , F) be an IWF-net with the source place i and the sink place o. N is
a direct WF-net with prime invisible tasks (DIWF-net for short) iff:

1. ∀a, b ∈ TV

⋃
TIV : a • ∩ • b 6= ∅ ⇒ ∃M ∈ [N, [i]〉 : (N, M)[a〉 ∧ (N, M −

•a ∩ a•)[b〉, i.e., if a and b are connected via a place, there should be firing
sequences such that a is directly followed by b.

2. There are no invisible tasks that are not prime and implicit places, i.e., it
should not be possible to remove tasks or places without changing the observ-
able behavior of the IWF-net.

Definition 13 limits the capacity of the above detection method to a reason-
able subclass of WF-net. The mendacious dependencies in non-DIWF-nets may
not be detected correctly. As a result, our algorithm may fail to find a sound
WF-net covering the given log or return a DIWF-net with equivalent behaviors
but different structures compared to the original WF-net. Figure 7 shows four
sound WF-nets that are not DIWF-nets.

a
b cd e a b

c d
(a) (b)

a b c
t1
t2

a b c
t1

t2
t3

(c) (d)
Fig. 7. Some non-DIWF-nets containing invisible tasks

The invisible task in Figure 7(a) cannot be detected correctly because of the
non-free-choice constructs involving it and e, which leads to that the invisible
task cannot follow a directly. The mendacious dependency a ÃW d in Figure 7(b)
cannot be detected because a is never directly followed by d. There are DIWF-
nets containing a length-1-loop about b, which have equivalent behaviors with

those of the WF-net in Figure 7(c). The essential reason is that the two invisible
tasks t1 and t2 are not prime. A similar observation holds for the WF-net in
Figure 7(d). There are DIWF-nets having more invisible tasks than this WF-net
but with equivalent behaviors.

The goal of ÃW is to detect the presence of prime invisible tasks. The next
theorem shows that this is indeed the case for DIWF-nets. It is assumed that
the invisible tasks of SIDE type have been detected and constructed successfully
by now using the method illustrated at the end of Section 3.2.

Theorem 1. Let N = (P, TV , TIV , F) be a sound DIWF-net, W be a complete
event log of N and a, b ∈ TV be two visible tasks. There is a prime invisible task
t ∈ TIV such that a • ∩ • t 6= ∅ and t • ∩ • b 6= ∅ iff a ÃW b.

Proof. The theorem is proven to be correct in both directions.

1. Assume that there exists a prime invisible task t ∈ T such that a • ∩ • t 6= ∅
and t•∩•b 6= ∅. We need to prove that a ÃW b holds. Let pin ∈ a•∩•t, pout ∈
t • ∩ • b. According to Requirement 2 in Definition 2, a >W b holds. Assume
a ‖W b, there must be a marking M such that M ∈ [N, [i]〉 and (N, M)[a〉
and (N, M)[b〉 and (N, M − •a + a•)[t〉. Because •a ∩ •b = ∅ (assuming
a ‖W b) and •t ∩ •b = ∅ (Requirement 3 in Definition 5), after t fires in
marking M − •a + a•, there will be two tokens in pout which violates the
notion of soundness assumed here. Hence we get a contradiction and a ‖W b
cannot hold. As a result, a →W b holds because a >W b and a ∦W b. Because
t is prime, |pin • | > 1 and | • pout| > 1 hold (Requirement 3 in Definition 5).
There will be at least a visible task x such that pin ∈ •x or an invisible task
t′ such that t′ 6= t and pin ∈ •t′. In the latter case, there will be at least
a visible task x′ such that t′ • ∩ • x′ 6= ∅ (Requirement 1 in Definition 5).
Similarly, there will be at least a visible task y such that pout ∈ y• or an
invisible task t′′ such that t′′ 6= t and pout ∈ t′′•. In the latter case, there
will be at least a visible task y′ such that y′ • ∩ • t′′ 6= ∅. Here we only
prove the simplest case, i.e., pin ∈ •x and pout ∈ y•. Similar to the proof
of a →W b, in all the four cases, a →W x, y →W b, a ∦W y, x ∦W b and
y ∦W x hold. Now we still need to prove y 9W x. Assume that there is a
causal relation between any pout’s input transition y and any pin’s output
transition x (x 6= t), i.e., y →W x. According to Requirement 3 in Definition
5, the assumption does not hold. Hence, we have shown that a →W b and
∃x,y∈T a →W x ∧ y →W b ∧ y 6>W x ∧ x ∦W b ∧ a ∦W y.

2. Assume a ÃW b holds, i.e., a →W b and there exist two tasks x, y such
that a →W x, y →W b, y 6>W x, x ∦W b and a ∦W y. We now need to
prove that there exists an invisible task t ∈ T such that a • ∩ • t 6= ∅ and
t • ∩ • b 6= ∅. Assume there is no invisible task between any of a’s output
places and any of b’s input places, i.e., we try to obtain a contradiction. If
there is no such invisible task, a →W b implies a • ∩ • b 6= ∅ (Theorem 4.1 in
[7]). a →W x implies a • ∩ • x 6= ∅ or there is an invisible elementary path
from a’s output places to x’s input places. Here we only prove the simplest
case, i.e., a • ∩ • x 6= ∅. Similarly, y →W b implies y • ∩ • b 6= ∅. Because

y ≯W x, it can be concluded that y • ∩ • x = ∅. Thus there will be four
basic constructs to reflect the above-mentioned features, which are listed in
Figure 8. Now we will show that all these constructs have various issues. In
Figure 8(a), a#W y does not hold. If this is not the case, a →W b, y →W b
and a#W y will imply a•∩y•∩•b 6= ∅ (Theorem 4.4 in [7]). In this case, either
a →W y or y →W a holds (a ∦W y and not a#W y). If a →W y holds, there
will be a place connecting a and y. After a is executed, y will always occur
before b. Hence we get a contradiction. Similarly, if y →W a holds, we can
get a contradiction with y →W b. As a result, the construct in Figure 8(a)
is not sound. Similarly, the other two constructs in Figure 8(b) and (d) are
not sound either. In Figure 8(c), after y is executed, b cannot occur directly
unless there the place connecting a, y and b is not safe. This violates y →W b
and we still get a contradiction. The assumption that a ÃW b and there is
no invisible task connecting a and b is wrong and the construct can only be
similar to the one shown in Figure 6.

Hence, the theorem is proven to be correct in both directions. ¤

a x
y b

a x
y b

a x
y b(a) (b) (c)

a x
y b (d)

Fig. 8. Possible constructs related to a ÃW b not containing invisible tasks

After detecting all mendacious dependencies between tasks, the real causal
dependencies should be distinguished, which is defined below.

Definition 14 (Real causal dependency). Let N = (P, TV , TIV , F) be a
potential sound IWF-net and W ⊆ traces(N) be an event log of N . For a, b ∈ TV ,
a 7→W b iff a →W b and a 6ÃW b.

4.2 Identifying redundant mendacious dependencies

Not all the mendacious dependencies detected from event logs are meaning-
ful to the mined process model. There may be some mendacious dependencies
leading to redundant invisible tasks, which are called redundant mendacious de-
pendencies. One reduction rule is proposed in this subsection to identify such
mendacious dependencies so as to separate them from those necessary ones.

Figure 9 shows two WF-nets (i.e., N7 and N8) involving redundant invisible
tasks. In both N7 and N8, the function of t3 can be replaced by the combinational
function of t1 and t2. When mining process models from W7 and W8, whether
constructing t3 depends on user decision (by user-defined parameter). From the

t1BA Ct2 Dt3
t2BA Ct3 Dt1

N7 W7={AD, ABD,ACD,ABCD} N8 W8={ACCD, ABCBCD}

Fig. 9. WF-nets involving redundant invisible tasks

semantics of a process model, the redundant invisible tasks may be necessary
when they involve multiple parallel branches.

A ÃW C, B ÃW D and A ÃW D can be derived from W7 and A ÃW D
is redundant. Similarly, C ÃW B, A ÃW C and C ÃW C can be derived from
W8 and C ÃW C is redundant. The following reduction rule referred to as Rule
1 hereafter can be used to identify such dependencies.

∀a, b ∈ TW : (a ÃW b ∧ ∃c, d ∈ TW : (c →W d ∧ a ÃW d ∧ c ÃW b))
⇒ a ÃW b is redundant

(1)

In Rule 1, W is an event log and TW = {t|∃σ ∈ W : t ∈ σ}. This rule
implies that all mendacious dependencies which can be combined by other ones
are redundant. A ÃW D and C ÃW C prove to be redundant, which are derived
from W7 and W8 respectively in Figure 9.

5 The mining algorithm α#

This section first analyzes how to construct invisible tasks from mendacious
dependencies. Then the mining algorithm for constructing the mined process
model is introduced in detail.

5.1 Construction of invisible tasks

For process models containing only causal relations between tasks, there is a
one-to-one relationship between invisible tasks and mendacious dependencies.
However, this is not always the case because selective and parallel relations are
so common in real-life processes. Constructing invisible tasks is not such a trivial
task. See Figure 10 for detail explanation.t2CA D Ft1 G IB E H

t3N9

Fig. 10. The one-to-many relationship between invisible tasks and ÃW

The process model N9 is a sound DIWF-net and one of its complete log is
W9 = {ACDDFGHI, BCEEFHGI, ADEDEGHI,AEDGHI, BEDHGI, BD

EHGI}. t1 corresponds to D ÃW D, D ÃW E, E ÃW D and E ÃW E. Sim-
ilar things happen to t2 and t3. On the contrary, there are situations where
multiple invisible tasks correspond to one mendacious dependency. For a vari-
ation of the DIWF-net shown in Figure 10, F ÃW I would correspond to two
parallel invisible tasks skipping G and H respectively.

The algorithm for constructing prime invisible tasks will be given below,
which is the core of the α# algorithm. The operators about the relations between
a task and an event log (i.e., ∈, first and last) are borrowed from [7] directly.
The two functions PreSet and PostSet are used to construct the input and
output places of a task. When generating the places here, the →W relations
related to mendacious dependencies will not be considered because they do not
reflect real causal dependencies.

Definition 15 (Construction algorithm ConIT). Let N = (P, TV , TIV , F)
be a potential sound IWF-net and W ⊆ traces(N) be a complete event log of N .
ConIT(W) that is used to construct prime invisible tasks is defined as follows.

1. TW = {t ∈ σ|σ ∈ W},
2. TI = {first(σ)|σ ∈ W},
3. TO = {last(σ)|σ ∈ W},
4. DM = {(a, b)|a ∈ TW ∧ b ∈ TW ∧ a ÃW b},
5. RM = {(a, b) ∈ DM |(a, b) is redundant},
6. DM = DM −RM ,
7. XI = {(Pin, Pout)|(∀(A,X) ∈ Pin, (Y, B) ∈ Pout : (∀a ∈ A, b ∈ B : (a, b) ∈

DM ∧ (A,X) ∈ PostSet(a) ∧ (Y, B) ∈ PreSet(b)) ∧ (∀x ∈ X, y ∈ Y :
x ∦W y)) ∧ (∀(A1, X1), (A2, X2) ∈ Pin : (∃a1 ∈ A1, a2 ∈ A2 : a1 ‖W a2)) ∧
(∀(Y1, B1), (Y2, B2) ∈ Pout : (∃b1 ∈ B1, b2 ∈ B2 : b1 ‖W b2))},

8. YI = {(Pin, Pout) ∈ XI |∀(P ′in, P ′out) ∈ XI : Pin ⊆ P ′in ∧ Pout ⊆ P ′out ⇒
(Pin, Pout) = (P ′in, P ′out)},

9. X ′
I = {(Pin, Pout)|(∀(A,X) ∈ Pin, (Y, B) ∈ Pout : (∀a ∈ A, b ∈ B : (a, b) ∈

RM ∧ (A,X) ∈ PostSet(a) ∧ (Y, B) ∈ PreSet(b)) ∧ (∀x ∈ X, y ∈ Y :
x ∦W y)) ∧ (∀(A1, X1), (A2, X2) ∈ Pin : (∃a1 ∈ A1, a2 ∈ A2 : a1 ‖W

a2)) ∧ (∀(Y1, B1), (Y2, B2) ∈ Pout : (∃b1 ∈ B1, b2 ∈ B2 : b1 ‖W b2))},
10. Y ′

I = {(Pin, Pout) ∈ X ′
I |(@(Pin1, Pout1), . . . , (Pink, Poutk) ∈ YI ∪ X ′

I , k > 1 :
Pin ∩ Pin1 6= ∅ ∧ Pout1 ∩ Pin2 6= ∅ ∧ . . . ∧ Poutk ∩ Pout 6= ∅) ∧ (∀(P ′in, P ′out) ∈
X ′

I : Pin ⊆ P ′in ∧ Pout ⊆ P ′out ⇒ (Pin, Pout) = (P ′in, P ′out))},
11. DS = {(t(Pin,Pout), t(P ′in,P ′out)

)|(Pin, Pout), (P ′in, P ′out) ∈ YI ∪Y ′
I ∧Pout∩P ′in 6=

∅} ∪ {(a, t(Pin,Pout))|(Pin, Pout) ∈ YI ∪ Y ′
I ∧ ∃(A,X) ∈ Pin : a ∈ A} ∪

{(t(Pin,Pout), b)|(Pin, Pout) ∈ YI ∪ Y ′
I ∧ ∃(Y, B) ∈ Pout : b ∈ B},

12. DP = {(t(Pin,Pout), t(P ′in,P ′out)
)|(Pin, Pout), (P ′in, P ′out) ∈ YI ∪ Y ′

I ∧ ∀(A,X) ∈
Pin, (A′, X ′) ∈ P ′in : ∃a ∈ A, a′ ∈ A′, x ∈ X, x′ ∈ X ′ : a ‖W a′ ∨ x ‖W

x′} ∪ {(t, t(Pin,Pout))|t ∈ TW ∧ (Pin, Pout) ∈ YI ∪ Y ′
I ∧ ∀(A,X) ∈ Pin : ∃a ∈

A, x ∈ X : a ‖W t ∨ x ‖W t} ∪ {(t(Pin,Pout), t)|t ∈ TW ∧ (Pin, Pout) ∈
YI ∪ Y ′

I ∧ ∀(A,X) ∈ Pin : ∃a ∈ A, x ∈ X : a ‖W t ∨ x ‖W t},
13. TW = TW ∪ {t(Pin,Pout)|(Pin, Pout) ∈ YI ∪ Y ′

I}, and
14. ConIT (W) = (TW , TI , TO, DS , DP).

The algorithm ConIT works as follows. Steps 1, 2 and 3 are borrowed from
[7, 21] directly. They are used to construct the sets of all tasks, first tasks and
last tasks, i.e., TW , TI and TO. All mendacious dependencies between tasks
are detected and the redundant ones are identified and excluded in steps 4 to 6.
Step 7 to Step 10 are used to construct invisible tasks of SKIP/REDO/SWITCH
types (stored in YI and Y ′

I) reflected by the mendacious dependencies. These four
steps are the most important ones in the whole algorithm. The only difference
between Step 7 and Step 9 is that the latter needs to check that no new invisible
task can be composed by other ones. In steps 11 and 12, new causal and parallel
relations between invisible tasks as well as the ones between invisible tasks and
visible tasks are added. Finally, the task set TW are extended by new constructed
invisible tasks in Step 13 and Step 14 returns the necessary results.

5.2 Construction of the mined process model

Based on the algorithms proposed in the above subsection, the mining algorithm
named α# can be defined as follows. It returns the mined model in DIWF-net.

Definition 16 (Mining algorithm α#). Let W be a loop-complete event log
over a task set T (i.e., W ⊆ T ∗). α#(W) is defined as follows.

1. (TW , TI , TO, DS , DP) = ConIT (W),
2. XW = {(A,B)|A ⊆ TW ∧ B ⊆ TW ∧ (∀a ∈ A, b ∈ B : a 7→W b ∨ (a, b) ∈

DS) ∧ (∀a1, a2 ∈ A : (a1#W a2 ∧ (a1, a2) 6∈ DP) ∨ (a1 7→W a2 ∧ a2 >W a2) ∨
(a2 7→W a1∧a1 >W a1))∧ (∀b1, b2 ∈ B : (b1#W b2∧ (b1, b2) 6∈ DP)∨ (b1 7→W

b2 ∧ b1 >W b1) ∨ (b2 7→W b1 ∧ b2 >W b2))},
3. YW = {(A,B) ∈ XW |∀(A′, B′) ∈ XW : A ⊆ A′ ∧ B ⊆ B′ ⇒ (A,B) =

(A′, B′)},
4. PW = {P(A,B)|(A,B) ∈ YW } ∪ {iW , oW },
5. FW = {(a, P(A,B))|(A,B) ∈ YW ∧ a ∈ A} ∪ {(P(A,B), b)|(A,B) ∈ YW ∧ b ∈

B} ∪ {(iW , t)|t ∈ TI} ∪ {(t, oW)|t ∈ TO}, and
6. NW = (PW , TW , FW).

The α# algorithm is relatively simple and easy to understand, which works as
follows. Step 1 invokes the algorithm ConIT to construct all invisible tasks and
fix the causal/parallel relations between tasks. All pairs of task sets related to
possible places are constructed in Step 2. This step takes into account invisible
tasks and length-one-loop tasks at the same time. Steps 3 to 6 are directly
borrowed from [7], in which the places together with the connecting arcs are
constructed and the mined process model in WF-net is returned.

To illustrate the α# algorithm, we show the result of each step using the log
W9. The original model corresponding to W9 is shown in Figure 10. Here we
only concentrate on the steps in ConIT because there is no invisible tasks of
SIDE type and the steps in α# algorithm is straightforward.

1. TW = {A,B, C, D, E, F, G,H, I},
2. TI = {A,B},

3. TO = {I},
4. DM = {(A,D), (A,E), (B,D), (B,E), (D, D), (D, E), (D, G), (D, H), (E, D),

(E, E), (E, G), (E, H)},
5. RM = ∅,
6. DM = DM ,
7. XI = {({({A}, {C})}, {({C}, {D})}), ({({A}, {C})}, {({C}, {E})}), ({({B},
{C})}, {({C}, {D})}), ({({B}, {C})}, {({C}, {E})}), . . . , ({({A,B}, {C})},
{({C}, {D, E})}), ({({D}, {F})}, {({C}, {D})}), ({({E}, {F})}, {({C}, {E})}),
. . . , ({({D, E}, {F})}, {({C}, {D, E})}), ({({D}, {F})}, {({F}, {G})}), . . . ,
({({E}, {F})}, {({F}, {H})}), ({({D, E}, {F})}, {({F}, {G}), ({F}, {H})})},

8. YI = {t2 = ({({A,B}, {C})}, {({C}, {D, E})}), t1 = ({({D, E}, {F})}, {({C},
{D, E})}), t3 = ({({D, E}, {F})}, {({F}, {G}), ({F}, {H})})},

9. X ′
I = ∅,

10. Y ′
I = ∅,

11. DS = {(A, t2), (B, t2), (t2, D), (t2, E), (D, t1), (E, t1), (t1, D), (t1, E), (D, t3),
(E, t3), (t3, G), (t3,H)},

12. DP = ∅,
13. TW = {A,B, C, D, E, F, G,H, I, t1, t2, t3}, and
14. ConIT (W) = (TW , TI , TO, DS , DP).

Comparing the above results with the DIWF-net N9 shown in Figure 10, we
can find that all the three invisible tasks are correctly detected. The ordering
relations among new invisible tasks as well as the ones between invisible tasks
and visible tasks are established successfully too. If these results are taken as
the input of the α# algorithm, the mined model will be the same as N9.

6 Experimental evaluation of the work

First we introduce the implementation of the α# algorithm (Subsection 6.1).
Then the evaluation criteria for conformance testing is illustrated (Subsection 6.2).
Thirdly, evaluation results are explained in detail in Subsection 6.3. Finally, the
limitations of the α# algorithm are discussed in Subsection 6.4.

6.1 Implementation of the α# algorithm

The α# algorithm has been implemented as a mining plug-in of ProM [3, 13] and
can be downloaded from www.processmining.org. The current version of ProM
is 5.0 and it is an open-source extensive framework for process mining, which
is implemented in Java. Currently, there are already more than 210 mining,
analysis and conversion plug-ins. It takes an event log in an extensible, XML-
based format (i.e., MXML) as input and uses a process mining plug-in to mine
a process model from that log. The mined process model will be shown to the
end user graphically. A snapshot of ProM is given in Figure 11, which shows
an DIWF-net constructed by the α# algorithm. The mining result can also be
converted to an Event-driven Process Chain and be analyzed for soundness by
analysis plug-in. Furthermore, the result can be exported to tools such as CPN
Tools, ARIS, YAWL, ARIS PPM, Yasper, EPC Tools, woflan, etc.

Fig. 11. The snapshot of ProM when mining a process model using the α# plug-in

6.2 Evaluation criteria

Although visual inspection of the mined model and the original model can be
used to see whether the mining result is correct, there are also some problems
related to this visual inspection. Firstly, it works well only for small examples.
Secondly, we cannot assume that the original model is always present. Finally, the
original model and the mined model may have different structures but have ex-
actly the same behaviors. Therefore the following metrics are introduced, which
are used to test the conformance between the mined model and the given log[24].

The metric f is determined by replaying the log in the model, i.e., for each
case the “token game” is played as suggested by the log. For this, the replay of
every event trace starts with marking the initial place in the model and then
the transitions that belong to the logged events in the trace are fired one after
another. While doing so, one counts the number of tokens that had to be created
artificially (i.e., the transition belonging to the logged event was not enabled and
therefore could not be successfully executed) and the number of tokens that were
left in the model (they indicate that the process has not properly completed).
Only if there were neither tokens left nor missing, the fitness measure evaluates
to 1.0, which indicates 100% fitness. In other words, fitness reflects the extent to
which the event traces can be associated with execution paths specified by the
process model. Thus if f = 1 then the log can be parsed by the model without
any error. The token-based fitness metric f is formalized as follows:

f =
1
2
(1−

∑k
i=1 nimi∑k
i=1 nici

) +
1
2
(1−

∑k
i=1 niri∑k
i=1 nipi

) (2)

Here k is the number of different traces from the aggregated log. For each
event trace i (1 ≤ i ≤ k): ni is the number of process instances combined into the

current trace, mi is the number of missing tokens, ri is the number of remaining
tokens, ci is the number of consumed tokens, and pi is the number of produced
tokens during log replay of the current trace. Note that for all i, mi ≤ ci and
ri ≤ pi, and therefore 0 ≤ f ≤ 1. The maximum value of the fitness metric will
be used as an evaluation criteria, i.e., f = 1.

The other two conformance testing metrics are aB (behavioral appropriate-
ness) and aS (structural appropriateness). Appropriateness reflects the degree
of accuracy in which the process model describes the observed behavior (i.e.,
aB), combined with the degree of clarity in which it is represented (i.e., aS). For
all the three metrics, their values are between 0.0 and 1.0. For any successful
mining, the value of f should be 1.0 and the values of aB and aS should be as
big as possible. Another important evaluation criteria is that the mined model
should be sound. From the viewpoint of practical application, the soundness of
any process model is a necessary requirement.

6.3 Evaluation results

In an experimental setting, logs can be obtained in three ways: (1) as a download
or conversion from an operational information system (i.e., a real log), (2) a
manually created or collected log, and (3) a log resulting from a simulation.
For evaluation of the α# algorithm, we have used all three possibilities. In this
section, we show the results of our experimental evaluation of the α# algorithm.

A lot of experiments have been done to evaluate the proposed methods to-
gether with the implemented algorithm. The α# plug-in of ProM has been ap-
plied to several real-life logs and many smaller artificial logs. There are totally
96 artificial examples in DIWF-nets evaluated. The corresponding complete logs
are generated manually. The maximum number of tasks in one process model
is less than 20 and the number of cases in one event log is less than 30. All
types of invisible tasks are modeled in a separate or combined manner. Of all
the examples, 24 models involve invisible tasks of SIDE type, 12 models involve
length-1-loops, length-2-loops and invisible tasks of SHORT-REDO type, and 4
models do not contain any invisible task (the corresponding logs are L23, L24,
L48, and L54). The conformance testing results are shown in Figure 12.

From Figure 12, we can see that all 96 models are mined successfully from
their corresponding logs (i.e., f = 1). Given the 96 complete event logs generated
by different DIWF-nets, the correct rate of mining process models from logs by
the α# algorithm approaches 100%. While for the α algorithm, the correct rate is
only 4/96 ≈ 4.2%. Only the 4 models that do not contain any invisible task were
mined successfully. It shows that the α# algorithm is a good extension of the
α algorithm to handle invisible tasks. At the same time, the α# algorithm can
distinguish invisible tasks of SHORT-REDO type and length-1-loops correctly.

Ten real-life logs are obtained from Kinglong Company in Xiamen, Fujian
province, China, which are all about processes for routing engineering document.
The mined process model from L10 is shown in Figure 13. The source place
and the sink place are not visible in this figure for space limitation. All the
conformance testing results are shown in Table 2. It is obvious that all the

0.2
0.4
0.6
0.8

1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 Log ID

faBaS

0.2
0.4
0.6
0.8

1

49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 Log ID

faBaS

Fig. 12. Evaluation of α# algorithm using 96 artificial logs

experiments are successful. Compared with the given logs, the mining results
of the α# will not introduce new ordering relations between invisible tasks.
The proportion for invisible tasks out of all tasks is 77/(77+88)=46.7%. This
proportion is very near to that computed from the process models in Section 1
and verify the correctness of the α# to some extent.

Table 2. Conformance testing results based on real-life logs: f -fitness,aB-behavioral
appropriateness,aS-structural appropriateness,NoI -the number of invisible tasks,NoC -
the number of cases,NoE -the number of events,NoT -the number of visible tasks

L1 L2 L3 L4 L5 L6 L7 L8 L9 L10

f 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

aB 0.823 0.983 0.876 0.902 0.811 0.933 0.791 0.953 0.804 0.809

aS 0.321 0.5 0.375 0.5 0.45 0.478 0.286 0.529 0.391 0.271

NoI 10 3 9 3 5 4 14 2 7 20

NoC 8 6 5 11 40 42 30 42 297 44

NoE 43 52 59 84 324 469 221 288 2020 531

NoT 7 15 10 7 7 9 8 7 7 11

In Section 2, we have shown that the GA algorithm can mine process models
with invisible tasks too. However, the main goal of GA algorithm is to find a
suitable process model to fit the given event log. Besides invisible tasks, it can
also handle duplicate tasks, non-free-choice constructs and noise. It is based on
the generic algorithm and has more than ten parameters. Because the α# al-
gorithm do not need any parameter, when mining an event log using the GA
algorithm, all default values of the parameters will be used. Many previous ex-
ample logs (i.e., 96 artificial ones and 10 real-life ones) can be mined successfully
by the GA algorithm (i.e., f = 1). However, there are still many logs on which

Fig. 13. A real-life process model mined from L10 by the α# algorithm

the α# algorithm performs better than the GA algorithm. Figure 14 lists the
comparison results of the α# algorithm and the GA algorithm. All the testing
logs are chosen from the above artificial and real-life logs.

The numbers of invisible tasks in the mined process models

0510
152025
3035

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41
nI(a#)nI(GA)

00.10.20.30.40.50.60.70.80.91

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

f(a#)aB(a#)aS(a#)f(GA)aB(GA)aS(GA)

1.522.533.544.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41log(T(GA
)/T(a#))

(a)

(b)

(c)
Fig. 14. Comparison results of the α# algorithm and the GA algorithm

Three perspectives are concerned when comparing the mining results of the
α# algorithm and the GA algorithm, which are explained as follows:

1. The values of f , aB and aS between the each mined model and its cor-
responding log. The importance priorities of the three metrics from big to
small are f , aB and aS. The bigger the value of f is, the better the result
is. If f = 1 is true for both algorithm, aB and aS will be considered. From
Figure 14(a), we can see that on the chosen 41 example logs, the α# algo-
rithm performs better than the GA algorithm. Whether fα# = 1 > fGA or
fα# = fGA = 1∧aBα# > aBGA or fα# = fGA = 1∧aBα# = aBGA∧aSα# >
aSGA is true. The GA algorithm are difficult to handle event logs generated
by the process models containing some special constructs, such as length-
1-loops, invisible tasks of SIDE type, invisible tasks of SKIP type between
AND-split task and AND-join task, invisible tasks of SHORT-REDO type,
invisible tasks involved in non-free-choice constructs, invisible tasks in series,
invisible before/after parallel tasks, AND-split tasks connecting the source
place, and AND-join tasks connecting the sink place, etc.

2. The number of invisible tasks in the process model mined by the two algo-
rithms. When the values of the three metrics are the same, the smaller the
number of invisible tasks is, the better the result is. From Figure 14(b), we
can see that for most of the testing example logs, the number of invisible
tasks mined by the α# algorithm is smaller than that mined by the GA
algorithm. Only for a few logs, the GA algorithm can mine a model with less
invisible tasks. However, the mined models are not sound or they are not as
good as the ones mined by the α# algorithm.

3. The time spent by the two mining algorithms. If the previous two perspec-
tives cannot distinguish which results are better, the time spent by the corre-
sponding algorithm can be considered. The less the time is spent, the better
the result is. Figure 14(c) shows that for all the chosen logs, the mining time
spent on each log by the GA algorithm is almost 100 to 10000 times as that
spent by the α# algorithm.

The evaluation results show that so long as the event logs are complete,
the α# algorithm can mine all useful invisible tasks in DIWF-nets successfully.
Compared to the GA algorithm that can handle invisible tasks, the α# algorithm
shows good performance (e.g., mining capacity, quality and efficiency).

6.4 Limitations of the α# algorithm

From Definition 13 and Theorem 1, it is obvious to see that the mining capacity
of the α# algorithm is limited to DIWF-nets and the given event log is assumed
to be complete. Although DIWF-nets is a large subclass of WF-nets, there are
still some sound non-DIWF-nets that cannot be mined by the α# algorithm
(e.g., the two WF-nets N10 and N11 shown in Figure 7(a) and Figure 7(b)
respectively). For N10, one of its complete event log is W10 = {ac, bcde, bdce}.
Taking W10 as input, the α# algorithm constructs the WF-net named N ′

10 as
shown in Figure 15(a). After one token is put in the source place of N ′

10, there will
be a free-choice between a and b. If a is chosen, the net will terminate normally.
Otherwise, after b executes, c and d can execute concurrently. The executions of
c and d will not affect the soundness of N ′

10. However, if the only invisible task
executes after c finishes execution, there will be a deadlock at e. Thus the mined
WF-net N ′

10 is not structural sound though it is a DIWF-net. The reason for
such a mining error is that although there is a place connecting a and the only
invisible task t′ in N10, t′ has no chance to execute immediately after a. But the
essential reason is the non-free-choice construct between e and t′. For N11, one
of its complete event log is W11 = {acd, abcd, acbd}. The corresponding mined
WF-net by the α# algorithm is N ′

11 as shown in Figure 15(b). After analyzing
the structure of N ′

11 , we can draw the conclusion that it is structural sound.
However, N11 and N ′

11 are not behavioral equivalent. N ′
11 cannot generate the

trace acd and hence it cannot cover the given log W11. The essential reason is that
although a and d are connected by an invisible elementary path, d cannot execute
immediately after a because there is another parallel path without invisible tasks
between them.

a
b

c
ed

a b d
c(a) (b)

Fig. 15. Two mined models from the complete logs generated by two non-DIWF-nets

The correctness of the α# algorithm depends on the assumption that the
potential WF-nets are DIWF-nets and the given log is complete. These two
assumptions should be relaxed further in future works.

7 Conclusion

Based on the analysis of mining problems encountered using the classical α al-
gorithm, a new mining algorithm based on Petri net named α# algorithm is
proposed. Invisible tasks are classified into four types according to their func-
tionalities for the first time, i.e., SIDE, SKIP, REDO and SWITCH. The uni-
versal detection method for invisible tasks of SKIP/REDO/SWITCH types is
illustrated in detail and the correctness of the method can be proved theoreti-
cally. The construction algorithms for all types of invisible tasks and the process
models in WF-nets are proposed and explained too. The α# algorithm has been
implemented as a plug-in of ProM and evaluated using a lot of artificial logs
and a few real-life logs. The evaluation results show that the algorithm can mine
appropriate DIWF-nets with invisible tasks successfully so long as the corre-
sponding event logs are complete.

Our future work will mainly focus on the following two aspects. Firstly, more
real-life logs will be gathered for further evaluating the α# algorithm and the
implemented plug-in. Secondly, theoretical analysis will be done to explore the
exact mining capacity of the α# algorithm.

Acknowledgements

The work is supported by the National Basic Research Program of China (No.
2002CB312006 and No. 2007CB310802), the National Natural Science Foun-
dation of China (No. 60373011 and No. 60473077) and the Program for New
Century Excellent Talents in University.

The authors would like to thank Ton Weijters, Ana Karla Alves de Medeiros,
Boudewijn van Dongen, Minseok Song, Laura Maruster, Eric Verbeek, Monique
Jansen-Vullers, Hajo Reijers, Michael Rosemann, and Peter van den Brand for
their on-going work on process mining techniques and tools at Eindhoven Uni-
versity of Technology.

References

1. W.M.P. van der Aalst. The application of petri nets to workflow management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Performance
Models from Timed Logs. In Y. Han, S. Tai, and D. Wikarski, editors, International
Conference on Engineering and Deployment of Cooperative Information Systems,
volume 2480 of Lecture Notes in Computer Science, pages 45–63. Springer-Verlag,
Berlin, 2002.

3. W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves
de Medeiros, A. Rozinat, V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M.
Weijters. Prom 4.0: Comprehensive support for real process analysis. In J. Kleijn
and A. Yakovlev, editors, The 28th International Conference on Applications and
Theory of Petri Nets (ICATPN 2007), volume 4546 of Lecture Notes in Computer
Science, pages 484–494. Springer-Verlag, Berlin, 2007.

4. W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and
A.J.M.M. Weijters. Workflow Mining: A Survey of Issues and Approaches. Data
and Knowledge Engineering, 47(2):237–267, 2003.

5. W.M.P. van der Aalst and A.J.M.M. Weijters, editors. Process Mining, Special
Issue of Computers in Industry, Volume 53, Number 3. Elsevier Science Publishers,
Amsterdam, 2004.

6. W.M.P. van der Aalst and A.J.M.M. Weijters. Process Mining: A Research Agenda.
Computers in Industry, 53(3):231–244, 2004.

7. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

8. W.M.P. van der Aalst, M. Weske, and D. Grünbauer. Case Handling: A New
Paradigm for Business Process Support. Data and Knowledge Engineering,
53(2):129–162, 2005.

9. R. Agrawal, D. Gunopulos, and F. Leymann. Mining process models from workflow
logs. In I. Ramos, G. Alonso, and H.J. Schek, editors, the Sixth International
Conference on Extending Database Technology, pages 469–483, 1998.

10. J.E. Cook and A.L. Wolf. Automating process discovery through event-data anal-
ysis. In Proceedings of the 17th international conference on Software engineering,
pages 73–82. ACM, New York, NY, USA, 1995.

11. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

12. J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts
in Theoretical Computer Science. Cambridge University Press, Cambridge, UK,
1995.

13. B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters,
and W.M.P. van der Aalst. The prom framework: A new era in process mining
tool support. In G. Ciardo and P. Darondeau, editors, International Conference
on Application and Theory of Petri Nets 2005, volume 3536 of Lecture Notes in
Computer Science, pages 444–454. Springer-Verlag, Berlin, 2005.

14. G. Greco, A. Guzzo, G. Manco, and D. Saccá. Mining and reasoning on workflows.
IEEE Transactions on Knowledge and Data Engineering, 17(4):519–534, 2005.

15. G. Greco, A. Guzzo, L. Pontieri, and D. Saccá. Discovering expressive process
models by clustering log traces. IEEE Transactions on Knowledge and Data En-
gineering, 18(8):1010–1027, 2006.

16. M. Hammori, J. Herbst, and N. Kleiner. Interactive workflow miningrequirements,
concepts and implementations. Data and Knowledge Engineering, 56:41–63, 2006.

17. J. Herbst and D. Karagiannis. Workflow Mining with InWoLvE. Computers in
Industry, 53(3):245–264, 2004.

18. X.Q. Huang, L.F. Wang, W. Zhao, S.K. Zhang, and C.Y. Yuan. A workflow
process mining algorithm based on synchro-net. Journal of Computer Science and
Technology, 21(1):66–71, 2006.

19. L. Maruster, A.J.M.M. Weijters, W.M.P. van der Aalst, and A. van der Bosch. A
Rule-Based Approach for Process Discovery: Dealing with Noise and Imbalance in
Process Logs. Data Mining and Knowledge Discovery, 13(1):67–87, 2006.

20. A.K.A. de Medeiros, W.M.P. van der Aalst, and A.J.M.M. Weijters. Workflow
Mining: Current Status and Future Directions. In R. Meersman, Z. Tari, and D.C.
Schmidt, editors, On The Move to Meaningful Internet Systems 2003: CoopIS,
DOA, and ODBASE, volume 2888 of Lecture Notes in Computer Science, pages
389–406. Springer-Verlag, Berlin, 2003.

21. A.K.A. de Medeiros, B.F. van Dongen, W.M.P. van der Aalst, and A.J.M.M. Wei-
jters. Process Mining for Ubiquitous Mobile Systems: An Overview and a Concrete
Algorithm. In L. Baresi, S. Dustdar, H. Gall, and M. Matera, editors, Ubiquitous
Mobile Information and Collaboration Systems, pages 154–168, 2004.

22. A.K.A. de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic pro-
cess mining: an experimental evaluation. Data Mining and Knowledge Discovery,
14(2):245–304, 2007.

23. W. Reisig and G. Rozenberg, editors. Lectures on Petri Nets I: Basic Models,
volume 1491 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1998.

24. A. Rozinat and W.M.P. van der Aalst. Conformance Testing: Measuring the Fit
and Appropriateness of Event Logs and Process Models. In C. Bussler et al., editor,
BPM 2005 Workshops, volume 3812 of Lecture Notes in Computer Science, pages
163–176. Springer-Verlag, Berlin, 2006.

25. A. Rozinat and W.M.P. van der Aalst. Decision Mining in ProM. In S. Dustdar,
J.L. Faideiro, and A. Sheth, editors, the Fourth International Conference on Busi-
ness Process Management, volume 4102 of Lecture Notes in Computer Science,
pages 420–425. Springer-Verlag, Berlin, 2006.

26. G. Schimm. Mining exact models of concurrent workflows. Computers in Industry,
53(3):265–281, 2004.

27. L.J. Wen, W.M.P. van der Aalst, J.M. Wang, and J.G. Sun. Mining process models
with non-free-choice constructs. Data Mining and Knowledge Discovery, 15(2):145–
180, 2007.

28. L.J. Wen, J.M. Wang, and J.G. Sun. Detecting implicit dependencies between
tasks from event logs. In X. Zhou, X. Lin, and H. Lu et al., editors, The 8th Asia-
Pacific Web Conference (APWeb 2006), volume 3841 of Lecture Notes in Computer
Science, pages 591–603. Springer-Verlag, Berlin, 2006.

29. L.J. Wen, J.M. Wang, and J.G. Sun. Mining invisible tasks from event logs. In
G.Z. Dong, X.M. Lin, W. Wang, and Y. Yang, editors, the Joint Conference of the
9th Asia-Pacific Web Conference and the 8th International Conference on Web-
Age Information Management, volume 4505 of Lecture Notes in Computer Science,
pages 358–365. Springer-Verlag, Berlin, 2007.

