
Time Prediction Based on Process Mining

W.M.P. van der Aalsta,∗, M.H. Schonenberga, M. Songb,a

aEindhoven University of Technology, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands.
bUlsan National Institute of Science and Technology 689-798 100 Banyeon-ri, Ulsan, South Korea

Abstract

Process mining allows for the automated discovery of process models from event logs. These models provide
insights and enable various types of model-based analysis. This paper demonstrates that the discovered
process models can be extended with information to predict the completion time of running instances. There
are many scenarios where it is useful to have reliable time predictions. For example, when a customer phones
her insurance company for information about her insurance claim, she can be given an estimate for the
remaining processing time. In order to do this, we provide a configurable approach to construct a process
model, augment this model with time information learned from earlier instances, and use this to predict e.g.
the completion time. To provide meaningful time predictions we use a configurable set of abstractions that
allow for a good balance between “overfitting” and “underfitting”. The approach has been implemented in
ProM and through several experiments using real-life event logs we demonstrate its applicability.

Keywords: process mining, business process management, time prediction, performance analysis, business
intelligence

1. Introduction

More and more information about processes is recorded by information systems in the form of so-called
“event logs”. A wide variety of Process-Aware Information Systems (PAISs) [14] is recording events as they
are taking place. ERP (Enterprise Resource Planning), WFM (WorkFlow Management), BPM (Business
Process Management), CRM (Customer Relationship Management), SCM (Supply Chain Management), and
PDM (Product Data Management) systems are examples of PAISs that log detailed information about events
in a structured manner. Despite the omnipresence and richness of these event logs, most software vendors use
this information for answering only relatively simple questions under the assumption that the process is fixed
and known, e.g., the calculation of simple performance metrics like utilization and flow time for a well-known
process. However, in many domains processes are evolving and people typically have an oversimplified and
incorrect view of the actual business processes. Therefore, process mining techniques attempt to extract
non-trivial and useful information from event logs. One aspect of process mining is control-flow discovery,
i.e., automatically constructing a process model (e.g., a Petri net or BPMN model) describing the causal
dependencies between activities [6, 4, 7, 9, 11, 38, 37]. The basic idea of control-flow discovery is very simple:
given an event log containing a set of traces, automatically construct a suitable process model “describing
the behavior” seen in the log. Such discovered processes have proven to be very useful for the understanding,
redesign, and continuous improvement of business processes [3].

As process mining techniques are getting more mature, there is the desire to use the discovered models
in an operational setting. This means that the PAIS is using results from process mining at runtime. An
example is the recommendation service presented in [31]. This service, which is implemented in the process
mining tool ProM, gives advice on the best possible next activity. Unlike the fixed routing in a workflow
management system which is strictly enforced, the recommendation service merely gives an advice what to
do next. Another example is the prediction service presented in [13]. This service is using non-parametric

∗Corresponding author
Email addresses: w.m.p.v.d.aalst@tue.nl (W.M.P. van der Aalst), m.h.schonenberg@tue.nl (M.H. Schonenberg),

msong@unist.ac.kr (M. Song)
URL: www.processmining.org (W.M.P. van der Aalst)

Preprint submitted to Information Systems August 5, 2010

regression to predict the completion time of partially executed process instances. Using the same regression
technique it is also estimated whether activities will be executed in the future and, if so, the time it takes to
reach them.

The goal of the approach presented in this paper is similar to the prediction service described in [13].
However, we want to overcome some of the limitations of this earlier approach and therefore use a completely
new approach to time prediction. Unlike existing approaches, the problem is not reduced to a simple heuristic
(e.g., always estimating half of the average flow time or the average flow time minus the already elapsed time)
or a regression model. Instead an annotated transition system is generated that represents an abstraction of
the process with time annotations.

annotated
transition
system

event
log

operational
business

processes

process
discovery

prediction
enginepartial case

prediction

information
system

Figure 1: Overview of our approach.

Figure 1 shows an overview of the approach. There is an information system supporting some operational
process. Events that take place in this process are recorded (e.g., starting some activity). This recorded
information is used to derive a process model. In the process mining field, many process discovery algorithms
have been proposed. Here we use a variant of the approach described in [4], i.e., using various abstractions a
transition system is derived. This transition system is annotated with information about elapsed times (e.g.,
the average time to reach a particular state), sojourn times (e.g., the average time spent in a particular state),
and remaining times (e.g., the average time to reach the end from this state). The annotated transition system
can be used to predict the remaining flow time of all or some of the running cases (i.e., process instances). In
our approach, we heavily rely on the transition system generation and corresponding abstractions presented
in [4]. This allows us to find a balance between a transition system that is too specific (overfitting) and one
that is too general (underfitting) with respect to the log and thus provide better predictions. As will be
demonstrated, our approach performs much better than simple heuristics and also outperforms regressions
models in terms of efficiency and precision.

The approach can be easily extended to predict other features of a case. For example, the transition
system can also be annotated with information about the occurrence of particular event or the time until
a particular event. This can lead to predictions such as: “there is a 90% probability that your claim will
be rejected”, “there is 90% probability that this activity will be conducted in the next three days”, and
“the expected time until the submission of some intermediate report is 11 days”. Although these additional
features can easily be added, we focus here on predicting the completion of a case.

The approach presented in this paper has been implemented in ProM, cf. www.processmining.org.
ProM serves as a testbed for our process mining research [1] and has been applied in various domains,
e.g., hospitals (AMC and Catherina hospitals), banks (ING), several municipalities (Heusden, Alkmaar,
etc.), high-tech system manufacturers (ASML and Philips Medical Systems), software repositories for open-
source projects, etc. To show the applicability of our results, we present an experimental evaluation using a
simulation model and two real-life case studies. In these case studies, we use our techniques to predict the
completion time of cases in two different Dutch municipalities.

The remainder of this paper is organized as follows. Related work is discussed in Section 2. Section 3
introduces process mining and shows that a transition system can be derived after (potentially) making some
abstractions. Section 4 presents the main idea of time prediction based on annotated transition systems.
The implementation in ProM is described in Section 5. Section 6 discusses various ways of defining and
measuring the quality of predictions. The approach has been validated and tested using several (real-life)
examples. The results of our evaluation are given in Section 7. Section 9 concludes the paper.

2

2. Related Work

Since the mid-nineties several groups have been working on techniques for process mining [6, 4, 7, 9, 11,
38, 17, 37], i.e., discovering process models based on observed events. In [5] an overview is given of the early
work in this domain. The idea to apply process mining in the context of workflow management systems was
introduced in [7]. In parallel, Datta [11] looked at the discovery of business process models. Cook et al.
investigated similar issues in the context of software engineering processes [9]. Herbst [18] was one of the
first to tackle more complicated processes, e.g., processes containing duplicate tasks. Most of the classical
approaches have problems dealing with concurrency. The α-algorithm [6] was the first technique taking
concurrency as a starting point. However, this simple algorithm has problems dealing with complicated
routing constructs and noise (like most of the other approaches described in literature). In the context of
the ProM framework [1] more robust techniques have been developed. The heuristics miner [37] and the
fuzzy miner [17] can deal with incomplete, unbalanced, and/or noisy events logs. The two-phase approach
presented in [4] allows for various abstractions to obtain more useful models. The first step in [4] is used
as a basis for approach described in this paper. However, two-phase approach presented in [4] only aims at
process discovery and not at prediction. Moreover, in [4] time does not play a role and the Theory of Regions
is used to construct the final models.

For more pointers to relevant literature on process mining we refer to our process mining website.1

The approaches mentioned above focus on control-flow discovery. However, when event logs contain time
information, the discovered models can be extended with timing information. For example, in [35] it is
shown how timed automata can be derived. In [28] it is shown how any Petri net discovered by ProM can
be enriched with timing and resource information.

The above approaches all focus on discovering process models based on historic information and do not
support users at run-time. The recommendation service of ProM learns based on historic information and
uses this to guide the user in selecting the next work-item [31]. This is related to the use of case-based
reasoning in workflow systems [36]. Most related to our work is the prediction service presented in [13]. This
service predicts the completion time of cases by using non-parametric regression [13, 10]. In [12] different
techniques are compared using a case study including various heuristics and the prediction service presented
in [13]. In [30] it is shown that the interaction between cases and the availability of resources are important
factors when predicting the remaining time until completion. The topic of time prediction was also discussed
in [24], but no concrete prediction technique was proposed. Instead the problem of having cross-trained
resources (i.e., resources that are more flexible to perform also other tasks) on performance prediction was
highlighted. Eder et al. [15, 16] also looked into time management in workflow systems. However, the focus
of their work is more on scheduling and escalation and like in [12, 24] assuming that the workflow is known
beforehand and stable. Also related is the prediction engine of Staffware [33, 30] which is using simulation
to complete audit trails with expected information about future events. This particular approach is rather
unreliable since it is based on one run through the system using a copy of the actual engine. Hence, no
probabilities are taken into account and there is no means of “learning” to make better predictions over time.
A more refined approach focusing on the transient behavior (called “short-term simulation”) is presented in
[29].

In [2] a generic approach to “operational support” in the context of the ProM framework is presented.
Here is it shown that process mining is not restricted to the “past”, but also relevant for the “present”
(recommendation and real-time conformance checking), and the future (prediction). This demonstrates that
the technique presented in this chapter can be used to actively provide predictions to users interacting with
a PAIS (e.g., a workflow system like YAWL or Declare).

The approach presented in this paper differs from existing approaches in various ways. First of all, an
explicit process model (i.e., the annotated transition system) is constructed (unlike heuristics or simple re-
gression models) and this model is used for predictions. Second, the degree of abstraction can be adjusted
based on the questions at hand and the volume of historic information. Note that the process model can
become more fine-grained once more data is available. Third, the approach allows for better diagnostics
(unlike for example the non-parametric regression approach [13]). Finally, the approach has a better perfor-
mance compared to approaches based on simulation or regression (both in terms of quality of prediction and

1www.processmining.org

3

computation time).

3. Transition System Generation Using Abstractions

This section describes the basis for our prediction approach. We first show how to construct a transition
system based on an event log. In Section 4, we annotate this transition system and use it to predict e.g.
completion times.

3.1. Preliminaries
To explain the different strategies for constructing transition systems from event logs, we need the following

notations.
f ∈ A→ B is a function with domain A and range B . f ∈ A 7→ B is a partial function, i.e., the domain

of f may be a subset of A.
A multi-set (also referred to as bag) is like a set where each element may occur multiple times. For

example, [a, b2, c3, d , d , e] is the multi-set with nine elements: one a, two b’s, three c’s, two d ’s, and one e.
IB(A) = A → N is the set of multi-sets (bags) over a finite domain A, i.e., X ∈ IB(A) is a multi-set,

where for each a ∈ A, X (a) denotes the number of times a is included in the multi-set. For example,
if X = [a, b2, c3, d], then X (b) = 2 and X (e) = 0. The sum of two multi-sets (X + Y), the difference
(X − Y), the presence of an element in a multi-set (x ∈ X), and the notion of subset (X ≤ Y) are defined
in a straightforward way. For example, [a, b2, c3, d] + [c3, d , e2, f 3] = [a, b2, c6, d2, e2, f 3]. Moreover, we also
apply these operators to sets, where we assume that a set is a multi-set in which every element occurs exactly
once. The operators are also robust with respect to the domains of the multi-sets, i.e., even if X and Y are
defined on different domains, X + Y , X − Y , and X ≤ Y are defined properly by extending the domain
where needed. | X |=

∑
a∈A X (a) is the cardinality of some multi-set X over A. set(X) transforms a bag X

into a set, i.e., set(X) = {a ∈ X | X (a) > 0}.
P(A) is the powerset of A, i.e., P(A) = {X | X ⊆ A}.
For a given set A, A∗ is the set of all finite sequences over A. A finite sequence over A of length n

is a mapping σ ∈ {1, . . . ,n} → A. Such a sequence is represented by a string, i.e., σ = 〈a1, a2, . . . , an〉
where ai = σ(i) for 1 ≤ i ≤ n. hdk (σ) = 〈a1, a2, . . . , ak min n〉, i.e., the “head” of the sequence consisting
of the first k elements (if possible). Note that hd0(σ) is the empty sequence and for k ≥ n: hdk (σ) = σ.
tlk (σ) = 〈a(n−k+1) max 1, ak+2, . . . , an〉, i.e., the “tail” of the sequence composed of the last k elements (if
possible). Note that tl0(σ) is the empty sequence and for k ≥ n: tlk (σ) = σ. σ ↑ X is the projection of σ onto
some subset X ⊆ A, e.g., 〈a, b, c, a, b, c, d〉 ↑ {a, b} = 〈a, b, a, b〉 and 〈d , a, a, a, a, a, a, d〉 ↑ {d} = 〈d , d〉.

For any sequence σ over A, the Parikh vector par(σ) maps every element a of A onto the number of
occurrences of a in σ, i.e., par(σ) ∈ IB(A) where for any a ∈ A: par(σ)(a) =| σ ↑ {a} |. Later, we will use
the Parikh vector to count the number of times an activity occurs in a log trace.

3.2. Event logs
The goal of process mining is to extract knowledge about a particular (business) process from event logs,

i.e., process mining describes a family of a-posteriori analysis techniques exploiting the information recorded
in audit trails, transaction logs, databases, etc. Typically, these approaches assume that it is possible to
sequentially record events such that each event refers to an activity (i.e., a well-defined step in the process)
and is related to a particular case (i.e., a process instance). Furthermore, some mining techniques use
additional information such as the performer or originator of the event (i.e., the person / resource executing
or initiating the activity), the timestamp of the event, or data elements recorded with the event (e.g., the
size of an order). Today, many information systems record such information. To explain the kind of input
needed for process mining and our prediction approach, we first define the concept of an event.

Definition 1 (Event, Property). Let E be the event universe, i.e., the set of all possible events identifiers,
and T the time domain. We assume that events are characterized by various properties, e.g., an event has
a timestamp, corresponds to an activity, is executed by a particular person, has associated costs, etc. We do
not impose a specific set of properties, however, given the focus of this paper, we assume that one of these
properties is the timestamp of the event, i.e., there is a function propT ∈ E → T assigning timestamps to
events. As a shorthand, we denote e = propT (e), i.e., the time of an event e ∈ E.

4

event id properties
timestamp activity resource cost . . .

35654423 30-12-2008:11.10 A John 300 . . .
35654424 30-12-2008:15.21 B John 400 . . .
35654425 30-12-2008:15.35 C John 100 . . .
35654426 30-12-2008:15.55 D John 400 . . .
35655526 29-12-2008:16.15 A Ann 300 . . .
35655527 30-12-2008:16.05 C John 450 . . .
35655528 30-12-2008:16.25 B Pete 350 . . .
35655529 31-12-2008:10.55 D Ann 300 . . .

.

Table 1: A fragment of an event log.

So an event e is described by some unique identifier and can have several properties. In this paper, we
focus on the timestamp of an event e = propT (e). However, other properties such as the person executing the
event (propresource(e)), the name of the corresponding activity (propA(e)), the cost of an event (propcost(e)),
etc. can be used both for process discovery and prediction techniques presented in thus paper.

An event log is simply a set of events. Each event in the log is linked to a particular trace and globally
unique, i.e., the same event cannot occur twice in a log. Note that a trace in a log represents a particular
process instance also referred to as “case” (e.g., a customer order, the treatment of a patient, or an insurance
claim). Moreover, time should be non-decreasing within each trace in the log.

Definition 2 (Trace, Event log). A trace is a finite sequence of events σ ∈ E∗ such that each event appears
only once and time is non-decreasing, i.e., for 1 ≤ i < j ≤| σ |: σ(i) 6= σ(j) and σ(i) ≤ σ(j). C is the set
of all possible traces (including partial traces). An event log is a set of traces L ⊆ C such that each event
appears at most once in the entire log, i.e., for any σ1, σ2 ∈ L: set(par(σ1)) ∩ set(par(σ2)) = ∅ or σ1 = σ2.

Note that σ(i) ≤ σ(j) means that time is non-descending (i.e., propT (σ(i)) ≤ propT (σ(j)) if i occurs
before j). In the expression “set(par(σ1))∩set(par(σ2))” traces are converted into multi-sets using par which
in turn are converted into sets using set. This is done to ensure that events are globally unique and do not
appear in multiple traces.

Table 1 shows a fragment of some event log. Only two traces are shown, both containing 4 events. Each
event has a unique id and several properties. For example event 35654423 is an instance of activity A that
occurred on December 30th at 11.10, was executed by John, and costed 300 euros. The second trace starts
with event 35655526 and also refers to an instance of activity A.

3.3. Constructing a Transition System
One of the goals of process mining is to extract process models from logs such as the one depicted in

Table 1. In this paper, we partly use the approach presented in [4]. We first define a transition system. A
transition system is a triplet (S ,E ,T) where S is the state space (i.e., possible states of the process), E is
the set of event labels (i.e., transition labels), and T ⊆ S × E × S is the transition relation describing how
the system can move from one state to another. A transition (s1, e, s2) ∈ T describes that the process can
move from state s1 to s2 by an event labeled e. This is often denoted as s1

e→ s2. A transition system has
some initial state and set of final states. The set of behaviors possible according to a transition system is
given by all “walks” from the initial state to some final state. Hence a trace is possible according to the
transition system if it corresponds to such a “walk” in the transition system. So the goal is to come up with
a transition system that given an event log, characterizes the observed behaviors well. Typically, one aims
at a model that allows for most of the behavior in the log and not “too much” additional behavior. Before
discussing the delicate balance between “overfitting” en “underfitting”, we first provide the general idea of
extracting a transition system from an event log.

5

It is natural to assume that at any point in time a process instance is in some state and that this state
depends on its history. Hence, any prefix of a trace in the log should be mapped onto some state. The state
representation function takes care of this.

Definition 3 (State representation). A state representation function lstate is a function that, given a
(partial) trace σ produces some representation. Formally, lstate ∈ C → R where C is the set of possible traces
and R is the set of possible (state) representations (e.g., sequences, sets, or bags over one or more event
properties).

Assume that σ is the partial trace consisting of the first two events in Table 1. One possibility is that
function lstate maps σ on the last activity, i.e., the activity name property of the last event in σ. So
lstate(σ) = B . Another possibility is that function lstate maps σ onto the set of resources that have worked
on the process instance, i.e., lstate(σ) = {John}. Note that these two examples use abstractions, e.g., only
the last activity is relevant or only the people that have worked on the case are relevant. It is also possible
to have no abstractions, i.e., lstate(σ) = σ. However, as we will see later, it is impossible to make predictions
without some form of abstraction.

Just like we need to label the states in the transition system, we also need to label events. Note that
any event e in the log extends a partial trace σ1 into a longer trace σ2 = σ1; 〈e〉, i.e., σ1 concatenated with
the sequence just containing event e. In the transition system there should be a transition connecting state
lstate(σ1) to state lstate(σ2). This transition has an event label levent(e), based on some event representation
function levent.

Definition 4 (Event representation). An event representation function levent is a function that, given
an event e produces some representation. Formally, levent ∈ E → R where E is the set of possible events and
R is the set of possible (event) representations (e.g., the corresponding activity name).

Based on particular lstate and levent functions, we can define the transition system. The approach is
very simple. The states in the transition system correspond to prefixes in the log mapped to the desired
representation using a particular state representation function lstate. Moreover, the transition relation is
computed by “replaying” the traces on the transition system while using the event representation function
levent.

Definition 5 (Transition system). Let L ⊆ C be an event log. Given a state representation function lstate

and an event representation function levent, we define a labeled transition system TS = (S ,E ,T) where
S = {lstate(hdk (σ)) | σ ∈ L ∧ 0 ≤ k ≤| σ |} is the state space2, E = {levent(σ(k)) | σ ∈ L ∧ 1 ≤ k ≤| σ |}
is the set of events labels, and T ⊆ S ×E ×S with T = {(lstate(hdk (σ)), levent(σ(k + 1)), lstate(hdk+1(σ))) |
σ ∈ L ∧ 0 ≤ k <| σ |} is the transition relation. S start = {lstate(〈〉)} is the singleton set of initial states.
S end = {lstate(σ) | σ ∈ L} is the set of final states.

The set of states of the transition system is determined by the range of function lstate when applied to
the log data. The transitions in the transition system have a label based on function levent. The naive
algorithm for constructing a transition system is straightforward: for every trace σ, iterating over k (i.e.
0 6 k 6| σ |), we create a new state lstate(hdk (σ)) if it does not exist yet. Then the traces are scanned for

transitions lstate(hdk (σ))
levent(σ(k+1))−→ lstate(hdk+1(σ)) and these are added if they do not exist already. So

given concrete functions lstate and levent, it is possible to automatically build a transition system.
Figure 2 shows an example of a trace represented as a sequence of activity names 〈A,B ,C ,D ,C ,D ,C ,D ,E ,

F ,A,G ,H ,H ,H , I 〉. After the prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉 is executed it is in principle unknown that
the “future” is 〈F ,A,G ,H ,H ,H , I 〉 and that the process instance ends at a particular time. However, based
on the event log consisting of full traces executed in the past, one can construct a transition system as
sketched in Figure 2. Moreover, based on the prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉 and lstate, one can determine
the current state in the transition system. Based on this a prediction is made as will be elaborated later.

2Recall that hdk (σ) is a prefix of σ, i.e., the sequence consisting of the first k elements of σ (cf. Section 3.2).

6

past

current state

unknown
future

partial trace

history

full traces

predictprocess
discovery

annotated
transition
system

unknown
completion

time

predicted
completion

time

Figure 2: Illustrating the approach using an example trace with a known past and an unknown future.

3.4. Abstraction
Based on a log L and the lstate and levent functions, a transition system is defined. The key element

is to select the right lstate and levent functions. In the extreme case, lstate(σ) = σ and levent(e) = e
for any prefix σ and event e. In this case, there are no abstractions and all states (except the initial
state) are visited only once when replaying the event log. Hence, every new process instance will be unique
and one cannot learn form earlier instances. Clearly, this is undesirable and some degree of abstraction
is needed. Therefore, we consider an example where some form of abstraction is used. Assume we have
an event log and we are only interested in activity names. Suppose that propA ∈ E → A is a function
mapping events onto the corresponding activity names. Figure 3 refers to such a log without showing
the complete log, i.e., just a few traces are shown. Also note that per event only the activity name is
shown and other properties and the event’s id are not shown. The first line in the log shown in Figure 3
could refer to the first event in Table 1. Since we are only interested in activity names, it makes sense to
choose the event representation function such that levent(e) = propA(e). Now assume that we let states
only depend on the occurrences of earlier activities, i.e., the order is not important. Moreover, we do
not distinguish between the single execution of an activity and multiple executions of this activity. This
corresponds to the state representation function lstate1 (σ) = {propA(e) | e ∈ σ} (for σ ∈ L or some prefix).
Alternatively, one could argue that the order is important and choose the state representation function
lstate2 (σ) = 〈propA(σ(1)), propA(σ(2)), . . . , propA(σ(| σ |))〉 (for σ ∈ L). Figure 3 shows the result of applying
these two state representation functions. Note that the transition system in Figure 3(b) is more precise than
Figure 3(a), i.e., a weaker abstraction is used. For example, lstate2 distinguishes between activity sequences
〈A,B ,C 〉 and 〈A,C ,B〉 while lstate1 does not.

Note that both transition systems provided in Figure 3 can replay the log, i.e., any trace corresponds to
a walk in the transition system starting in a initial state and ending in a final state. This shows that the
transition system indeed reflects the behavior seen in the log. In Figure 3, initial and final states are denoted
using “small dangling arcs” going into respectively out of the respective nodes.

3.5. Balancing Between “Overfitting” and “Underfitting”
When building a transition system, we aim at a balance between “overfitting” and “underfitting”. There-

fore, we elaborate on these two notions. Let L be a log and TS be a transition system.

• TS is overfitting L if TS does not generalize and is sensitive to particularities in L. In an extreme
case, TS could merely be a representation of the log without any inference. A mining algorithm is
producing overfitting models if the removal or addition of a small percentage of the process instances
in L would lead to a remarkably different model. In a complex process with many possible paths, most

7

ABCD
ACBD
AED
ABCD
ABCD
AED
ACBD
...

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

(a) transition system based on sets

B

<>
A

<A> <A,E>
E

<A,E,D>
D

<A,B>

B

<A,B,C>
C

<A,B,C,D>
D

<A,C> <A,C,B>
B

<A,C,B,D>
D

C

(b) transition system based on sequences

Figure 3: Two example transition systems extracted from the same log using (a) lstate1 (σ) = {propA(e) | e ∈ σ} and (b)
lstate2 (σ) = 〈propA(σ(1)), propA(σ(2)), . . . , propA(σ(| σ |))〉 as state representation functions.

process instances will follow a path not taken by other instances in the same period. Therefore, it is
undesirable to construct a model that allows only for the paths that happened to be present in the log
as this is only a fraction of all possible paths. If one knows that only a fraction of the possible event
sequences are in the log, the only way to avoid overfitting is to generalize and have a model TS that
allows for more behavior than recorded in L.

• TS is underfitting L if TS allows for “too much behavior” that is not supported by L. This is also
referred to as “overgeneralization”. It is very easy to construct a model that allows for the behavior
seen in the log but also completely different behavior. For example, assume a log L consisting of 1000
cases. For each case A is followed by B and there are no cases where B is followed by A. Obviously,
one could derive a causal dependency between A and B . However, one could also create a model TS
where A and B are in parallel (i.e., all interleavings are included). The latter would not be “wrong”
in the sense that the behavior seen in the log is possible according to the model. However, it is very
unlikely and therefore one could argue that this TS is underfitting L.

Note that the notions of overfitting and underfitting are orthogonal to “non-fitting”. A model is non-
fitting if the observed traces are not possible according to the model. An overfitting log that merely encodes
all observed traces is still fitting in the sense that the log could have been produced by the model. An
underfitting log that allows for any trace over a given alphabet is also still fitting because it does not exclude
the observed behavior. There are various ways of quantifying these notions [26]. This is, however, outside
the scope of this paper.

3.6. Example Abstractions
To conclude this section, we give some examples of possible abstractions and illustrate the importance of

such abstractions using a real-life example.
Let us first consider abstractions with respect to event names. As indicated earlier, the event representation

function levent(e) = e does not provide any abstraction and will result in arcs in the transition system that
are taken only once when relaying a log. A typical abstraction is levent(e) = propA(e), i.e., mapping the
event onto the name of the activity. This was used in Figure 3. Of course other properties or combinations
of properties can be used, e.g., levent(e) = propcost(e) or levent(e) = (propA(e), propresource(e)). Note that

8

it is also possible to use a rather coarse abstraction such as levent(e) = null . Now all events are labeled null
and it becomes impossible to distinguish activities, etc. An abstraction becomes coarser when more events
are mapped onto the same term.

Abstractions with respect to states are more involved because they are not based on a single event but on
a sequence of events. Below, we informally discuss some of the abstraction mechanisms for states.

3.6.1. Abstraction 1: Maximal horizon
The basis of the state calculation can be the complete prefix or some partial prefix. In the latter case, only a

subset of the trace is considered. For example, instead of taking the complete prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉
shown in Figure 2, only the last four (h = 4) events could be considered: 〈D ,C ,D ,E 〉. In this case the “hori-
zon” is limited to 4. In a partial prefix, only the h most recent events are considered as input for the state
calculation. Taking a complete prefix corresponds to h =∞, i.e., the horizon is not limited.

3.6.2. Abstraction 2: Filter
The second abstraction is to filter the (partial) prefix, i.e., certain events are simply not considered

when calculating the current state. For example filtering could be used to project the horizon onto a set of
activities X , i.e., only events that correspond to some activity in X are considered in lstate. For example, if
X = {C ,D}, then the prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉 shown in Figure 2 is reduced to 〈C ,D ,C ,D ,C ,D〉.
Note that the filtering is applied to the sequence resulting from the horizon. The occurrence of some activity
a ∈ X is considered relevant for the state of a case. If a 6∈ X , then the occurrence of a is still relevant
for the process (i.e., it may appear on the arcs in the transition system) but is assumed to be irrelevant for
determining the state. If a is not relevant at all, it should be filtered out before and should not appear in L.

The above two abstractions (i.e., limiting the horizon to h and filtering events using X) can be swapped.
However, note that the order influences the result.

3.6.3. Abstraction 3: Sequence, bag, or set
The first two abstractions yield a sequence. The third abstraction mechanism optionally removes the

order or frequency from the resulting trace. For the current state it may be less interesting to know when
some activity a occurred and how many times a occurred, i.e., only the fact that it occurs within the scope
determined by the first three abstractions is relevant. In other cases, it may be relevant to know how many
times a occurred or it may be essential to know whether a occurred before b or not. This suggests that there
are three ways of representing knowledge about the past:

• sequence, i.e., the order of activities is recorded in the state,

• multi-set of activities, i.e., the number of times each activity is executed ignoring their order, and

• set of activities, i.e., the mere presence of activities.

Consider again the prefix 〈A,B ,C ,D ,C ,D ,C ,D ,E 〉. The above three possibilities result in 〈A,B ,C ,D ,C ,D ,C ,
D ,E 〉 (sequence), [A,B ,C 3,D3,E] (multi-set), or {A,B ,D ,E} (set).

The notations introduced in Section 3.1 can be used to formalize the abstractions mentioned above.
For example, let α(σ) = 〈propA(σ(1)), propA(σ(2)), . . . , propA(σ(| σ |))〉 be a prefix based on activity
names. Then state representation lstate1 (σ) = set(par(α(σ))) uses the set abstraction without filtering and
an infinite horizon. lstate2 (σ) = α(σ) uses the sequence abstraction without filtering and an infinite hori-
zon. lstate3 (σ) = par(tl4(α(σ))) uses the multi-set abstraction without filtering and finite horizon (h = 4).
lstate4 (σ) = par(α(σ) ↑ {a, b, c}) uses the multi-set abstraction after filtering. lstate5 (σ) = set(par(tl10(α(σ)) ↑
{a, b, c})) uses various abstractions, i.e., the state based on a prefix is determined by which of the activities
a, b, and/or c occurred in the last 10 events.

3.7. Application
So far, we only used rather academic examples to illustrate issues related to abstraction and the need

to balance between overfitting and underfitting. However, it is important to realize that these issues are of
the utmost importance when applying process mining in a real-life setting. We have been applying process
mining in a wide variety of organizations and were often confronted with spaghetti-like models when applying

9

1010

(a) only a set
abstraction is

used

(b) only a horizon of one is considered

Figure 4: Two models discovered using an event log of a Dutch municipality. Although both models are based on the same log
and provide information on the same set of activities, they are very different. The larger model is clearly overfitting, difficult
to interpret, and, therefore, not very useful. The smaller model is obtained after applying a coarser abstraction (setting the
horizon h = 1). This more simple model provides better insights.

classical process mining approaches. These models where typically the result of overfitting, i.e., the models
were a correct reflection of reality, but not very useful.

To illustrate this we show some results based on an event log of a municipality of about 40.000 citizens
in the south of The Netherlands. The event log is based on the process “Bezwaar WOZ”. Later we will use
the same log in one of the case studies used to evaluate our prediction approach.

The “Bezwaar WOZ” process handles objections (i.e., appeals) against the real-estate property valuation
or the real-estate property tax. We used an event log with data on 1982 objections handled by the munici-
pality. The log contains 12726 events. Because the actual activity names are not relevant for our discussion
here (and because of reasons of confidentiality), we anonymized the process and replaced names by letters.

Figure 4 shows two transition systems generated using our approach. Note that the two transitions
systems are not intended to be readable, but merely illustrate the effect of abstraction. The larger model was
obtained by assuming that the state of a case is determined by the set of activities that have taken place,
i.e., lstate(σ) = set(par(α(σ))). Figure 4(a) shows the whole model and the selected part in a bit more detail.
This model is able to reproduce the event log, i.e., all observed traces can be reproduced and the model does
not allow for any traces not present in the original event log. So the model is definitely “correct” but not
very useful as it does not give much insight into the Municipality’s appeal process. The second (smaller)
transition system (cf. Figure 4(b)) was obtained based the same log but now using a coarser abstraction. It
uses the abstraction that the state of a case is determined by only the last activity that has taken place (if
any), i.e., lstate(σ) = tl1(α(σ)). This simpler model is also able to reproduce the event log, i.e., all observed
traces can be generated by the net. However, the model also allows for many traces not present in the original
log. Note that the two transition systems in Figure 4 are not supposed to be readable and are only shown to
illustrate the effect of abstraction.

It should be noted that both models in Figure 4 provide information on identical sets of activities, i.e., the
scope is not changed. Both models are able to reproduce the initial log and no noise or infrequent behavior
have been removed for the smaller model. Therefore, Figure 4 nicely illustrates the relevance of abstraction.
By using an appropriate state representation function lstate and an appropriate event representation function

10

1 〈A00,B06,C 12,D18〉
2 〈A10,C 14,B26,D36〉
3 〈A12,E 22,D56〉
4 〈A15,B19,C 22,D28〉
5 〈A18,B22,C 26,D32〉
6 〈A19,E 28,D59〉
7 〈A20,C 25,B36,D44〉

Table 2: An example log. Each line corresponds to a trace represented as a sequence of activities with timestamps.

levent, one can balance between underfitting and overfitting.

4. Time Prediction

In the previous section, we showed how a transition system can be generated on the basis of an event
log. In this section, we show how this transition system can be annotated and used for prediction purposes.
In Figure 2, we already showed an overview of the overall approach. Based on the event log, an annotated
transition system is generated. Whenever we want to predict the completion time of some process instance, we
take its partial trace (i.e., the sequence of events executed thus far) and use the state representation function
lstate to map the partial trace onto a state in the transition system. Here we can learn from the information
collected for earlier process instances that visited the same state. Using this information, a prediction is made,
e.g., based on the average time to completion for earlier process instances in a similar state.

In this section, we first show how to construct the annotated transition system. Then, we show how it
can be used for predictions.

4.1. Constructing an Annotated Transition System
The goal is to attach predictive information to the states of the transition system, e.g., “In this state the

average time until completion is 6.5 days”. In order to do so, we annotate the states with measurements. For
example, we scan the history and for each situation were an instance was in a state s, we annotate the state
with the remaining time until completion. This way states are annotated with multi-sets of measurements
that are used as a basis for predictions.

As a running example, we use the event log shown in Table 2. Each line corresponds to a process instance,
e.g., the first trace 〈A00,B06,C 12,D18〉 refers to a process instance where activity A was executed at time
0, activity B was executed at time 6, activity C was executed at time 12, and activity D was executed at
time 183. For simplicity, execution durations are not considered in this example and we assume that each
instance starts with the execution of its first event.

Suppose we use a state representation function lstate that represents partial traces by the set of activities
that have been executed. Now consider all prefixes of the first trace 〈A00,B06,C 12,D18〉. The empty prefix
〈 〉 maps onto state ∅ and has a remaining time of 18 time units.4 Therefore, we add 18 to the annotation of
state ∅. The prefix 〈A00〉 maps onto state {A} and also has a remaining time of 18. Therefore, we add 18
to the annotation of state {A}. The prefix 〈A00,B06〉 maps onto state {A,B} and has a remaining time of
18− 6 = 12 time units. Therefore, we add 12 to the annotation of state {A,B}. The prefix 〈A00,B06,C 12〉
results in the addition of annotation “6” to state {A,B ,C} and finally prefix 〈A00,B06,C 12,D18〉 results in
the addition of annotation “0” to state {A,B ,C ,D}. This process is repeated for all other traces. Consider
for example the third trace 〈A12,E 22,D56〉. The empty prefix 〈 〉 maps onto state ∅ and has a remaining time
of 56 − 12 = 44 time units. Therefore, we add 44 to the annotation of state ∅. The prefix 〈A12〉 maps onto
state {A} and also has a remaining time of 44. Therefore, we add 44 to the annotation of state {A}. The
prefix 〈A12,E 22〉 maps onto state {A,E} and has a remaining time of 56 − 22 = 34 time units. Therefore,

3Note that we use a more compact representation here, e.g., we assume that the only two relevant properties are (a) the
activity name and (b) the timestamp, and we do not attach unique id’s to events. As discussed in Section 3.2, events can have
many more properties and are uniquely identifiable.

4This is the best guess we can make as the first event is at time 0 and the last one is at time 18.

11

we add 34 to the annotation of state {A,E}. Etc. After we have followed this procedure for the whole
log in Table 2, then state ∅ is annotated with a bag containing seven elements: [18, 26, 44, 13, 14, 40, 24].
State {A,E} is annotated with a bag containing two elements: [34, 31]. State {A,B ,C} is annotated with a
bag containing five elements: [6, 10, 6, 6, 8]. State {A,B ,C ,D} is also annotated with a bag containing five
elements: [0, 0, 0, 0, 0].

The following definition formalizes the way of annotating states described before. Each full trace is split
into a prefix σ1 (“the part that already took place”) and the postfix σ2 (“the part that still needs to happen”).
Based on this a measurement lmeasure(σ1, σ2) is generated that can be attached to the corresponding state.
Note that it is crucial that we have full historic information, i.e., although we only consider σ1 to determine
the corresponding state lstate(σ1), we can use both the “past” σ1 and “future” σ2 to generate a measurement.

Definition 6 (Measurement). A measurement function lmeasure is a function that, given a prefix trace σ1

and a postfix trace σ2 produces some measurement lmeasure(σ1, σ2), e.g., the remaining time until completion.
Formally, lmeasure ∈ (C × C) → M where C is the set of possible traces and M is the set of possible
measurement values (e.g., some time duration).

In principle, different measurement functions can be used. Thus far, we focused on the remaining time
until completion. If this is the thing we want to predict, the following measurement function should be used:

lmeasureremaining(σ1, σ2) =

 0 if σ2 = 〈〉
maxT (σ2)−minT (σ2) if σ1 = 〈〉 and σ2 6= 〈〉
maxT (σ2)−maxT (σ1) if σ1 6= 〈〉 and σ2 6= 〈〉

where maxT (σ) = max{e | e ∈ σ} and minT (σ) = min{e | e ∈ σ}. To illustrate lmeasureremaining consider the
first trace in Table 2 after executing the first two activities. The full trace (〈A00,B06,C 12,D18〉) is split into
σ1 = 〈A00,B06〉 and σ2 = 〈C 12,D18〉. For this particular situation lmeasureremaining(σ1, σ2) = maxT (〈C 12,D18〉)−
maxT (〈A00,B06〉) = 18− 6 = 12.

As mentioned before, different measurement functions can be used. For example the function that con-
siders the time that has already elapsed:

lmeasureelapsed (σ1, σ2) =
{

0 if σ1 = 〈〉
maxT (σ1)−minT (σ1) if σ1 6= 〈〉

Note that this function has no predictive value. It is merely added to show another example. The total time
can be measured as follows:

lmeasuretotal (σ1, σ2) =
{

0 if σ1; σ2 = 〈〉
maxT (σ1; σ2)−minT (σ1; σ2) if σ1; σ2 6= 〈〉

It is easy to see that lmeasuretotal (σ1, σ2) = lmeasureelapsed (σ1, σ2) + lmeasureremaining(σ1, σ2). One can also measure the time
spent in a particular state:

lmeasuresojourn (σ1, σ2) =
{

0 if σ1 = 〈〉 or σ2 = 〈〉
minT (σ2)−maxT (σ1) if σ1 6= 〈〉 and σ2 6= 〈〉

Note that lmeasuresojourn (σ1, σ2) is included in lmeasureelapsed (σ1, σ2).
The functions listed above are all related to the duration of a process instance. It is also possible to

provide completely other measurement functions using the principle of knowing both the past σ1 and the
future σ2 of earlier instances. Some examples:

• One can define a function that determines whether some activity x will take place in the future. Such as
measurement function can be used to predict the probability of certain desirable or undesirable effects.

• One can define a function that measures the time until a particular activity x is executed. This is
useful if the process has so-called milestones and one is interested in the moment the milestone will be
reached.

• One can have functions associated to costs, e.g., “What will the total cost of a case be?”.

12

• One can have functions related to service level agreements, e.g., “Will the case be finished in four
weeks?”.

• One can have functions related to resources, e.g., “Will a particular resource be used for this case?”.

The above examples show that our approach allows for all kinds of measurements and that there are many
interesting application scenarios. However, in the remainder we focus on lmeasureremaining , i.e., the time until
completion.

Using a log, a transition system, and a measurement function lmeasure, we can annotate the transition
system as described before.

Definition 7 (Annotated transition system). Let L ⊆ C be an event log and TS = (S ,E ,T) a transition
system obtained based on a state representation function lstate and an event representation function levent.
For a particular measurement function lmeasure ∈ (C×C)→M, we construct an annotation A ∈ S → IB(M)
where for any s ∈ S:5

A(s) =
∑
σ ∈ L

∑
0 ≤ k ≤| σ |

s = lstate(hdk (σ))

[
lmeasure(hdk (σ), tl|σ|−k (σ))

]

(S ,E ,T ,A) is an annotated transition system parameterized by L, lstate, levent, and lmeasure.

Function A attaches a bag of measurements to each state, i.e., A(s) is a multi-set. Note that the two
∑

operators range over all prefixes that correspond to a particular state s. Then for each prefix that maps onto
s, a measurement lmeasure(hdk (σ), tl|σ|−k (σ)) is added to corresponding multi-set.

ABCD
ACBD
AED
ABCD
ABCD
AED
ACBD

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

B

Figure 5: The annotated transition system based on the log shown in Table 2 using lmeasureremaining .

Figure 5 shows an annotated transition system. It is based on the log shown in Table 2. Some example
annotations are: A(∅) = [18, 26, 44, 13, 14, 40, 24], A({A,E}) = [34, 31], A({A,B ,C}) = [6, 10, 6, 6, 8], and
A({A,B ,C ,D}) = [0, 0, 0, 0, 0]. Note that the annotated transition system is completely determined by
choosing L, lstate, levent, and lmeasure. The annotated transition system Figure 5, is completely parame-
terized by (a) the log shown in Table 2, (b) lstate(σ) = set(par(α(σ))), (c) levent(e) = propA(e), and (d)
lmeasure(σ1, σ2) = lmeasureremaining(σ1, σ2).

4.2. Predictions
Next we show how an annotated transition system (like the one in Figure 5) can be used for making

predictions. Consider a new case N that did not yet finish. The partial trace observed so far is σN =
〈A85,E 95〉 (using the shorthand notation also used in Table 2), i.e., activity A occurred at time 85 and E

5Note that
[
lmeasure(hdk (σ), tl|σ|−k (σ))

]
denotes a multi-set containing precisely one element (a particular measurement).

Using the two
∑

operators multi-sets are joined into larger multi-sets to collect all relevant measurements for a particular state
s.

13

occurred at time 95. lstate(σN) = {A,E}. For this state we have two earlier measurements: 31 and 34
(A(lstate(σN)) = [34, 31]). Hence, the best prediction for the remaining time until completions seems to
be the average of 31 and 34, i.e., 32.5. Therefore, it can be predicted that the completion time will be
95 + 32.5 = 127.5. This example shows that we need a prediction function that converts a multi-set of
measurements into a single value.

Definition 8 (Prediction function). A prediction function is a function that, given a bag a measurements
produces some prediction, e.g., the average. Formally, predict ∈ IB(M)→M, i.e., for some bag of measure-
ments b, predict(b) returns some prediction.

An obvious choice for predict is simply taking the average. However, before defining prediction functions
we stress that the bag b = A(s) for a particular state s should be seen as a sample. In statistics, a sample is a
(hopefully) representative subset of an unknown population. Let us assume that b = [b1, b2, . . . , bn], i.e., the
n measurements linked to state s are taken as a sample. The sample mean is defined as follows: b =

∑n
i=1 bi

n .
The sample mean is a good estimator of the population mean, i.e., b is the best guess for real expected value.
Based on this we define predictaverage(b) = b as a prediction function.

If the sample b = [b1, b2, . . . , bn] is taken as a population, the sample variance is s2
n =

∑n
i=1(bi−b)2

n . If s2
n

is small, then the values in the sample are closer together. If s2
n is large, then the values in the sample are

further apart. s2 =
∑n

i=1(bi−b)2

n−1 is an unbiased estimator of the population variance, i.e., it is the best guess
for the real variance knowing that we have only seen a subset of the whole population. Note that s2

n and s2

converge for larger values of n.
The square root of the variance, called the standard deviation, has the same unit as the original variable

and, for this reason, is easier to interpret. Therefore, predictstdev (b) =
√

s2 is another example of a prediction
function.

Other prediction functions can be used for the measurements, for example predictmin(b) = min{b1, b2, . . . , bn}
or predictmax (b) = max{b1, b2, . . . , bn}. Note that these are not really estimators for the whole population,
but only for the sample. Nevertheless, these functions provide interesting information, especially if many
measurements are linked to the states. Based on a particular prediction function predict, we can define the
notion of a prediction.

Definition 9 (Prediction). Let L ⊆ C be an event log and (S ,E ,T ,A) an annotated transition system
parameterized by L, lstate, levent, and lmeasure. Moreover, let predict ∈ IB(M) → M be a prediction
function. For any partial trace σN , the predicted value is predict(A(lstate(σN))) if lstate(σN) ∈ S.

As the above definition shows, a prediction for a running instance is made by looking up the state
corresponding to the partial trace σN . For this state there have been a number of measurements and using
an appropriate prediction function a prediction is made. Note that it is only possible to make a meaningful
prediction if the calculated state is in the annotated transition system (i.e. lstate(σN) ∈ S) and there are a
reasonable number of measurements for this state.

Figure 6 shows per state predictions based on predictaverage , predictmin , predictmax , predictstdev . For
example, process instances that have completed activities A, B , and C (but not yet D) have an expected
remaining processing time of 7.2. At the start, when no information is available yet, the predicted remaining
processing is 25.75.

5. Implementation

The work presented in this paper is supported by various plug-ins of our process mining tool ProM
[1, 3, 26]. The first version of ProM was released in 2004. The initial goal of ProM was to unify process
mining efforts at Eindhoven University of Technology and other cooperating groups [5]. Traditionally, most
analysis tools focusing on processes are restricted to model-based analysis, i.e., a model is used as the starting
point of analysis. Such analysis is only useful if the model reflects reality. Process mining techniques use
event logs as input, i.e., information recorded by systems ranging from information systems to embedded
systems. Hence the starting point is not (only) some model, but the “observed reality”. Since predictions

14

{}
A

{A} {A,C}
C

{A,B}

B

{A,B,C}
C

{A,B,C,D}
D

{A,E} {A,D,E}
D

E

B

[18,26,44,13,
14,40,24]

[34,31] [0,0]

[0,0,0,0,0][6,10,6,6,8]

[22,19]

[12,9,10]

[18,26,44,13,
14,40,24]

average: 25.75
st. dev.: 12.25
min: 13
max: 44

average: 25.75
st. dev.: 12.25
min: 13
max: 44

average: 0
st. dev.: 0
min: 0
max: 0

average: 0
st. dev.: 0
min: 0
max: 0

average: 32.5
st. dev.: 2.12
min: 31
max: 34

average: 20.5
st. dev.: 2.12
min: 19
max: 22

average: 10.33
st. dev.: 1.53
min: 9
max: 12

average: 7.2
st. dev.: 1.79
min: 6
max: 10

Figure 6: The annotated transition system showing per state: the average, standard deviation, minimum, and maximum
remaining time until completion.

are also based on observations, like other process mining techniques, ProM is a good basis to implement the
ideas presented in this paper.

ProM is open source and uses a plug-able architecture, e.g., people can add new process mining techniques
by adding plug-ins without spending any efforts on the loading and filtering of event logs and the visualization
of the resulting models. One of the first plug-ins was the plug-in implementing the α-algorithm [6], i.e., a
technique to automatically derive Petri nets from event logs. Currently, ProM provides 274 plug-ins.6 To
facilitate a basic understanding of the scope and architecture of ProM, we briefly describe the six types of
plug-ins supported by ProM:

• Mining plug-ins implement some mining algorithm, e.g., the α-miner to discover a Petri net, the FSM
miner to discover a transition system, or the social network miner to discover a social network.

• Export plug-ins implement some “save as” functionality for specific objects in ProM. For example,
there are plug-ins to save Petri nets, EPCs, social networks, YAWL models, spreadsheets, etc. often
also in different formats (PNML, CPN Tools, EPML, AML, etc.).

• Import plug-ins implement an “open” functionality for specific objects, e.g., load instance-EPCs from
ARIS PPM or BPEL models from WebSphere.

• Analysis plug-ins which typically implement some property analysis on some mining result. For ex-
ample, for Petri nets there is a plug-in which constructs place invariants, transition invariants, and
a coverability graph. However, there are also analysis plug-ins to compare a log and a model (i.e.,
conformance checking) or a log and an LTL formula. Moreover, there are analysis plug-ins related to
performance measurement (e.g., projecting waiting times onto a Petri net).

• Conversion plug-ins implement conversions between different data formats, e.g., from EPCs to Petri
nets or from Petri nets to BPEL.

• Log filter plug-ins implement different ways of “massaging” the log before applying process mining tech-
niques. For example, there are plug-ins to select different parts of the log, to abstract from infrequent
behavior, clean the log by removing incomplete cases, etc.

6This paper uses the ProM Nightly Build of 9-1-2009. ProM can be downloaded from www.processmining.org.

15

In this paper we do not elaborate on the architecture and implementation framework for plug-ins (for this
we refer to earlier papers [1, 3, 26]). Instead we focus on the new prediction functionality.

First of all, ProM provides the so-called FSM Miner plug-in [4] to extract a transition system from
an event log. The FSM Miner is an example of mining plug-in in the classification given above. The
basic functionality of this plug-in is to create a transition system based on an event log, i.e., it implements
Definition 5 and supports the abstractions presented in Section 3.6. In fact, even more abstractions and
perspectives are supported, e.g., also data elements, resources, transactional information, etc. can be used to
build a transition system. As shown in [4], the FSM Miner can be used for various purposes. For example,
using the Theory of Regions, the transition system can be converted into a Petri net or some other higher-level
representation. However, the FSM Miner does not provide any functionality directly related to prediction.

For this paper, we implemented another plug-in called the FSM Analyzer which takes a transition system
and an event log as input. The output of the FSM Analyzer is a transition system extended with information
useful for predictions. For example, the FSM Analyzer can produce results such as shown Figure 6. The FSM
Analyzer is an example of an analysis plug-in in the classification given earlier. Figure 7 shows a screenshot
of the FSM Analyzer.

Figure 7: Screenshot of the FSM Analyzer showing some results for the log described in Table 2.

The FSM Analyzer visualizes the transition system and by default shows information about elapsed times
(i.e., the average time to reach a particular state based on lmeasureelapsed), sojourn times (i.e., the average time
spent in a particular state based on lmeasuresojourn), and remaining times (i.e., the average time to reach the end
from this state lmeasureremaining). The user can select the time unit, the measurement function, and the coloring
function. The measurement function is the implementation of predict (cf. Definition 8) and currently average,
variance, minimum, maximum, frequency, sum, standard deviation, and median are supported. The coloring
function determines the coloring of arcs and nodes. In Figure 7 the colors are based on the remaining time
until completion. The nodes indicated in red represent states from which the predicted time until completion
is long. The nodes indicated in blue represent states from which the predicted time until completion is
short. The nodes that are yellow correspond to states which fall in-between these two categories. A similar
coloring is applied to arcs, e.g., if it typically takes a long time to move from one node to another, then the
corresponding arc is colored red. The coloring can be customized by setting thresholds, etc.

The result of the FSM Analyzer can be used to make predictions at run-time. For this we use the same
approach as the recommendation service [31] and the earlier prediction service [13]. The basic idea is that
some run-time environment supplies a partial trace and waits for a recommendation or prediction as described
in Definition 9. Note that this only requires a lookup in the result provided by the FSM Analyzer. To realize
this, the link between Declare [23] and ProM described in [31, 2] can be used. Declare is a workflow
management system providing more flexibility than the traditional systems by supporting various declarative

16

languages (DecSerFlow, ConDec, etc.) rather than some fixed procedural language [23]. In [31] it is shown
how ProM can be used to recommend the next step based on the analysis of historic data. Although the
recommendation service described in [31] is a very specific application using predictions, a similar interface
can be used for the broad spectrum of predictions based on the output of the FSM Analyzer (also see [10]).
In fact, in [2] a more generic approach called “operational support” is presented. Newer versions of ProM
will provide such a facility.

In this paper, we do not elaborate on the link between ProM and Declare. Instead we refer to [31, 10].
Moreover, we would like to stress that the idea and implementation are not specific for Declare. Any
workflow management system can be taken and extended with prediction functionality based on the FSM
Analyzer. The only functionality required is that the workflow management system stores event logs and is
able to supply a partial trace when it needs a prediction.

[[A, C]]
 sojourn = 11.5
 elapsed = 4.5

 remaining = 20.5

[[A, D, E]]
 sojourn = 0.0

 elapsed = 42.0
 remaining = 0.0

[[A]]
 sojourn = 6.0
 elapsed = 0.0

 remaining = 25.5714285

[[A, B, C]]
 sojourn = 7.2

 elapsed = 11.8
 remaining = 7.2

[[A, B]]
 sojourn = 4.33333333
 elapsed = 4.66666666

 remaining = 10.3333333

[[A, B, C, D]]
 sojourn = 0.0

 elapsed = 19.0
 remaining = 0.0

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 25.5714285

[[A, E]]
 sojourn = 32.5
 elapsed = 9.5

 remaining = 32.5

D
complete

D
complete

A
complete

C
complete

B
complete

E
complete

B
complete

C
complete

(a) Predictions based on the set abstraction

[{0=C, 1=B, 2=A}]
 sojourn = 6.0
 elapsed = 9.0

 remaining = 6.0

[{0=C, 1=A}]
 sojourn = 11.5
 elapsed = 4.5

 remaining = 20.5

[{0=D, 1=E, 2=A}]
 sojourn = 0.0

 elapsed = 42.0
 remaining = 0.0

[{0=A}]
 sojourn = 6.0
 elapsed = 0.0

 remaining = 25.5714285

[{0=D, 1=C, 2=B, 3=A}]
 sojourn = 0.0

 elapsed = 15.0
 remaining = 0.0

[{0=B, 1=C, 2=A}]
 sojourn = 9.0

 elapsed = 16.0
 remaining = 9.0

[{0=B, 1=A}]
 sojourn = 4.33333333
 elapsed = 4.66666666

 remaining = 10.3333333

[{0=D, 1=B, 2=C, 3=A}]
 sojourn = 0.0

 elapsed = 25.0
 remaining = 0.0

[{}]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 25.5714285

[{0=E, 1=A}]
 sojourn = 32.5
 elapsed = 9.5

 remaining = 32.5

A
complete

E
complete

C
complete

B
complete

B
complete

C
complete

D
complete

D
complete

D
complete

(b) Predictions based on the sequence abstraction

Figure 8: Two transition systems with prediction information based on the same event log.

To further illustrate the functionality of the FSM Analyzer, we revisit our running example. Figure 8
shows two transition systems derived from Table 2 using ProM’s FSM Miner. These are the same transition
systems as shown in Figure 3, but now automatically generated by ProM. Figure 8(a) is based on the
set abstraction and Figure 8(b) uses the sequence abstraction. Both only consider the activity names and
no other properties. The FSM Analyzer has been applied to both transition systems resulting in the two
diagrams depicted in Figure 8. Now let us assume that we have a new process instance N for which we want
to make a prediction. The partial trace observed so far is σN = 〈A20,B30,C 40〉 (using the shorthand notation
also used in Table 2). Based on Figure 8(a) the predicted remaining time is 7.2 while based on Figure 8(b)
the predicted remaining time is 6.0. So using the set abstraction, the predicted end time is 47.2, while using
the sequence abstraction, the predicted end time is 46.0. This example nicely illustrates that the prediction

17

depends on the abstractions selected when generating the transition system. Both predictions are “correct”,
however, Figure 8(a) assumes that the order of past activities does not matter, while Figure 8(b) assumes
that the order is relevant. Note that the predictions after just executing 〈A20〉 or 〈A20,B30〉 are identical for
both transition systems because A is always first no matter which abstraction is chosen.

The fact that different predictions are possible based on the abstraction selected, illustrates the need to
assess the quality of predictions.

6. Quality of Predictions

As shown thus far, our approach allows for the prediction of various things including the remaining time
until completion. Depending on the abstraction chosen, different predictions are possible. Moreover, under
certain circumstances one prediction may be less reliable than another. Therefore, this section elaborates on
the quality of predictions.

Intuitively, the quality of the prediction depends on the number of measurements per state. If there are
only few observations, the predictive value is limited. Moreover, if the individual measurements are very
different, then the predictive value seems less than in the situation were all measurements are similar. As
indicated in Section 4.2, the bag of measurements A(s) associated to some state s can be seen as a random
sample. Let A(s) = b = [b1, b2, . . . , bn], i.e., n observations have been made: b1, b2, . . . , bn . Now we need
to predict the next observation bn+1 based on b1, b2, . . . , bn . Let br

n+1 be the real value and bp
n+1 be the

predicted value. Clearly the goal is to minimize the error | br
n+1 − bp

n+1 |.
We will look at the quality of predictions from different angles. First, we try to compute a confidence

interval for the true average. Second, we compute a confidence interval for the real value assuming that we
know the true average. Finally, we discuss cross-validation as a means to assess the quality of a prediction
in an experimental setting.

6.1. Predicting the Average Right
Let A(s) = b = [b1, b2, . . . , bn] be the bag of measurements and let us assume that these are all sampled

from some random variable. We assume that these samples are independent, i.e., bi does not depend on bj ,
and the next realization br

n+1 does not depend on earlier samples. Based on b1, b2, . . . , bn , the best estimator
for br

n+1 is b, i.e., the sample mean. However, if there are only a few measurements, then b may be very
different than the true expected value µ of br

n+1. Therefore, we first try to establish a confidence interval
for the true expected value of br

n+1. There are various ways of calculating such a confidence interval. Here,
we sketch two of the most basic approaches. These can be found in many textbooks, e.g., books explaining
statistical hypothesis testing in the context of simulation [20, 25].

First, let us assume that we have many measurements (say n ≥ 30). Because b is the average of a large
number of independent measures, we can assume that b is approximately normally distributed (cf. law of large
numbers). From this fact, we deduce the probability that the true expected value µ lies within a so-called
confidence interval. Given the sample mean b and the sample standard deviation s, the real value µ conforms
with confidence (1 − α) to the following equation: b − s√

n
z (α2) < µ < b + s√

n
z (α2) where z (α2) is defined

as follows. If Z is a standard normally distributed random variable, then IP[Z > z (x)] = x . The value α
represents the unreliability, that is the chance that µ does not conform to the equation. Some example values
for the z function: z (0.001) = 3.090, z (0.005) = 2.576, z (0.01) = 2.326, z (0.05) = 1.645, and z (0.1) = 1.282.
The interval

[
b − s√

n
z (α2), b + s√

n
z (α2)

]
is also called the (1−α)-confidence interval for the estimated value

µ.
If there are fewer measurements, then the above approach cannot be used because it depends on the law

of large numbers. Therefore, we mention a second approach that can still be applied if there are just a few
observations. However, for this approach it needs to be assumed that the original distribution is normally
distributed. In this case the Student’s t-distribution can be used to calculate the confidence intervals. Let
[b1, b2, . . . , bn] be again the bag of measurements with a sample mean b, sample deviation s. For confidence
(1− α) the following confidence interval can be deduced:

[
b − s√

n
tn−1(α2), b + s√

n
tn−1(α2)

]
where tv (x) is

the critical value of a Student’s t-distribution, also called t-distribution, with v degrees of freedom.
In our running example, there are only a few observations. Therefore, we apply the second approach. As

Figure 6 shows there are only 5 measurements linked to state {A,B ,C}: A({A,B ,C}) = b = [6, 10, 6, 6, 8].

18

Hence, n = 5, b = 7.2 and s = 1.79. Let us assume that we are interested in a 90% confidence interval, i.e.,
α = 0.1. By simply applying the formula, we get

[
b − s√

n
tn−1(α2), b + s√

n
tn−1(α2)

]
=[

7.2− 1.79√
5

t5−1(0.05), 7.2 + 1.79√
5

t5−1(0.05)
]
. Since t4(0.05) = 2.13, the 90% confidence interval for the com-

pletion time in state {A,B ,C} is [5.5, 8.9]. So, assuming a normal distribution, the expected flow time for
partial cases in state {A,B ,C} is with 90% confidence between 5.5 and 8.9. This simple example shows that
by making some basic assumptions, the quality of the predicted average can be quantified.

6.2. Estimating the Quality of a Prediction
We just showed that under certain assumptions, we can establish a confidence interval for the true expected

value of br
n+1. However, even if the confidence interval is very narrow, the error | br

n+1 − bp
n+1 | may still be

substantial.
Suppose that b1, b2, . . . , bn are mutually independent and sampled from a probability distribution with

mean µ and variance σ2 and that the next realization will be sampled from the same probability distribution.
As n becomes larger, the confidence interval will become more narrow with upper and lower bounds close to
µ. However, the expected average error | br

n+1 − bp
n+1 | remains roughly σ.

Note that in general we do not know µ and σ2. However, when we have sufficient measurements, we
can approximate them as described in Section 6.1. Moreover, let us assume that the b1, b2, . . . are mutually
independent and sampled from a normal distribution with mean µ and variance σ2. Under these assumptions
we can state that with probability 0.683 the next measurement will be between [µ−σ, µ+σ], with probability
0.954 the next measurement will be between [µ−2σ, µ+2σ], and with probability 0.997 the next measurement
will be between [µ−3σ, µ+3σ]. This illustrates that for a known distribution, it is possible to not only supply
a prediction but also provide information about the quality of the prediction.

6.3. Cross-Validation
In the previous subsections, we made assumptions about the underlying probability distribution. For

example, we assumed that the measurements are independent and that the shape of the distribution is
known (e.g., normal distribution). However, it is possible to measure the quality in a more direct manner.
One way would be to simply take the log, derive the annotated transition system and predictions and then in
a second run compare the predicted values with the real values. The term Mean Squared Error (MSE) is used
to quantify the difference between the predicted and real values. Suppose that for a particular state s with
A(s) = b = [b1, b2, . . . , bn], we predict predict(b). The MSE for this state is MSE =

∑n
i=1(bi−predict(b))2

n . We
can also take the Root Mean Squared Error (RMSE), by taking the square root of MSE.

Although the principle described above is appealing, there is one problem. The same data set is used both
for making the predictions and evaluating the quality of the predictions. This is undesirable. For example, if
n = 1, then MSE = 0 by definition. This is why cross-validation is needed. Cross-validation is the statistical
practice of partitioning a sample data set into two subsets such that the analysis is initially performed on
one subset (the “training set”) while the other subset is used for validation (the “test set”).

The most basic form of cross-validation, holdout validation, is to randomly select samples to form the test
set, and the remaining observations are retained as the training data. More involved is K-fold cross-validation
where the whole data set is partitioned into K sets of equal size. Of the K sets, one set is selected as test set,
while the union of the other K − 1 sets is used as training set. The cross-validation process is then repeated
K times (the folds), with each of the K sets used exactly once as the validation data. The K results from
the folds then can be averaged (or otherwise combined) to produce a single estimation. The advantage of
this method is that all observations are used for both training and validation, and that it is possible to get
insight into the reliability of the validation itself. A commonly used value for K is 10.

Note that for cross validation, there is no need to make assumptions about the underlying distribution.
ProM supports this kind of cross validation through the so called FSM Evaluator. This plug-in takes (a) a
transition system with predictions based on one log and (b) another event log, and then calculates the MSE
and other statistics for each state. We will use this plug-in in the next section to evaluate our approach.

19

7. Experiments

In this section, we demonstrate the applicability of our approach using one synthetic event log obtained
via simulation and two real-life logs used in two case studies. For the case studies we analyzed processes in
two different Dutch municipalities.

7.1. Synthetic Example
For our first experiment we use an event log of a reviewing process. This log was obtained through

simulation. We first use this synthetic log to allow for a controlled experiment where it is clear what the
desired outcome should be. This way we can validate our approach.

Using CPN Tools [19] we have modeled the reviewing process in terms of a so-called colored Petri net.
From ProM it is possible to generate CPN models [27] and from CPN Tools it is possible to generate
event logs for ProM [21]. Hence, there is a bidirectional coupling of CPN Tools and ProM.

The stimulated reviewing process starts with inviting reviewers. Then the reviewers can return their
reviews. However, some reviewers may not return their review resulting in a time-out event. After a while
the reviews are collected and a decision is made. Based on the decision, the paper is accepted or rejected.
For internal activities such as inviting reviewers, making decisions, and accepting/rejecting papers, we record
a start and complete event. For external activities such as reviewing, we can only see the completion. The
CPN model also contains information about timing and resources, e.g., the various internal activities are
done by particular people having distinct roles. The external activities are done by a large pool of reviewers.

decide

decide
complete

decide
start

collect reviews

collect reviews
complete

collect reviews
start

invite reviewers

invite reviewers
complete

invite reviewers
start

accept

accept
start

accept
complete

reject

reject
start

reject
complete

t:1

time-out 2
complete

get review 2
complete

time-out 3
complete

get review 3
complete

get review 1
complete

time-out 1
complete

Figure 9: Petri net discovered by ProM using the α-algorithm.

Based on the CPN model described above, we generated two event logs: a training set L1 and a test set
L2. Both event logs have information about 200 process instances, i.e., submitted papers. To provide some
insight into the process we use the α-algorithm [6] to discover a Petri net based on L1 (i.e., the event log
holding the training set). The discovered model indeed matches the model constructed using CPN Tools (cf.
Figure 9). Note that the model indicates start and complete events by grouping two transitions in a single
box.

It is important to note that we only show the Petri net representation of the process to provide the reader
with some insight into the process. Our approach does not need a process model in terms of a Petri net or
any other notation and it is not necessary to use process discovery algorithms such as the α-algorithm.

Based on L1, we can use the FSM Miner of ProM to extract a transition system using a particular
abstraction. Using the FSM Analyzer we can extend this transition system with predictive information as
shown before. Figure 10 shows a screenshot of an annotated transition system based on L1 while using a
set abstraction based on all activities. For example, Figure 10 shows the state [[invite reviewers-complete,
invite reviewers-start]].7 As indicated in Figure 10, the predicted time until completion is 21.605 days,
i.e., after completing the invitations it takes on average three weeks to complete the reviewing process.

7This is the way the FSM Analyzer represents the set containing two events related to the start and completion of activity
invite reviewers, i.e., [[invite reviewers-complete, invite reviewers-start]] denotes {invite reviewers-complete, invite reviewers-
start}.

20

Figure 10: Screenshot of ProM’s FSM Analyzer while making a prediction model based on an event log of 200 cases.

Figure 10 also shows information about the average/expected sojourn time for this state (1.53 days) and the
average/expected elapsed time (2.51 days). For state {collect reviews-start, get review 1-complete, get review
2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start} the predicted time until
completion is 11.87 days (not visible in Figure 10). This means that for cases where all reviews are sent back
in time, it takes on average 12 days to make the decision, inform the author, and complete the reviewing
process. For the empty state, the predicted remaining time until completion is 24.12 days. Note that this is
the average total time to handle reviews from begin to end.

The screenshot shown in Figure 10 is based on the set abstraction. However, as described in Section 3.6
various abstractions are possible. Figure 11 shows four transition systems obtained using four different
abstractions. Figure 11(a) shows the set abstraction already used in Figure 10. Figure 11(b) shows an
abstraction where the six “time out” and “get review” activities are ignored, but the order of the remaining
activities is taken into account. This results in a simpler model. The transition system can be based on all
kinds of properties of events, i.e., the data and resource perspectives can also be used. Figure 11(c) only looks
at the resource perspective. In this particular transition system, the state of a paper is determined by which
resources have worked on it. Here only the three key resources working in the editorial office are taken into
account. Moreover, since a bag abstraction is used, the order is not important, but the frequency is. This
results in a completely different transition systems with nodes such as [Anne2,Mike2,Wil1] indicating that
Anne has performed two events, Mike has performed two events, and Wil has performed one event. For this
state the predicted time until completion is 6.78 days. Figure 11(d) uses a full abstraction, i.e., lstate(σ) = ∅
meaning that all prefixes are mapped onto the same state. This is an interesting abstraction as it serves as
a benchmark. This benchmark abstraction assumes that one knows nothing and simply takes the average
over all events in the past. When the transition system shown in Figure 11(d) is used, the prediction for the
remaining time until completion is always 13.06 days. This value is obtained by simply taking the average of
all remaining times in the whole log L1. Note that 13.06 is more than half of the average total time (which
is 24.12 days). In the beginning of the process there are more events than at the end. Therefore, the average
remaining time until completion is more than half of the average total time.

The four transition systems shown in Figure 11 can be used to make concrete predictions for individual
cases. Suppose that the set abstraction is used (i.e., Figure 11(a)), then initially the predicted remaining

21

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 24.2777777
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.11111111
 elapsed = 19.4444444

 remaining = 2.11111111

[[get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 4.78125
 elapsed = 8.40625

 remaining = 15.21875

[[get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.56521739
 elapsed = 5.26086956

 remaining = 17.8260869

[[get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 3.33333333
 elapsed = 4.66666666

 remaining = 11.4444444

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 2.3

 elapsed = 23.7
 remaining = 2.3

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 21.6666666
 remaining = 0.0

[[get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 2.75

 elapsed = 4.83333333
 remaining = 22.0

[[get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.58333333
 elapsed = 9.20833333

 remaining = 12.4166666

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete]]
 sojourn = 0.0

 elapsed = 24.1333333
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start]]
 sojourn = 0.0

 elapsed = 21.2727272
 remaining = 0.0

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.35714285
 elapsed = 20.4285714

 remaining = 2.35714285

[[collect reviews-complete, collect reviews-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 4.12903225
 elapsed = 16.8064516

 remaining = 10.6451612

[[invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.53
 elapsed = 2.51

 remaining = 21.605

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 2.66666666

 elapsed = 18.5
 remaining = 6.61111111

[[collect reviews-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.17391304
 elapsed = 12.3478260

 remaining = 10.6086956

[[get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.5

 elapsed = 6.875
 remaining = 16.0

[[collect reviews-complete, collect reviews-start, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 1.68181818

 elapsed = 18.0
 remaining = 7.77272727

[[collect reviews-complete, collect reviews-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 1.77777777
 elapsed = 15.1851851

 remaining = 8.70370370

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 3.33333333
 elapsed = 6.11111111

 remaining = 16.4444444

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.91666666
 elapsed = 20.6666666

 remaining = 1.91666666

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.40625

 elapsed = 17.71875
 remaining = 5.90625

[[collect reviews-complete, collect reviews-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.52173913
 elapsed = 12.2608695

 remaining = 9.69565217

[[get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 3.09523809
 elapsed = 6.09523809

 remaining = 19.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 0.86956521
 elapsed = 19.8260869

 remaining = 3.13043478

[[get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 3.0

 elapsed = 5.65384615
 remaining = 17.8461538

[[get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.02040816
 elapsed = 4.02040816

 remaining = 20.7346938

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 2-complete]]
 sojourn = 2.55555555
 elapsed = 21.7222222

 remaining = 2.55555555

[[get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 3.11111111
 elapsed = 5.37037037

 remaining = 17.2222222

[[get review 1-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.86666666
 elapsed = 3.73333333

 remaining = 18.7666666

[[get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 3.13043478
 elapsed = 9.21739130

 remaining = 13.7391304

[[invite reviewers-start]]
 sojourn = 2.51
 elapsed = 0.0

 remaining = 24.115

[[collect reviews-complete, collect reviews-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 1.63636363
 elapsed = 16.3636363

 remaining = 9.40909090

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 25.5833333
 remaining = 0.0

[[get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 5.55555555
 elapsed = 8.44444444

 remaining = 16.6666666

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 1.92857142
 elapsed = 7.28571428

 remaining = 17.7857142

[[collect reviews-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.88888888
 elapsed = 12.2962962

 remaining = 11.5925925

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.5

 elapsed = 21.0833333
 remaining = 2.5

[[get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 4.40909090
 elapsed = 9.86363636

 remaining = 15.9090909

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.8

 elapsed = 18.8666666
 remaining = 2.8

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 24.115

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete]]
 sojourn = 2.93333333

 elapsed = 21.2
 remaining = 2.93333333

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start]]
 sojourn = 2.54545454
 elapsed = 18.7272727

 remaining = 2.54545454

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 25.0
 remaining = 0.0

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-ou
 sojourn = 0.0

 elapsed = 24.4
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 1.44444444
 elapsed = 17.0555555

 remaining = 8.05555555

[[collect reviews-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.67741935
 elapsed = 14.1290322

 remaining = 13.3225806

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 25.2
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.125

 elapsed = 28.1875
 remaining = 2.125

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 23.5714285
 remaining = 0.0

[[invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.53846153
 elapsed = 6.92307692

 remaining = 22.3076923

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.04347826
 elapsed = 17.6956521

 remaining = 4.26086956

[[collect reviews-complete, collect reviews-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 1.96875
 elapsed = 15.75

 remaining = 7.875

[[collect reviews-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.17391304
 elapsed = 10.0869565

 remaining = 11.8695652

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 1.25925925
 elapsed = 19.8888888

 remaining = 4.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.95833333

 elapsed = 18.125
 remaining = 3.5

[[invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 1.67647058
 elapsed = 4.44117647

 remaining = 20.6764705

[[collect reviews-complete, collect reviews-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 1.41666666
 elapsed = 14.5833333

 remaining = 7.04166666

[[collect reviews-complete, collect reviews-start, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 3.17391304
 elapsed = 16.6521739

 remaining = 6.30434782

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 3.125

 elapsed = 21.875
 remaining = 3.125

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 1.03125
 elapsed = 20.125
 remaining = 3.5

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 1.41935483
 elapsed = 23.4193548

 remaining = 4.03225806

[[get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.83333333
 elapsed = 6.77777777

 remaining = 16.2777777

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 3-complete]]
 sojourn = 2.9

 elapsed = 22.3
 remaining = 2.9

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.14285714
 elapsed = 21.4285714

 remaining = 2.14285714

[[collect reviews-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 2.09090909
 elapsed = 14.2727272

 remaining = 11.5

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 0.0

 elapsed = 23.5833333
 remaining = 0.0

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.21052631
 elapsed = 3.63157894

 remaining = 20.4736842

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 3.58333333

 elapsed = 22.0
 remaining = 3.58333333

[[get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 3.07407407
 elapsed = 9.22222222

 remaining = 14.6666666

[[collect reviews-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 2.5625

 elapsed = 13.1875
 remaining = 10.4375

[[get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 4.13043478
 elapsed = 5.95652173

 remaining = 16.0

[[accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 3.13333333
 elapsed = 21.2666666

 remaining = 3.13333333

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 26.0
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 30.3125
 remaining = 0.0

[[collect reviews-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 3.05555555

 elapsed = 14.0
 remaining = 11.1111111

[[invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 4.25806451
 elapsed = 9.87096774

 remaining = 17.5806451

[[collect reviews-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.79166666
 elapsed = 11.7916666

 remaining = 9.83333333

[[collect reviews-complete, collect reviews-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.13043478
 elapsed = 14.5217391

 remaining = 8.43478260

[[invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 1.74074074
 elapsed = 3.66666666

 remaining = 21.2222222

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 22.0
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 2.91304347
 elapsed = 14.7826086

 remaining = 7.17391304

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, reject-complete, reject-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 0.0

 elapsed = 21.5555555
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete]]
 sojourn = 3.09090909
 elapsed = 19.6818181

 remaining = 6.09090909

[[collect reviews-complete, collect reviews-start, decide-start, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 2.92592592
 elapsed = 16.9629629

 remaining = 6.92592592

[[collect reviews-complete, collect reviews-start, decide-start, get review 1-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.125
 elapsed = 16.0

 remaining = 5.625

[[get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 1-complete]]
 sojourn = 3.25
 elapsed = 6.15

 remaining = 21.1

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start, time-out 2-complete]]
 sojourn = 0.0

 elapsed = 22.7857142
 remaining = 0.0

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, invite reviewers-complete, invite reviewers-start, time-out 3-complete]]
 sojourn = 0.94444444
 elapsed = 21.1666666

 remaining = 3.94444444

[[collect reviews-complete, collect reviews-start, decide-start, invite reviewers-complete, invite reviewers-start, time-out 1-complete, time-out 2-complete, time-out 3-complete]]
 sojourn = 2.48387096
 elapsed = 20.9354838

 remaining = 6.51612903

[[get review 2-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 1.92682926
 elapsed = 4.39024390

 remaining = 18.8048780

[[collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 2-complete, invite reviewers-complete, invite reviewers-start, reject-start, time-out 1-complete, time-out 3-complete]]
 sojourn = 2.44444444
 elapsed = 19.5555555

 remaining = 2.44444444

[[accept-complete, accept-start, collect reviews-complete, collect reviews-start, decide-complete, decide-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start]]
 sojourn = 0.0

 elapsed = 22.5833333
 remaining = 0.0

decide-start
complete

get review 3-complete
complete

reject-start
complete

reject-complete
complete

get review 1-complete
complete

time-out 1-complete
complete

collect reviews-start
complete

reject-start
complete

time-out 2-complete
complete

accept-start
complete

get review 3-complete
complete

accept-start
complete

get review 3-complete
complete

time-out 1-complete
complete

get review 2-complete
complete

accept-start
complete

time-out 2-complete
complete

collect reviews-start
complete

accept-complete
complete

collect reviews-complete
complete

collect reviews-start
complete

get review 3-complete
complete

accept-complete
complete

decide-start
complete

time-out 2-complete
complete

decide-complete
complete

decide-start
complete

get review 1-complete
complete

get review 1-complete
complete

collect reviews-start
complete

accept-complete
complete

time-out 1-complete
complete

reject-start
complete

collect reviews-start
complete

get review 1-complete
complete

time-out 1-complete
complete

invite reviewers-start
complete

accept-complete
complete

accept-complete
complete

reject-complete
complete

decide-start
complete

get review 3-complete
complete

time-out 3-complete
complete

time-out 2-complete
complete

accept-complete
complete

get review 2-complete
complete

get review 2-complete
complete

reject-start
complete

collect reviews-complete
complete

reject-start
complete

get review 3-complete
complete

decide-complete
complete

time-out 3-complete
complete

decide-start
complete

decide-complete
complete

time-out 1-complete
complete

time-out 3-complete
complete

reject-complete
complete

get review 1-complete
complete

get review 2-complete
complete

decide-complete
complete

reject-start
complete

collect reviews-complete
complete

collect reviews-complete
complete

time-out 1-complete
complete

reject-start
complete

time-out 3-complete
complete

get review 3-complete
complete

accept-complete
complete

time-out 3-complete
complete

accept-start
complete

get review 3-complete
complete

accept-complete
complete

reject-complete
complete

time-out 1-complete
complete

collect reviews-complete
complete

get review 1-complete
complete

time-out 2-complete
complete

collect reviews-complete
complete

time-out 2-complete
complete

collect reviews-start
complete

accept-start
complete

decide-complete
complete

time-out 3-complete
complete

accept-start
complete

reject-start
complete

time-out 1-complete
complete

collect reviews-complete
complete

get review 1-complete
complete

reject-complete
complete

time-out 3-complete
complete

get review 2-complete
complete

get review 3-complete
complete

decide-complete
complete

time-out 3-complete
complete

get review 2-complete
complete

decide-complete
complete

accept-start
complete

time-out 1-complete
complete

collect reviews-complete
complete

get review 1-complete
complete

get review 2-complete
complete

decide-start
complete

reject-complete
complete

reject-complete
complete

accept-start
complete

collect reviews-start
complete

time-out 2-complete
complete

invite reviewers-complete
complete

decide-complete
complete

time-out 2-complete
complete

collect reviews-start
complete

time-out 2-complete
complete

decide-start
complete

get review 2-complete
complete

get review 1-complete
complete

reject-complete
complete

time-out 3-complete
complete

decide-start
complete

(a) Set abstraction based on all activities

[{0=reject-start, 1=decide-complete, 2=decide-start, 3=collect reviews-complete, 4=collect reviews-start, 5=invite reviewers-complete, 6=invite reviewers-start}]
 sojourn = 2.65

 elapsed = 22.04
 remaining = 2.65

[{0=decide-start, 1=collect reviews-complete, 2=collect reviews-start, 3=invite reviewers-complete, 4=invite reviewers-start}]
 sojourn = 2.545
 elapsed = 17.55

 remaining = 6.565

[{0=accept-start, 1=decide-complete, 2=decide-start, 3=collect reviews-complete, 4=collect reviews-start, 5=invite reviewers-complete, 6=invite reviewers-start}]
 sojourn = 2.53

 elapsed = 21.01
 remaining = 2.53

[{0=invite reviewers-start}]
 sojourn = 2.51
 elapsed = 0.0

 remaining = 24.115

[{0=reject-complete, 1=reject-start, 2=decide-complete, 3=decide-start, 4=collect reviews-complete, 5=collect reviews-start, 6=invite reviewers-complete, 7=invite reviewers-start}]
 sojourn = 0.0

 elapsed = 24.69
 remaining = 0.0

[{0=collect reviews-start, 1=invite reviewers-complete, 2=invite reviewers-start}]
 sojourn = 2.555

 elapsed = 12.785
 remaining = 11.33

[{0=decide-complete, 1=decide-start, 2=collect reviews-complete, 3=collect reviews-start, 4=invite reviewers-complete, 5=invite reviewers-start}]
 sojourn = 1.43

 elapsed = 20.095
 remaining = 4.02

[{0=collect reviews-complete, 1=collect reviews-start, 2=invite reviewers-complete, 3=invite reviewers-start}]
 sojourn = 2.21

 elapsed = 15.34
 remaining = 8.775

[{}]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 24.115

[{0=accept-complete, 1=accept-start, 2=decide-complete, 3=decide-start, 4=collect reviews-complete, 5=collect reviews-start, 6=invite reviewers-complete, 7=invite reviewers-start}]
 sojourn = 0.0

 elapsed = 23.54
 remaining = 0.0

[{0=invite reviewers-complete, 1=invite reviewers-start}]
 sojourn = 2.56875
 elapsed = 5.32625

 remaining = 18.78875

get review 1-complete
complete

get review 3-complete
complete

reject-complete
complete

accept-start
complete

decide-complete
complete

invite reviewers-start
complete

time-out 1-complete
complete

collect reviews-complete
complete

time-out 2-complete
complete

accept-complete
complete

invite reviewers-complete
complete

reject-start
complete

time-out 3-complete
complete

decide-start
complete

get review 2-complete
complete

collect reviews-start
complete

(b) Sequence abstraction based on activities while filter-
ing out the “time out” and “get review” activities

[{Anne=2}]
 sojourn = 2.59793814

 elapsed = 5.25
 remaining = 18.9458762

[{Anne=1, Mike=4, Wil=2}]
 sojourn = 3.19354838
 elapsed = 18.8709677

 remaining = 3.19354838

[{Anne=6, Wil=2}]
 sojourn = 0.0

 elapsed = 22.5833333
 remaining = 0.0

[{Anne=1, Mike=2}]
 sojourn = 2.38461538
 elapsed = 13.0961538

 remaining = 12.1730769

[{Anne=4, Wil=2}]
 sojourn = 1.61363636
 elapsed = 19.3636363

 remaining = 3.84090909

[{}]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 24.115

[{Anne=4, Mike=1, Wil=2}]
 sojourn = 2.35
 elapsed = 21.6

 remaining = 2.35

[{Anne=4, Wil=1}]
 sojourn = 2.15909090
 elapsed = 17.2045454

 remaining = 6.0

[{Anne=3}]
 sojourn = 2.54545454
 elapsed = 12.4318181

 remaining = 10.7727272

[{Mike=1}]
 sojourn = 2.46601941

 elapsed = 0.0
 remaining = 24.0388349

[{Anne=3, Mike=2, Wil=2}]
 sojourn = 2.45614035
 elapsed = 22.0701754

 remaining = 2.45614035

[{Anne=2, Mike=3, Wil=2}]
 sojourn = 2.72916666
 elapsed = 23.1458333

 remaining = 2.72916666

[{Anne=5, Wil=2}]
 sojourn = 2.125

 elapsed = 20.4583333
 remaining = 2.125

[{Mike=6, Wil=2}]
 sojourn = 0.0

 elapsed = 23.9
 remaining = 0.0

[{Mike=4, Wil=2}]
 sojourn = 1.05882352
 elapsed = 18.8039215

 remaining = 3.98039215

[{Anne=4}]
 sojourn = 2.22727272
 elapsed = 14.9772727

 remaining = 8.22727272

[{Mike=4}]
 sojourn = 1.72549019
 elapsed = 14.4509803

 remaining = 8.33333333

[{Anne=2, Mike=4, Wil=2}]
 sojourn = 0.0

 elapsed = 24.3797468
 remaining = 0.0

[{Anne=2, Mike=2, Wil=2}]
 sojourn = 1.53333333
 elapsed = 21.0285714

 remaining = 4.11428571

[{Anne=2, Mike=2}]
 sojourn = 2.43809523
 elapsed = 15.9238095

 remaining = 9.21904761

[{Mike=5, Wil=2}]
 sojourn = 2.5

 elapsed = 21.4
 remaining = 2.5

[{Mike=4, Wil=1}]
 sojourn = 2.62745098
 elapsed = 16.1764705

 remaining = 6.60784313

[{Mike=3}]
 sojourn = 2.29411764
 elapsed = 12.1568627

 remaining = 10.6274509

[{Anne=2, Mike=2, Wil=1}]
 sojourn = 2.66666666
 elapsed = 18.3619047

 remaining = 6.78095238

[{Anne=1}]
 sojourn = 2.55670103

 elapsed = 0.0
 remaining = 24.1958762

[{Mike=2}]
 sojourn = 2.54126213
 elapsed = 5.39805825

 remaining = 18.6407766

[{Anne=4, Mike=2, Wil=2}]
 sojourn = 0.0

 elapsed = 24.3766233
 remaining = 0.0

[{Anne=2, Mike=1}]
 sojourn = 2.98113207
 elapsed = 13.3773584

 remaining = 11.6415094

reject-start
complete

get review 1-complete
complete

accept-complete
complete

collect reviews-start
complete

accept-start
complete

time-out 3-complete
complete

get review 2-complete
complete

decide-start
complete

reject-start
complete

time-out 3-complete
complete

collect reviews-complete
complete

reject-start
complete

time-out 2-complete
complete

accept-complete
complete

invite reviewers-complete
complete

reject-complete
complete

accept-start
complete

collect reviews-complete
complete

accept-start
complete

reject-start
complete

collect reviews-complete
complete

decide-complete
complete

time-out 2-complete
complete

time-out 1-complete
complete

get review 3-complete
complete

invite reviewers-complete
complete

reject-complete
complete

get review 3-complete
complete

decide-complete
complete

collect reviews-start
complete

accept-start
complete

accept-complete
complete

invite reviewers-start
complete

reject-complete
complete

accept-start
complete

reject-start
complete

collect reviews-complete
complete

accept-complete
complete

collect reviews-start
complete

time-out 1-complete
complete

decide-complete
complete

reject-complete
complete

collect reviews-start
complete

decide-start
complete

reject-complete
complete

get review 1-complete
complete

invite reviewers-start
complete

get review 2-complete
complete

reject-start
complete

accept-complete
complete

decide-start
complete

accept-complete
complete

reject-complete
complete

accept-start
complete

(c) Bag abstraction based on the three key resources

[]
 sojourn = 2.00958333
 elapsed = 11.0595833

 remaining = 13.0554166

invite reviewers-start
complete

time-out 1-complete
complete

time-out 2-complete
complete

collect reviews-complete
complete

invite reviewers-complete
complete

time-out 3-complete
complete

decide-start
complete

accept-complete
complete

reject-start
complete

get review 1-complete
complete

get review 3-complete
complete

get review 2-complete
complete

collect reviews-start
complete

decide-complete
complete

reject-complete
complete

accept-start
complete

(d) Complete abstraction: lstate(σ) = ∅

Figure 11: Four transition systems with prediction information based on the same event log but using different abstractions.
Note that the labels are not intended to be readable. The goal is to merely show the size and shape of each transition system.

22

time is 24.12 days. After the reviewers have been invited (i.e., the prefix is mapped onto state {invite
reviewers-complete, invite reviewers-start}), then the predicted remaining time is reduced to 21.6 days, etc.

As discussed in Section 6, it is important to be able to asses the quality of a prediction. ProM’s FSM
Analyzer provides metrics such as standard deviation, etc. to determine the quality of a prediction. The
standard deviation in the initial state of Figure 11(a) is 10.3. The standard deviation in state {collect
reviews-start, get review 1-complete, get review 2-complete, get review 3-complete, invite reviewers-complete,
invite reviewers-start} is 8.3. The standard deviation steadily decreases as the process progresses. This means
that towards the end of the process the predictions become more reliable.

To truly evaluate the quality of the predictions and to compare the four transition systems shown in
Figure 11, we use cross validation. To keep things simple, we do not perform a K-fold validation and
merely test L2 (the test set) on the model learned using L1 (the training set). Hence, we take the four
models depicted in Figure 11 and compare the predicted times with the real times for the papers in L2.
Earlier we already mentioned the terms Mean Squared Error (MSE =

∑n
i=1(bi−b)2

n , with b = predict(b))
and Root Mean Squared Error (RMSE =

√
MSE). For our evaluation we also use the Mean Absolute Error

(MAE = 1
n

∑n
i=1 | bi − b |) and the Mean Absolute Percentage Error (MAPE = 1

n

∑n
i=1

|bi−b|
bi

) [8]. Note
that for calculating MAPE, we divide by the individual values bi . Hence, MAPE only has a meaningful
interpretation if all individual values are positive. Moreover, a few smaller values can lead to a large MAPE.

Figure 12: Screenshot of ProM’s FSM Evaluator while analyzing the quality of the prediction on the test set L2.

Figure 12 shows ProM’s FSM Evaluator while cross validating the results using the second event log
L2. For state {invite reviewers-complete, invite reviewers-start}, MSE equals 49.923 (see graph on left-hand-
side of Figure 12). The other metrics for this state are shown in tabular form (see right-hand-side of figure):
MAE=5.857, RMSE=7.0656, and MAPE=0.45252.8 Recall that the predicted time until completion from this
state is 21.605 days, hence an average error of 5.857 days is quite acceptable. Figure 12 also shows that this
state was evaluated 200 times. Let us now consider a later state: {collect reviews-start, get review 1-complete,

8Note that ProM’s FSM Evaluator shows MAPE as a percentage, i.e., 45.252 percent equals 0.45252.

23

Abstraction MAE RMSE MAPE
Set abstraction based on all activities
(cf. Figure 11(a))

4.079 4.917 0.562

Sequence abstraction based on activi-
ties while filtering out the “time out”
and “get review” activities (cf. Fig-
ure 11(b))

4.119 4.984 0.566

Bag abstraction based on the three key
resources (cf. Figure 11(c))

4.139 4.997 0.569

Complete abstraction: lstate(σ) = ∅ (cf.
Figure 11(d))

7.239 8.635 1.209

Simple heuristic: half of average total
flow time (12 days)

7.053 8.479 1.110

Table 3: Cross-validation results: the models are learned using event log L1 and evaluated using event log L2.

get review 2-complete, get review 3-complete, invite reviewers-complete, invite reviewers-start}. For this state
we obtain the following quality metrics: MSE=19.134, MAE=3.888, RMSE=4.3742, and MAPE=0.49676.
As can be expected the average error decreases when a paper is further in the process. The relative error
(MAPE) increases slightly because the absolute times get smaller. The various quality metrics can also be
given for the whole process, i.e., all states. In order to do this, each state is weighted by the number of times
it is visited. For the set abstraction based on all activities (i.e., the transition system shown in Figure 11(a)),
the overall values are MAE=4.079, RMSE=4.917, and MAPE=0.562.

Table 3 compares the four transition systems shown in Figure 11 using cross validation. All four models
are learned using L1 and evaluated using L2. It shows that the first three models perform comparable, e.g.,
the average error is around 3 days. However, the fourth model does not perform as good. The average error
is much higher: more than 7 days. The average time it takes to complete the process is about 24 days.
Hence, a naive approach would be to always guess 24/2 = 12 days. If this is done, then the performance is
comparable to the complete abstraction shown in Figure 11(d) (which always guesses 13.06 days). The last
row in Table 3 shows the results for this heuristic.

Note that the MAPE values tend to become rather large. This is caused by the fact that only a few
smaller values can result in extremely large relative errors (dividing by “almost zero” leads to “almost
infinite”). MAPE only makes sense if there are no really small values. This is not necessarily the case in
time prediction. This is a known problem of this error measure [8], therefore, we do not report on MAPE
values in the remainder.

No matter what statistic is considered (MAE, RMSE, or MAPE), we can conclude that the findings in
Table 3 support our approach and show that a proper abstraction easily outperforms simple heuristics. Please
note that our approach does not require an a-priori model; the predictions are just learned from the training
set L1.

7.2. Case Study I: WMO Process of a Municipality
In the previous subsection, it was shown that the average error using our prediction method is much smaller

than using a simple heuristic. However, this analysis was based on event logs generated by simulation. A
valid question is whether we can achieve the same performance for real-life logs. Therefore, we also tested
our approach using an event log from the Dutch municipality of Harderwijk. Harderwijk is a municipality
and a small city in the eastern part of the Netherlands.

The event log of Harderwijk used for cross-validation contains information about 796 cases. Each case
corresponds to a request to the municipality in the context of the so-called “Wet Maatschappelijke Onder-
steuning” (WMO). WMO is a Dutch law regulating how municipalities should support their citizens. The
purpose of WMO is to support elderly people, people having a chronic illness, handicapped citizens, etc.
Through WMO citizens can request wheelchairs, household help, etc. The particular log chosen for this
evaluation only concerns citizens asking for household help.

The 796 requests for household help, triggered 5187 events that were recorded over a period of 1.5 years
(2007-2008). In this process 8 different types of activities were used and the average time it takes to handle

24

Figure 13: The distribution of the total flow time of cases extracted using ProM. Note that some cases almost take 400 days.

a request from begin to end is 117 days with some cases taking longer than one year. See Figure 13 for the
distribution of total flow times for all cases. The x-axis shows the 796 cases and the y-axis shows the duration
in days. Given the long flow times, it is interesting to predict the overall time.

Slotfase
complete

Administratieve verwerking
complete

Wachten terugmelding zorgaanb.
complete

Verzending\dossiervorming
complete

Toetsen en beslissen
complete

Rapportage & beschikking
complete

Aanvraag registratie
complete

Figure 14: A simplified representation of the process obtained by ProM.

To provide some insight into the structure of the process, we have used the heuristics miner of ProM to
extract a Petri net from the event log (cf. Figure 14). Note that in this model infrequent activities have been
removed and only the main flows are shown. The black transitions in the Petri net represent the skipping of
activities. In this paper, we do not discuss the WMO process in detail, instead we focus on the quality of
our predictions.

Figure 15 shows three transition systems extended with prediction information. These are all based on
only half of the event log, i.e., the original log with 796 requests for household help is split into a log L1 with
400 requests and a log L2 with 396 requests. Event log L1 is used as the training set and log L2 is used as a
test set. Hence, the three transition systems shown in Figure 15 are based on L1. Figure 15(a) was obtained
using the set abstraction based on all activities, i.e., a state is determined by the set of activities that have
been conducted. Figure 15(b) uses the same abstraction, but now only uses two activities: “Administratieve
verwerking” and “Wachten terugmelden zorgaanbieder”. These two activities have been chosen because
they are expected to be relevant for the time until completion. Figure 15(c) completely abstracts from all
information and this extreme abstraction is again used as a benchmark.

Let us consider some example predictions based on Figure 15(a). For the initial state ∅, the predicted
remaining time until completion is 113 days.9 The first activity is always “Aanvraag registratie” and the
second activity is always “Rapportage & beschikking”. On average 5 days are spent in the state in-between
these two activities, so after “Aanvraag registratie” the predicted remaining time until completion is 108
days. Note that after these first two steps, the process is less structured. (Recall that Figure 14 abstracts
from less frequent paths/activities.)

Let us now compare the three prediction models shown in Figure 15. We use L2 to evaluate and compare

9Note that this number is based on L1 while the average of 117 was based on L1 + L2.

25

[[Aanvraag registratie, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 51.5555555
 elapsed = 99.0555555

 remaining = 51.5567129

[[Aanvraag registratie, Rapportage & beschikking]]
 sojourn = 11.2139303
 elapsed = 5.51990049

 remaining = 108.315652

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 113.458472

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.00182291
 elapsed = 122.7625

 remaining = 0.00182291

[[Aanvraag registratie, Rapportage & beschikking, Retour]]
 sojourn = 0.0
 elapsed = 8.0

 remaining = 101.067592

[[Aanvraag registratie, Rapportage & beschikking, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0

 elapsed = 9.72549019
 remaining = 0.0

[[Aanvraag registratie, Rapportage & beschikking, Retour, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0
 elapsed = 4.6

 remaining = 0.0

[[Aanvraag registratie, Rapportage & beschikking, Toetsen en beslissen]]
 sojourn = 3.36760925
 elapsed = 17.4575835

 remaining = 97.1282401

[[Aanvraag registratie, Rapportage & beschikking, Retour, Toetsen en beslissen]]
 sojourn = 5.6

 elapsed = 16.8181818
 remaining = 91.4916666

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0

 elapsed = 60.0
 remaining = 0.0

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Slotfase, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.0

 elapsed = 157.615496
 remaining = 0.0

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.33333333
 elapsed = 59.6666666

 remaining = 0.33333333

[[Aanvraag registratie, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 61.3482905
 elapsed = 95.5384615

 remaining = 62.7854789

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.00115740
 elapsed = 150.611111

 remaining = 0.00115740

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Slotfase, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 0.0

 elapsed = 122.764322
 remaining = 0.0

[[Aanvraag registratie]]
 sojourn = 5.525
 elapsed = 0.0

 remaining = 113.458472

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.00127215
 elapsed = 157.614224

 remaining = 0.00127215

[[Aanvraag registratie, Rapportage & beschikking, Retour, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 51.0740740
 elapsed = 22.6296296

 remaining = 86.6304012

[[Aanvraag registratie, Administratieve verwerking, Rapportage & beschikking, Retour, Slotfase, Toetsen en beslissen, Verzending\dossiervorming, Wachten terugmelding zorgaanb.]]
 sojourn = 0.0

 elapsed = 150.612268
 remaining = 0.0

[[Aanvraag registratie, Rapportage & beschikking, Toetsen en beslissen, Verzending\dossiervorming]]
 sojourn = 54.356

 elapsed = 20.7306666
 remaining = 93.1623240

Retour
complete

Wachten terugmelding zorgaanb.
complete

Administratieve verwerking
complete

Slotfase
complete

Slotfase
complete

Slotfase
complete

Retour
complete

Toetsen en beslissen
complete

Slotfase
complete

Toetsen en beslissen
complete

Wachten terugmelding zorgaanb.
complete

Verzending\dossiervorming
complete

Slotfase
complete

Retour
complete

Wachten terugmelding zorgaanb.
complete

Rapportage & beschikking
complete

Retour
complete

Administratieve verwerking
complete

Verzending\dossiervorming
complete

Administratieve verwerking
complete

Toetsen en beslissen
complete

Aanvraag registratie
complete

Verzending\dossiervorming
complete

Verzending\dossiervorming
complete

Rapportage & beschikking
complete

Slotfase
complete

Verzending\dossiervorming
complete

Toetsen en beslissen
complete

Administratieve verwerking
complete

(a) Set abstraction based on all activities

[[Administratieve verwerking, Wachten terugmelding zorgaanb.]]
 sojourn = 6.31944444
 elapsed = 157.110631

 remaining = 6.31944444

[[Administratieve verwerking]]
 sojourn = 0.01247577
 elapsed = 118.372940

 remaining = 0.01247577

[[]]
 sojourn = 13.8702764
 elapsed = 8.96543778

 remaining = 99.5002320

[[Wachten terugmelding zorgaanb.]]
 sojourn = 60.6488095
 elapsed = 95.7896825

 remaining = 61.9834242

Administratieve verwerking
complete

Wachten terugmelding zorgaanb.
complete

Slotfase
complete

Slotfase
complete

Aanvraag registratie
complete

Verzending\dossiervorming
complete

Slotfase
complete

Verzending\dossiervorming
complete

Rapportage & beschikking
complete

Administratieve verwerking
complete

Wachten terugmelding zorgaanb.
complete

Retour
complete

Toetsen en beslissen
complete

(b) Set abstraction based on just two activities (“Administratieve verwerking” and “Wachten terugmelden
zorgaanbieder”)

[]
 sojourn = 15.0875627
 elapsed = 43.9924830

 remaining = 76.9736420

Toetsen en beslissen
complete

Administratieve verwerking
complete

Aanvraag registratie
complete

Verzending\dossiervorming
complete

Slotfase
complete

Rapportage & beschikking
complete

Wachten terugmelding zorgaanb.
complete

Retour
complete

(c) Complete abstraction

Figure 15: Three transition systems with prediction information based on the same event log but using different abstractions.

Abstraction MAE RMSE
Set abstraction based on all activities (cf. Fig-
ure 15(a))

63.805 74.947

Set abstraction based on just two activities (cf.
Figure 15(b))

67.329 79.034

Complete abstraction (cf. Figure 15(c)) 83.469 98.158
Simple heuristic: half of average total flow
time (56.73 days)

80.823 101.342

Table 4: Some results for the municipality’s WMO process

26

the quality of the three models. The first two models perform better than the benchmark model. Set
abstractions based on all activities or the two key activities lead to an average error of roughly 65 days. If
we completely abstract from the history of a case, the average error is more than 80 days. If one takes half
of the average flow time for each prediction, the average error is similar as for the model in Figure 15(c)
(see last row in Table 4). Hence, also for this real log, we can conclude that simple abstractions outperform
simple heuristics.

Moreover, it is interesting to note that for some states the mean average error is very small. For example,
after executing “Aanvraag registratie”, “Administratieve verwerking”, “Rapportage & beschikking”, “Toet-
sen en beslissen”, “Verzending dossiervorming”, “Wachten terugmelding zorgaanb.” the mean average error
of predictions based on the annotated transition system in Figure 15(c) is only 0.00163.

Note that the average error over all activities is still substantial for all models. This is due to the huge
variations in flow time. Note that some cases take more than one year to be handled while other just take
a few days. Hence, one cannot expect a better performance for this process with so little information. We
expect that in most processes, the variation is smaller thus allowing for better predictions. Moreover, in most
processes more data is available that can be exploited by our prediction techniques.

7.3. Case Study II: WOZ Process of Another Municipality
As a second case study, we revisit the process mentioned in Section 3.6. This case study is based on

a log from another municipality and another process that deals with objections (i.e., appeals) against the
real-estate property valuation or the real-estate property tax. This municipality is located in the south of
the Netherlands and has a similar size as the municipality involved in the first case study (more than 40.000
inhabitants). The municipality is using eiStream workflow (formerly known as Eastman Software and today
named Global 360).

Figure 16: The distribution of the total flow time of cases extracted using ProM. Note that some cases almost take 250 days.

This process considered in this case study is called “Bezwaar WOZ”, where WOZ (“Waardering On-
roerende Zaken”) refers to the particular law describing regulations related to real-estate property valuation
by municipalities. We used an event log with data on 1882 objections handled by the municipality. The
log contains 11985 events and the average total flow time is 107 days while some cases take more than 200
days. Figure 16 shows the distribution of total flow times. The x-axis shows the 1882 cases and the y-axis
shows the duration in days. Note that some cases take a very short time while others take much longer, thus
making it difficult to predict the remaining time for cases in the system. As before we split the log into a
training set (log L1) and a test set (log L2). Log L1 contains 982 cases and log L2 contains 900 cases.

Figure 17 shows four transition systems extended with prediction information based on log L1. The first
transition system (Figure 17(a)) uses the set abstraction over all activities. The second one (Figure 17(a))
uses the same abstraction but now with horizon 1, i.e., only the last activity is considered. Note that these
first two transition systems correspond to the ones already shown in Figure 4. The third transition system

27

[[A, B, C, D, H, L, M, Q]]
 sojourn = 15.9668
 elapsed = 109.719

 remaining = 16.5769

[[A, B, C, D, G, Q]]
 sojourn = 44.5182
 elapsed = 57.4977

 remaining = 46.3944

[[A, B, D, G, I, Q]]
 sojourn = 2.21766
 elapsed = 175.941

 remaining = 3.09860

[[A, B, C, D, H, L]]
 sojourn = 1.08781
 elapsed = 82.1325

 remaining = 13.3837

[[A, B, C, G, I]]
 sojourn = 1.57714
 elapsed = 199.080

 remaining = 5.23029

[[A, B, C, F, H, L, M, N]]
 sojourn = 0.04186
 elapsed = 147.810

 remaining = 0.33653

[[A, B, C, H, L, M, N]]
 sojourn = 15.9448
 elapsed = 119.503

 remaining = 17.4980

[[A, B, D, E, G]]
 sojourn = 0.0

 elapsed = 59.7911
 remaining = 0.0

[[A, B, D, H, L, Q]]
 sojourn = 0.80608
 elapsed = 131.953

 remaining = 1.05758

[[B, C, D, G, I, Q]]
 sojourn = 1.90109
 elapsed = 153.962

 remaining = 4.50341

[[A, B]]
 sojourn = 17.3307
 elapsed = 3.73798

 remaining = 119.430

[[A, B, G, I, L, N, O, P]]
 sojourn = 0.41059
 elapsed = 177.595

 remaining = 0.41059

[[A, B, H, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 130.972
 remaining = 0.0

[[D, H, L]]
 sojourn = 1.63855
 elapsed = 68.6798

 remaining = 11.8171

[[A, B, D, G, I, L, M, Q]]
 sojourn = 0.02953
 elapsed = 178.840

 remaining = 0.19945

[[A, B, H, L, M, N, O, P]]
 sojourn = 0.67465
 elapsed = 122.696

 remaining = 0.67465

[[A, B, H, L]]
 sojourn = 2.15080
 elapsed = 104.194

 remaining = 23.5126

[[D, G, I, L, M]]
 sojourn = 0.37651
 elapsed = 162.225

 remaining = 1.84165

[[B, C, Q]]
 sojourn = 6.29152
 elapsed = 32.1955

 remaining = 48.7338

[[A, G, I, L]]
 sojourn = 0.67876
 elapsed = 171.099

 remaining = 2.14128

[[A, H, L, N]]
 sojourn = 41.8339
 elapsed = 68.0265

 remaining = 42.0059

[[A, B, C, H, L, M]]
 sojourn = 4.20908
 elapsed = 115.294

 remaining = 21.7071

[[A, B, G, I, L, M, N, Q]]
 sojourn = 0.04224
 elapsed = 209.729

 remaining = 0.16928

[[A, B, D, Q]]
 sojourn = 26.6797
 elapsed = 64.4499

 remaining = 48.6793

[[A, B, D, G]]
 sojourn = 50.0508
 elapsed = 60.8574

 remaining = 51.5606

[[A, D, G, I, L, M, N, O]]
 sojourn = 0.12693
 elapsed = 197.045

 remaining = 2.61953

[[A, B, C, F, H]]
 sojourn = 0.00158
 elapsed = 147.008
 remaining = 1.1386

[[A, B, D, H, Q]]
 sojourn = 0.81833
 elapsed = 131.135

 remaining = 1.87591

[[B, C, D, G, Q]]
 sojourn = 30.5418
 elapsed = 55.1687

 remaining = 31.6015

[[A, B, G, I, L, N, O]]
 sojourn = 0.12753
 elapsed = 177.057

 remaining = 0.94871

[[A, B, C, D, E, H]]
 sojourn = 46.9368
 elapsed = 139.879

 remaining = 47.5258

[[A, B, H, L, M, N, O, Q]]
 sojourn = 0.17156
 elapsed = 130.801

 remaining = 0.17156

[[A, B, C, D, H, L, Q]]
 sojourn = 1.26602
 elapsed = 108.453

 remaining = 17.8429

[[A, B, C, D, H]]
 sojourn = 4.15672
 elapsed = 82.6531

 remaining = 16.1559

[[A, B, H, L, M, N, O]]
 sojourn = 0.15580
 elapsed = 121.875

 remaining = 1.07579

[[D, G, I, L]]
 sojourn = 1.36351
 elapsed = 160.943

 remaining = 3.16424

[[D, G]]
 sojourn = 55.9269
 elapsed = 5.26854

 remaining = 57.5829

[[A, B, C, F, H, L, M]]
 sojourn = 0.02893
 elapsed = 147.781

 remaining = 0.36547

[[A, G, I]]
 sojourn = 0.92465
 elapsed = 170.174

 remaining = 3.06593

[[G, I, L, M, N, O, P]]
 sojourn = 0.36645
 elapsed = 145.730

 remaining = 0.36645

[[A, B, Q]]
 sojourn = 10.9637
 elapsed = 41.8586

 remaining = 68.7446

[[A, B, G, I, L, M, Q]]
 sojourn = 0.02196
 elapsed = 209.707

 remaining = 0.19125

[[A, B, D]]
 sojourn = 9.28023
 elapsed = 49.8785

 remaining = 55.5840

[[A, D, G, I, L, M, N]]
 sojourn = 0.03170
 elapsed = 198.506

 remaining = 1.99635

[[A, B, H]]
 sojourn = 1.33727
 elapsed = 103.586

 remaining = 23.6123

[[A, B, C, G, H]]
 sojourn = 4.64015
 elapsed = 211.915

 remaining = 5.40071

[[B, Q]]
 sojourn = 8.32876
 elapsed = 27.9144

 remaining = 67.2690

[[A, H, L]]
 sojourn = 3.17959
 elapsed = 64.8469

 remaining = 45.1855

[[A, B, C, H, L]]
 sojourn = 0.98963
 elapsed = 114.305

 remaining = 22.6967

[[A, B, C, D, G, I, L, M, N, O, Q]]
 sojourn = 0.12676
 elapsed = 179.856

 remaining = 0.17259

[[D, H, L, N, O]]
 sojourn = 0.17216
 elapsed = 82.0232

 remaining = 0.17216

[[A, B, C, D, E, G, I, L, M, N]]
 sojourn = 0.0

 elapsed = 227.965
 remaining = 0.0

[[A, B, D, G, Q]]
 sojourn = 31.7557
 elapsed = 91.8674

 remaining = 32.5303

[[D]]
 sojourn = 9.11147

 elapsed = 0.0
 remaining = 63.4979

[[A, B, C, F]]
 sojourn = 18.4115
 elapsed = 141.730

 remaining = 18.6393

[[A, B, D, E]]
 sojourn = 0.43228
 elapsed = 59.1430

 remaining = 0.64803

[[A, B, G, I, L, N]]
 sojourn = 0.04244
 elapsed = 177.014

 remaining = 0.99115

[[H, L, M, N, O, P]]
 sojourn = 9.61690
 elapsed = 30.1272

 remaining = 9.61690

[[A, B, G, Q]]
 sojourn = 154.018
 elapsed = 52.8121

 remaining = 157.086

[[A, B, H, L, M, N, Q]]
 sojourn = 20.3048
 elapsed = 110.496

 remaining = 20.4764

[[A, B, C, D, H, Q]]
 sojourn = 14.6631
 elapsed = 93.7906

 remaining = 32.5060

[[A, B, D, H, L, M, N, O, P]]
 sojourn = 5.02045
 elapsed = 89.5090

 remaining = 7.82242

[[A, B, C, D, G, I, L, M, N, O, P]]
 sojourn = 0.64614
 elapsed = 207.572

 remaining = 0.64614

[[A, B, D, H, L, M, N]]
 sojourn = 6.27059
 elapsed = 83.1119

 remaining = 14.8201

[[A, D, G, I]]
 sojourn = 2.20199
 elapsed = 201.624

 remaining = 4.31563

[[A, B, H, L, M, N]]
 sojourn = 14.8187
 elapsed = 107.056

 remaining = 15.8945

[[D, G, I]]
 sojourn = 1.58750
 elapsed = 160.373

 remaining = 4.55397

[[A, B, D, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 45.6705
 remaining = 0.0

[[A, B, G, I, L, M, N, O]]
 sojourn = 0.14211
 elapsed = 186.229

 remaining = 2.12036

[[A, B, C, F, H, L]]
 sojourn = 0.77153
 elapsed = 147.010

 remaining = 1.13701

[[A, G]]
 sojourn = 68.5426
 elapsed = 40.8002

 remaining = 70.0756

[[A, B, C, H]]
 sojourn = 8.07530
 elapsed = 115.214

 remaining = 29.3219

[[D, E, L]]
 sojourn = 13.9925
 elapsed = 33.0829

 remaining = 27.9146

[[A, B, F, G]]
 sojourn = 0.0

 elapsed = 132.370
 remaining = 0.0

[[A, B, C, D, G, I, L, M, N, Q]]
 sojourn = 0.02802
 elapsed = 173.538

 remaining = 0.14309

[[D, H, L, N]]
 sojourn = 33.7626
 elapsed = 48.2606

 remaining = 33.9347

[[G, I, L, M, N, O]]
 sojourn = 0.14676
 elapsed = 145.214

 remaining = 0.65622

[[A, B, G, I, L, Q]]
 sojourn = 2.25558
 elapsed = 207.452

 remaining = 2.44684

[[A, B, G, H]]
 sojourn = 0.0

 elapsed = 118.058
 remaining = 0.0

[[A, B, C, D, E, G, I, L, M]]
 sojourn = 0.83767
 elapsed = 227.127

 remaining = 0.83767

[[A, D, G, I, L, M]]
 sojourn = 0.25860
 elapsed = 200.900

 remaining = 1.85568

[[Q]]
 sojourn = 12.7617

 elapsed = 0.0
 remaining = 80.9294

[[A, B, D, G, I, L, M, N, O, P]]
 sojourn = 0.28259
 elapsed = 190.733

 remaining = 0.35785

[[A, H]]
 sojourn = 1.50219
 elapsed = 64.8467

 remaining = 45.1857

[[H, L, M]]
 sojourn = 6.39916
 elapsed = 1.84382

 remaining = 30.6215

[[D, E, G, L]]
 sojourn = 0.0

 elapsed = 60.9976
 remaining = 0.0

[[A, B, C, D, G, I, L, M, N, O, P, Q]]
 sojourn = 0.03055
 elapsed = 176.001

 remaining = 0.03055

[[D, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 82.1953
 remaining = 0.0

[[A, B, C, D, E]]
 sojourn = 3.23453
 elapsed = 121.327

 remaining = 74.1903

[[A, B, H, L, M, Q]]
 sojourn = 3.58412
 elapsed = 106.912

 remaining = 24.0605

[[A, B, H, Q]]
 sojourn = 0.08359
 elapsed = 105.843

 remaining = 25.1290

[[A, B, C, D, G, I, L, M, N, O]]
 sojourn = 0.14811
 elapsed = 206.474

 remaining = 1.11732

[[A, B, D, H, L, M]]
 sojourn = 1.24136
 elapsed = 73.1319

 remaining = 13.9443

[[A, B, F]]
 sojourn = 6.81952
 elapsed = 125.551

 remaining = 6.81952

[[A, B, C, D, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 136.234
 remaining = 0.0

[[H, L, M, N, O]]
 sojourn = 0.16973
 elapsed = 19.7936

 remaining = 12.6717

[[G, I, L, M, N]]
 sojourn = 0.03955
 elapsed = 145.389

 remaining = 0.68014

[[G, I, L]]
 sojourn = 1.75773
 elapsed = 143.905

 remaining = 2.46304

[[A, B, G, I, Q]]
 sojourn = 0.62166
 elapsed = 206.830

 remaining = 3.06850

[[D, E, G]]
 sojourn = 25.5566
 elapsed = 25.7844

 remaining = 25.9724

[[A, Q]]
 sojourn = 17.9502
 elapsed = 31.1331

 remaining = 83.3987

[[A, B, C, D, E, G]]
 sojourn = 155.035
 elapsed = 71.8545

 remaining = 156.111

[[A, B, D, H, L, M, N, O]]
 sojourn = 0.18214
 elapsed = 89.3825

 remaining = 8.54956

[[A, D, G, I, L]]
 sojourn = 0.68068
 elapsed = 200.219

 remaining = 2.53637

[[A, B, H, L, M]]
 sojourn = 4.96419
 elapsed = 102.092

 remaining = 20.8587

[[A, B, G, I, L, M, N, O, P]]
 sojourn = 1.42617
 elapsed = 188.508

 remaining = 1.48127

[[A, B, D, H, L, N, O]]
 sojourn = 0.14967
 elapsed = 45.5209

 remaining = 0.14967

[[A, B, G, I, L, M, N]]
 sojourn = 0.03980
 elapsed = 186.189

 remaining = 2.16017

[[A, B, D, G, I, L, M, N, O]]
 sojourn = 0.13484
 elapsed = 191.548

 remaining = 0.57639

[[H, L]]
 sojourn = 1.71968
 elapsed = 0.12414

 remaining = 32.3412

[[A, B, C, D, E, G, Q]]
 sojourn = 0.0

 elapsed = 217.924
 remaining = 0.0

[[A, B, C, D, E, Q]]
 sojourn = 45.8863
 elapsed = 132.159

 remaining = 85.7646

[[A, B, C, D, G, I, L, M, Q]]
 sojourn = 0.97961
 elapsed = 172.559

 remaining = 1.12270

[[D, H, L, M, N, O, P]]
 sojourn = 0.01303
 elapsed = 78.8924

 remaining = 0.01303

[[B, C, D, H, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 67.1377
 remaining = 0.0

[[A, B, C, D, E, G, I, L]]
 sojourn = 0.16919
 elapsed = 226.958

 remaining = 1.00686

[[A, B, C, D, H, L, M, N, O, P]]
 sojourn = 0.79123
 elapsed = 92.5850

 remaining = 1.32723

[[A, B, C, G, I, L, M, N, O]]
 sojourn = 0.15140
 elapsed = 200.076

 remaining = 2.44221

[[A, B, C, D, H, L, N, O]]
 sojourn = 0.12674
 elapsed = 136.108

 remaining = 0.12674

[[H, L, M, N]]
 sojourn = 11.5506
 elapsed = 8.24299

 remaining = 24.2223

[[A, B, C, D, G, I]]
 sojourn = 1.37938
 elapsed = 218.097

 remaining = 3.70198

[[G, I]]
 sojourn = 1.13898
 elapsed = 142.766

 remaining = 3.60203

[[A, B, C, D, G, H, L, M, N]]
 sojourn = 0.04236
 elapsed = 68.8259

 remaining = 0.16942

[[A, B, H, L, Q]]
 sojourn = 0.98490
 elapsed = 105.927

 remaining = 25.0454

[[A, B, C, D, G, I, L, M, N]]
 sojourn = 0.02871
 elapsed = 213.776

 remaining = 0.78849

[[A, B, D, H, L, N]]
 sojourn = 8.45357
 elapsed = 15.3361

 remaining = 8.52840

[[A, B, G, I, L, M]]
 sojourn = 0.01697
 elapsed = 186.172

 remaining = 2.17715

[[A, B, C, G, H, L, M, N, O]]
 sojourn = 0.12737
 elapsed = 191.842

 remaining = 0.12737

[[D, E, G, I, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 135.050
 remaining = 0.0

[[A, B, C, D, G, I, L, Q]]
 sojourn = 1.24813
 elapsed = 171.311

 remaining = 2.37083

[[G, I, L, M]]
 sojourn = 0.04097
 elapsed = 145.663

 remaining = 0.70530

[[D, E]]
 sojourn = 11.6285
 elapsed = 13.8122

 remaining = 35.3671

[[B, C, D, H, L, M, Q]]
 sojourn = 8.53835
 elapsed = 58.4275

 remaining = 8.71022

[[A, B, C, G, I, L, M, N]]
 sojourn = 0.03975
 elapsed = 200.755

 remaining = 2.41013

[[B, C, D, G, I, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 132.322
 remaining = 0.0

[[A, B, D, G, I, L, M, N]]
 sojourn = 0.02411
 elapsed = 202.632

 remaining = 0.35347

[[A, B, D, H, L, M, N, O, Q]]
 sojourn = 0.12836
 elapsed = 132.809

 remaining = 0.20202

[[A, B, C, D, E, G, H]]
 sojourn = 0.0

 elapsed = 232.777
 remaining = 0.0

[[H]]
 sojourn = 8.64672

 elapsed = 0.0
 remaining = 38.0478

[[A, B, C, D, G]]
 sojourn = 49.1433
 elapsed = 68.2379

 remaining = 50.4962

[[A, B, C, F, G]]
 sojourn = 0.0

 elapsed = 163.424
 remaining = 0.0

[[D, H, L, M, N, O]]
 sojourn = 0.14493
 elapsed = 80.1250

 remaining = 0.15960

[[B, C, D, H, L, M, N, O, Q]]
 sojourn = 0.12900
 elapsed = 67.0087

 remaining = 0.12900

[[A, B, C, D, H, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 126.296
 remaining = 0.0

[[A, B, D, G, I, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 179.039
 remaining = 0.0

[[A, B, C, D, E, G, I]]
 sojourn = 0.06877
 elapsed = 226.889

 remaining = 1.07563

[[A, B, C, D, H, L, M, N, O]]
 sojourn = 0.99964
 elapsed = 95.4690

 remaining = 2.11456

[[A, B, C, G, I, L, M, N, O, P]]
 sojourn = 1.36209
 elapsed = 202.175

 remaining = 2.65135

[[D, G, I, L, M, N, O, P]]
 sojourn = 2.56445
 elapsed = 158.894

 remaining = 2.56455

[[A, B, C, G, H, L, M, N]]
 sojourn = 0.04257
 elapsed = 191.800

 remaining = 0.16994

[[A, G, I, L, M, N, O]]
 sojourn = 0.12686
 elapsed = 171.829

 remaining = 1.41131

[[A, B, C, D, H, L, N]]
 sojourn = 0.04251
 elapsed = 136.065

 remaining = 0.16925

[[G]]
 sojourn = 68.9769

 elapsed = 0.0
 remaining = 70.7172

[[A, B, C, D, G, H, L, M]]
 sojourn = 0.01509
 elapsed = 68.8108

 remaining = 0.18451

[[E]]
 sojourn = 2.97950

 elapsed = 0.0
 remaining = 65.6498

[[A, B, C, E]]
 sojourn = 11.3159
 elapsed = 52.9310

 remaining = 175.034

[[A, B, C, D, G, I, L, M]]
 sojourn = 0.34157
 elapsed = 219.660

 remaining = 0.91294

[[A, B, D, H, L]]
 sojourn = 1.13813
 elapsed = 50.9771

 remaining = 13.1130

[[A, B, G, I, L]]
 sojourn = 1.71961
 elapsed = 184.600

 remaining = 3.79485

[[A, B, C, H, L, M, N, O, P]]
 sojourn = 0.71309
 elapsed = 137.353

 remaining = 0.84301

[[A, B, C, D, G, J]]
 sojourn = 6.83795
 elapsed = 62.9295

 remaining = 6.83795

[[A, B, C, G, H, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 191.970
 remaining = 0.0

[[A, B, D, G, I]]
 sojourn = 2.13651
 elapsed = 204.418

 remaining = 4.44978

[[B, C, D, G, I, L, M, Q]]
 sojourn = 0.05404
 elapsed = 158.326

 remaining = 0.13885

[[D, E, G, I, L, M, N, O]]
 sojourn = 0.29664
 elapsed = 134.753

 remaining = 0.29664

[[A, B, C, D, G, I, Q]]
 sojourn = 2.63241
 elapsed = 168.678

 remaining = 5.00325

[[B, C, F, G, Q]]
 sojourn = 0.0

 elapsed = 64.3837
 remaining = 0.0

[[A, B, C, D, E, H, L, M, N]]
 sojourn = 0.04183
 elapsed = 141.818

 remaining = 0.21508

[[D, H, L, M, N]]
 sojourn = 1.73613
 elapsed = 78.3889

 remaining = 1.89573

[[B, C, D, H, L, Q]]
 sojourn = 0.95100
 elapsed = 57.4765

 remaining = 9.66122

[[A, B, C, D, H, L, M, N, O, Q]]
 sojourn = 0.56761
 elapsed = 125.729

 remaining = 0.56761

[[A, B, D, G, I, L, M, N, O, Q]]
 sojourn = 0.12733
 elapsed = 178.912

 remaining = 0.12733

[[A, B, C, D, H, L, M, N]]
 sojourn = 8.92448
 elapsed = 86.5445

 remaining = 11.0390

[[A, B, C, G, I, L, M]]
 sojourn = 0.04825
 elapsed = 202.895

 remaining = 2.32449

[[D, G, I, L, N]]
 sojourn = 0.0

 elapsed = 165.897
 remaining = 0.0

[[A, B, C, F, H, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 148.147
 remaining = 0.0

[[B, C, D, G, I, L, M, N, O, Q]]
 sojourn = 0.12711
 elapsed = 132.195

 remaining = 0.12711

[[A, G, I, L, M, N]]
 sojourn = 0.04208
 elapsed = 171.787

 remaining = 1.45339

[[A, B, D, G, I, L, M]]
 sojourn = 0.57090
 elapsed = 207.324

 remaining = 0.83840

[[A, B, D, H, L, M, N, O, P, Q]]
 sojourn = 0.03682
 elapsed = 132.974

 remaining = 0.03682

[[A, B, D, H, L, M, N, Q]]
 sojourn = 0.04201
 elapsed = 132.767

 remaining = 0.24403

[[A, B, C, D]]
 sojourn = 15.2864
 elapsed = 54.7078

 remaining = 61.2724

[[A, B, C, D, G, H, L]]
 sojourn = 0.66679
 elapsed = 68.1440

 remaining = 0.85130

[[A, B, C, D, Q]]
 sojourn = 18.9642
 elapsed = 62.6724

 remaining = 55.2332

[[A, B, G, I, L, M, N, O, P, Q]]
 sojourn = 0.0

 elapsed = 209.898
 remaining = 0.0

[[A]]
 sojourn = 5.26360

 elapsed = 0.0
 remaining = 122.664

[[A, B, C, D, E, H, L, M, N, O, P]]
 sojourn = 0.02366
 elapsed = 142.009

 remaining = 0.02366

[[A, D, G, H]]
 sojourn = 0.0

 elapsed = 211.795
 remaining = 0.0

[[A, B, C, D, G, I, L]]
 sojourn = 1.56621
 elapsed = 218.386

 remaining = 2.45344

[[B, C, D, H, L, M, N, Q]]
 sojourn = 0.04286
 elapsed = 66.9659

 remaining = 0.17186

[[A, D, G]]
 sojourn = 61.9657
 elapsed = 52.0821

 remaining = 63.6920

[[A, B, C, D, G, I, L, N]]
 sojourn = 0.0

 elapsed = 230.036
 remaining = 0.0

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 107.138

[[A, B, G, I]]
 sojourn = 1.87488
 elapsed = 182.725

 remaining = 5.66974

[[A, B, H, L, N, O]]
 sojourn = 0.16523
 elapsed = 134.878

 remaining = 0.30124

[[D, G, I, L, M, N, O]]
 sojourn = 0.16623
 elapsed = 154.650

 remaining = 4.56243

[[A, B, C, G, H, L, M]]
 sojourn = 0.03114
 elapsed = 191.768

 remaining = 0.20108

[[A, G, I, L, M, N, O, P]]
 sojourn = 0.64222
 elapsed = 172.598

 remaining = 0.64222

[[A, H, L, N, O, P]]
 sojourn = 0.0

 elapsed = 110.032
 remaining = 0.0

[[D, E, G, I, L, M, N]]
 sojourn = 0.04255
 elapsed = 134.710

 remaining = 0.33920

[[D, E, G, I, L]]
 sojourn = 0.86116
 elapsed = 133.812

 remaining = 1.23768

[[A, B, C, D, E, H, L, M]]
 sojourn = 0.01029
 elapsed = 141.808

 remaining = 0.22537

[[D, H]]
 sojourn = 5.53926
 elapsed = 63.1406

 remaining = 17.3563

[[B, C, D, H, Q]]
 sojourn = 0.01826
 elapsed = 57.4583

 remaining = 9.67948

[[A, B, D, G, I, L, Q]]
 sojourn = 0.68148
 elapsed = 178.158

 remaining = 0.88093

[[A, B, D, H]]
 sojourn = 0.51030
 elapsed = 46.2188

 remaining = 12.5306

[[B, C, D, G, I, L, M, N, Q]]
 sojourn = 0.02833
 elapsed = 147.759

 remaining = 0.11307

[[A, B, C, H, L, M, N, O]]
 sojourn = 0.73823
 elapsed = 135.448

 remaining = 1.55320

[[A, B, D, G, I, L]]
 sojourn = 1.53738
 elapsed = 205.787

 remaining = 2.37578

[[A, B, D, L]]
 sojourn = 0.0

 elapsed = 28.7749
 remaining = 0.0

[[A, B, D, H, L, M, Q]]
 sojourn = 0.00745
 elapsed = 132.759

 remaining = 0.25149

[[B, C, D, G, I, L, Q]]
 sojourn = 2.46346
 elapsed = 155.863

 remaining = 2.60231

[[A, B, C, D, E, H, L, M, N, O]]
 sojourn = 0.12590
 elapsed = 141.860

 remaining = 0.17324

[[B, C, F, Q]]
 sojourn = 0.01974
 elapsed = 64.3640

 remaining = 0.01974

[[A, D, H]]
 sojourn = 93.8720
 elapsed = 117.923

 remaining = 93.8720

[[A, B, C, D, G, H, L, M, N, O, P]]
 sojourn = 0.0

 elapsed = 68.9954
 remaining = 0.0

[[D, H, L, M]]
 sojourn = 5.31331
 elapsed = 73.0756

 remaining = 7.20905

[[A, B, C, D, H, L, M, N, Q]]
 sojourn = 0.04250
 elapsed = 125.686

 remaining = 0.61011

[[A, B, D, G, I, L, M, N, Q]]
 sojourn = 0.04258
 elapsed = 178.869

 remaining = 0.16991

[[A, B, C, D, H, L, M]]
 sojourn = 3.18734
 elapsed = 78.8165

 remaining = 13.3064

[[A, B, H, L, N]]
 sojourn = 21.8510
 elapsed = 113.027

 remaining = 22.1523

[[D, G, I, L, M, N]]
 sojourn = 0.01793
 elapsed = 159.360

 remaining = 1.95351

[[A, B, C, G, I, L]]
 sojourn = 1.37939
 elapsed = 201.516

 remaining = 3.70388

[[A, B, C, G, H, L]]
 sojourn = 0.68125
 elapsed = 191.087

 remaining = 0.88233

[[A, B, C, F, H, L, M, N, O]]
 sojourn = 0.29467
 elapsed = 147.852

 remaining = 0.29467

[[A, G, I, L, M]]
 sojourn = 0.00912
 elapsed = 171.778

 remaining = 1.46251

[[D, E, G, I]]
 sojourn = 0.84165
 elapsed = 132.970

 remaining = 2.07934

[[A, B, C]]
 sojourn = 57.7437
 elapsed = 5.42723

 remaining = 122.777

[[A, B, C, D, G, H]]
 sojourn = 4.74372
 elapsed = 107.802

 remaining = 4.95655

[[A, B, C, Q]]
 sojourn = 3.58990
 elapsed = 58.2794

 remaining = 55.1409

[[A, B, G, I, L, M, N, O, Q]]
 sojourn = 0.12704
 elapsed = 209.771

 remaining = 0.12704

[[G, H]]
 sojourn = 0.0

 elapsed = 93.8725
 remaining = 0.0

[[A, D]]
 sojourn = 9.42368
 elapsed = 46.7735

 remaining = 75.0019

[[A, D, G, I, L, M, N, O, P]]
 sojourn = 1.49556
 elapsed = 198.702

 remaining = 1.49556

[[A, B, H, L, N, O, P]]
 sojourn = 0.11901
 elapsed = 138.896

 remaining = 0.11901

[[A, B, G]]
 sojourn = 100.934
 elapsed = 43.6649

 remaining = 105.002

[[B, C, D, Q]]
 sojourn = 18.4040
 elapsed = 37.3619

 remaining = 44.2868

[[A, H, L, N, O]]
 sojourn = 0.17200
 elapsed = 109.860

 remaining = 0.17200

[[D, E, G, I, L, M]]
 sojourn = 0.03731
 elapsed = 134.673

 remaining = 0.37651

[[A, B, C, D, E, H, L]]
 sojourn = 0.95271
 elapsed = 140.855

 remaining = 1.17809

[[A, B, C, G]]
 sojourn = 86.6687
 elapsed = 60.0423

 remaining = 89.8772

[[A, B, C, D, G, H, L, M, N, O]]
 sojourn = 0.12706
 elapsed = 68.8683

 remaining = 0.12706

H
complete

L
complete

O
complete

P
complete

P
complete

D
complete

L
complete

O
complete

D
complete

I
complete

I
complete

N
complete

O
complete

L
complete

N
complete

P
complete

G
complete

N
complete

N
complete

N
complete

O
complete

E
complete

M
complete

G
complete

P
complete

G
complete

H
complete

P
complete

L
complete

N
complete

A
complete

M
complete

L
complete

G
complete

M
complete

L
complete

H
complete

Q
complete

M
complete

O
complete

D
complete

N
complete

L
complete

O
complete

N
complete

O
complete

L
complete

P
complete

I
complete

P
complete

N
complete

P
complete

D
complete

M
complete

N
complete

P
complete

L
complete

G
complete

O
complete

P
complete

E
complete

M
complete

O
complete

M
complete

B
complete

B
complete

P
complete

E
complete

O
complete

P
complete

G
complete

L
complete

F
complete

H
complete

N
complete

M
complete

N
complete

I
complete

C
complete

H
complete

P
complete

O
complete

N
complete

L
complete

L
complete

L
complete

O
complete

G
complete

O
complete

O
complete

P
complete

L
complete

M
complete

P
complete

O
complete

M
complete

L
complete

O
complete

P
complete

L
complete

G
complete

G
complete

H
complete

G
complete

O
complete

O
complete

P
complete

M
complete

D
complete

N
complete

I
complete

O
complete

G
complete

I
complete

L
complete

Q
complete

B
complete

N
complete

G
complete

I
complete

N
complete

B
complete

G
complete

L
complete

N
complete

G
complete

P
complete

M
complete

O
complete

O
complete

O
complete

O
complete

N
complete

N
complete

G
complete

Q
complete

H
complete

O
complete

O
complete

F
complete

G
complete

E
complete

N
complete

O
complete

H
complete

M
complete

L
complete

M
complete

O
complete

D
complete

N
complete

P
complete

E
complete

M
complete

G
complete

P
complete

O
complete

P
complete

D
complete

H
complete

L
complete

O
complete

P
complete

O
complete

N
complete

O
complete

O
complete

L
complete

I
complete

D
complete

M
complete

J
complete

M
complete

N
complete

Q
complete

N
complete

P
complete

O
complete

M
complete

H
complete

P
complete

N
complete

L
complete

P
complete

D
complete

D
complete

F
complete

M
complete

H
complete

M
complete

N
complete

L
complete

G
complete

O
complete

P
complete

P
complete

N
complete

I
complete

P
complete

G
complete

O
complete

L
complete

E
complete

L
complete

N
complete

G
complete

C
complete

O
complete

L
complete

O
complete

I
complete

M
complete

M
complete

M
complete

M
complete

N
complete

H
complete

P
complete

O
complete

P
complete

O
complete

P
complete

H
complete

B
complete

O
complete

L
complete

I
complete

P
complete

D
complete

G
complete

D
complete

I
complete

O
complete

P
complete

L
complete

N
complete

N
complete

P
complete

C
complete

O
complete

O
complete

M
complete

I
complete

N
complete

I
complete

P
complete

G
complete

M
complete

L
complete

O
complete

M
complete

O
complete

O
complete

P
complete

O
complete

P
complete

P
complete

N
complete

L
complete

G
complete

Q
complete

N
complete

B
complete

O
complete

D
complete

H
complete

O
complete

P
complete

N
complete

G
complete

G
complete

O
complete

P
complete

M
complete

D
complete

H
complete

H
complete

G
complete

G
complete

L
complete

O
complete

N
complete

O
complete

(a) Set abstraction based on all activities

[[B]]
 sojourn = 16.3629
 elapsed = 7.86427

 remaining = 112.792

[[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 107.138

[[C]]
 sojourn = 51.9436
 elapsed = 9.94651

 remaining = 115.056

[[O]]
 sojourn = 0.45839
 elapsed = 159.219

 remaining = 1.73753

[[J]]
 sojourn = 13.6759
 elapsed = 56.0915

 remaining = 13.6759

[[H]]
 sojourn = 7.09205
 elapsed = 87.5322

 remaining = 24.6030

[[P]]
 sojourn = 1.26478
 elapsed = 155.082

 remaining = 1.69408

[[N]]
 sojourn = 3.60209
 elapsed = 155.972

 remaining = 5.26848

[[L]]
 sojourn = 1.43620
 elapsed = 157.379

 remaining = 7.93469

[[E]]
 sojourn = 4.31920
 elapsed = 51.3724

 remaining = 53.6329

[[F]]
 sojourn = 13.2145
 elapsed = 128.014

 remaining = 13.3569

[[M]]
 sojourn = 1.83842
 elapsed = 161.461

 remaining = 6.16146

[[Q]]
 sojourn = 11.8378
 elapsed = 26.5137

 remaining = 75.7916

[[G]]
 sojourn = 59.7765
 elapsed = 47.9646

 remaining = 61.6373

[[A]]
 sojourn = 5.26360

 elapsed = 0.0
 remaining = 122.664

[[I]]
 sojourn = 1.57712
 elapsed = 188.213

 remaining = 4.43585

[[D]]
 sojourn = 12.8837
 elapsed = 40.6624

 remaining = 59.6669

Q
complete

L
complete

G
complete

I
complete

G
complete

H
complete

D
complete

P
complete

D
complete

C
complete

H
complete

E
complete

M
complete

D
complete

H
complete

G
complete

F
complete

B
complete

Q
complete

G
complete

G
complete

B
complete

G
complete

G
complete

H
complete

O
complete

E
complete

B
complete

L
complete

D
complete

L
complete

Q
complete

H
complete

H
complete

O
complete

D
complete

D
complete

F
complete

J
complete

N
complete

G
complete

N
complete

E
complete

A
complete

H
complete

(b) Set abstraction with a horizon of 1

[[B],[I]]
 sojourn = 15.3332
 elapsed = 4.27168

 remaining = 202.780

[[],[I]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 192.649

[[],[]]
 sojourn = 0.0
 elapsed = 0.0

 remaining = 63.4624

[[E],[I]]
 sojourn = 8.25098
 elapsed = 26.4655

 remaining = 155.042

[[G],[]]
 sojourn = 0.17968
 elapsed = 51.7855

 remaining = 0.25572

[[C],[I]]
 sojourn = 50.5984
 elapsed = 6.55942

 remaining = 204.546

[[O],[]]
 sojourn = 0.45839
 elapsed = 159.219

 remaining = 1.73753

[[J],[]]
 sojourn = 13.6759
 elapsed = 56.0915

 remaining = 13.6759

[[D],[]]
 sojourn = 15.0304
 elapsed = 41.2688

 remaining = 19.4577

[[H],[]]
 sojourn = 7.09205
 elapsed = 87.5322

 remaining = 24.6030

[[P],[]]
 sojourn = 1.26478
 elapsed = 155.082

 remaining = 1.69408

[[C],[]]
 sojourn = 52.5662
 elapsed = 11.5144

 remaining = 73.6310

[[N],[]]
 sojourn = 3.60209
 elapsed = 155.972

 remaining = 5.26848

[[L],[]]
 sojourn = 1.43620
 elapsed = 157.379

 remaining = 7.93469

[[E],[]]
 sojourn = 3.53284
 elapsed = 56.3538

 remaining = 33.3511

[[F],[]]
 sojourn = 13.2145
 elapsed = 128.014

 remaining = 13.3569

[[B],[]]
 sojourn = 16.8129
 elapsed = 9.43436

 remaining = 73.4641

[[Q],[]]
 sojourn = 12.1739
 elapsed = 28.1960

 remaining = 65.5129

[[M],[]]
 sojourn = 1.83842
 elapsed = 161.461

 remaining = 6.16146

[[G],[I]]
 sojourn = 145.761
 elapsed = 42.4520

 remaining = 150.197

[[A],[I]]
 sojourn = 4.88454

 elapsed = 0.0
 remaining = 207.543

[[Q],[I]]
 sojourn = 8.98153
 elapsed = 12.2141

 remaining = 163.160

[[A],[]]
 sojourn = 5.45194

 elapsed = 0.0
 remaining = 80.4937

[[I],[]]
 sojourn = 1.57712
 elapsed = 188.213

 remaining = 4.43585

[[D],[I]]
 sojourn = 7.47458
 elapsed = 39.1344

 remaining = 160.984

D
complete

B
complete

O
complete

G
complete

Q
complete

B
complete

B
complete

H
complete

B
complete

L
complete

D
complete

E
complete

G
complete

H
complete

B
complete

O
complete

G
complete

J
complete

D
complete

F
complete

G
complete

D
complete

N
complete

Q
complete

D
complete

B
complete

G
complete

D
complete

D
complete

A
complete

switch start state

D
complete

H
complete

Q
complete

I
complete

L
complete

E
complete

N
complete

H
complete

G
complete

Q
complete

P
complete

G
complete

E
complete

C
complete

C
complete

G
complete

D
complete

M
complete

Q
complete

D
complete

Q
complete

F
complete

L
complete

G
complete

A
complete

D
complete

H
complete

G
complete

G
complete

G
complete

H
complete

E
complete

H
complete

G
complete

(c) Set abstraction with a horizon of 1 and knowledge
about the case

[]
 sojourn = 14.5942
 elapsed = 69.9587

 remaining = 62.0593

P
complete

E
complete

A
complete

D
complete

F
complete

L
complete

B
complete

G
complete

M
complete

Q
complete

O
complete

H
complete

J
complete

C
complete

I
complete

N
complete

(d) Complete abstraction

Figure 17: Four transition systems with prediction information based on the same event log but using different abstractions.

28

Abstraction MAE RMSE
Set abstraction based on all activities (cf. Fig-
ure 17(a))

41.648 47.513

Set abstraction based on last activity (cf. Fig-
ure 17(b))

43.080 49.666

Set abstraction based on last activity and ad-
ditional information related to the occurrence
of “I” (cf. Figure 17(c))

17.129 23.550

Complete abstraction (cf. Figure 17(d)) 63.391 74.965
Simple heuristic: half of average total flow
time (53.57 days)

61.750 75.505

Table 5: Some results for the municipality’s WOZ process

uses knowledge about the property of the case, i.e., based on this knowledge it is known whether a particular
task (labeled “I”) needs to be executed. Figure 17(c) shows the resulting transition system. Note that
it extends Figure 17(b) with additional knowledge about the occurrence of task “I”. The last abstraction
(Figure 17(d)) is again the extreme case where no historic information is used. This is again used as a
benchmark.

Table 5 shows the results for the four annotated transition systems shown in Figure 17. The last row
shows again the results for simply predicting half of the average flow time. Note that the transition systems
are constructed based on L1 while the error rates in Table 5 are based on L2. Again simple abstractions such
as shown in figure 17(a) and 17(b) outperform simple heuristics. Note that the the complete abstraction and
simple heuristic have a MAE of more than 60 days while set abstractions based on all activities or just the
last activity have a MAE of just above 40 days. The third row of Table 5 shows the spectacular performance
of the annotated transition system shown in Figure 17(c). The MAE drops to 17 days. This illustrates
that additional information can be very valuable. Note that the average total flow time is about 107 days.
Moreover, as shown in Figure 16 there is a huge variation in flow times. Hence, it is quite remarkable that
we can predict the remaining time until completion so accurately.

8. Discussion

After presenting our approach and ProM plug-ins for time prediction and illustrating these using some
case studies, we now discuss potential limitations and data requirements.

The previous section clearly showed that our prediction approach outperforms more naive approaches like
always predicting half of average total flow time. Moreover, in Section 6 we discussed various techniques
to measure the quality of predictions using cross-validation and error measures such as RMSE and MAE.
However, these quality considerations are based on experimentation and do not provide clear rules on “how
much event data is needed to reach a particular accuracy”. Given a transition system and an event log it is
quite easy to characterize “sufficient data” as shown in Section 6.2. The wider the confidence interval is, the
poorer the accuracy will be. In general it is wise to use a coarser abstraction if a substantial fraction of states
in the transition system has been visited infrequently. It is impossible to give general rules beforehand, as
this depends on the variability of observations and these are not known upfront. Therefore, we propose an
incremental approach where the quality is continuously estimated based on the techniques given in Section 6
and only presented to the user if the quality is acceptable.

There are also several limitations of the approach not considered thus far.
First of all, the approach assumes that the process that is observed is in steady state. For many processes

this is not realistic and this is often referred to as “concept drift”. In predictive analytics, concept drift
means that the statistical properties of the target variable, which the model is trying to predict, change over
time. For example, towards of the end of the year more requests arrive per time unit thus increasing the
overall flow time. Moreover, an organization that is rapidly expanding may experience all kinds of concept
drift, causing predictions to be less accurate.

Second, we base our predictions on prefixes of a single process instance. The transitions systems learned
from event logs describe one case in isolation. In practical applications of our approach we noted that the

29

context of a case is also important when predicting flow times. Here we interpret the context of a case as
(a) the other cases it is competing with, (b) the availability and load of resources, and (c) external factors
influencing the process. For example, suppose that there are many cases queueing. In this case it is likely
that the next case will need more time. However, this is not taken into account in the example abstractions
used in this paper. Knowledge about resources may also help predicting the flow time, e.g., non-availability
of workers due to holidays can have a significant impact. There may also be factors outside of the process
and its associated set of resources. For example, in some processes, the weather, the time of the day, traffic
conditions, etc. may have a significant impact on remaining processing times. Note that our approach allows
for the encoding of such factors. In Definition 1 we allowed an event e to have any set of properties. For
example, propresource load(e), propbusyness(e), propweather (e), etc. could be properties added to the event log
and used in the abstractions. However, the challenge is to select the right features and avoid looking for the
“needle in a haystack” when many potential contextual factors are recorded in the log.

The last limitation we would like to mention here is that by providing a prediction, one is influencing
the future. For example, we have been applying prediction to the study behavior of students. We have
a detailed record of all exam attempts by all students that ever studied computer science at Eindhoven
University of Technology [34]. Recently, we used the approach presented in this paper to predict whether
students will graduate and, if so, the remaining study time. In the future, we plan to use these results to give
advice to individual students. However, this creates the dilemma that by providing early warnings we are
influencing the process and thus make the results less reliable. This is similar to “Schrödinger’s cat paradox”
in quantum mechanics; that it is impossible to observe and use predictions without influencing the future
and thus jeopardizing the quality of the prediction. For example, if the prediction indicates that the expected
remaining processing time of a case is short, people may not work on the case and thus delay it. Therefore,
one should apply predictions carefully and consider the intended effect of predictions.

9. Conclusion

In this paper, we presented a new method for predicting the “future of a running instance”. Given a
running case, our prediction approach allows answering questions like “When will this case be finished?”,
“How long does it take before activity A is completed?”, “How likely is it that activity B will be performed in
the next two days?”, etc. In this paper, we mainly focused on the remaining time until completion. However,
our approach can easily be used for other types of predictions. The basic idea of the approach is to build
an annotated transition system. This transition system is learned from past executions using an appropriate
abstraction mechanism.

The approach is fully implemented in ProM. Using the FSM Miner a transition system is learned. The
FSM Analyzer extends this transition system with predictive information. This information can be used to
make predictions at run-time. Currently, we only support a link between the workflow management system
Declare and our prediction tools in ProM. However, it is easy to extend the same toolset to other workflow
management systems. To support experiments and to cross validate results, our FSM evaluator can be used
to measure standard quality metrics such as MSE, RMSE, MAE, and MAPE.

In this paper, we evaluated our approach using a synthetic event log and two real-life event logs. Both
experiments show that our approach outperforms simple heuristics. This is quite remarkable as we do not
use a-priori knowledge. Note that we learn the model from past executions. The model can be used for
predictions, but also has a value by itself as it shows where in the process the bottlenecks are.

As future work we plan to work more on the automation of abstractions, i.e., now the user still needs to
select an abstraction based on the characteristics of the process and log. For example, when there are fewer
process instances, then a more abstract transition system is desirable. It seems possible to automatically
refine or aggregate states based on the quality metrics already gathered. Such approaches are not only
interesting for predictions but also for process discovery, i.e., the parts of the process where there is more
certainty are depicted in more detail and the more “fuzzy” parts of the process are simplified. For predictions
all measures are considered to be of equal importance, while there could be correlations between activities.
For example, after the occurrence of some activity it is very unlikely that some other activity will occur.
In this case it does not make sense to (fully) use measures from traces that contain that latter activity for
predicting an instance where the former activity has already been exectued. Correlations can be mined from
the log [32] and be used to select or to weigh the state prediction measures. An assumption in our approach

30

is the independency of the samples, i.e., the bag of measurements. However, the interaction between cases
and the availability of resources are important factors when predicting the remaining time until completion
[22, 30]. These interactions should be incorporated into the predictions.

10. Acknowledgements

This research is supported by EIT, NWO-EW, SUPER, and the Technology Foundation STW. We would
like to thank the many people involved in the development of ProM. In particular we would like to thank Eric
Verbeek for implementing the FSM Miner, Maja Pesic for her work on operational support, and Boudewijn
van Dongen and Ronald Crooy for their work on the regression-based prediction service.

References

[1] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves de Medeiros, A. Rozinat,
V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Weijters. ProM 4.0: Comprehensive Support for
Real Process Analysis. In J. Kleijn and A. Yakovlev, editors, Application and Theory of Petri Nets
and Other Models of Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science,
pages 484–494. Springer-Verlag, Berlin, 2007.

[2] W.M.P. van der Aalst, M. Pesic, and M. Song. Beyond Process Mining: From the Past to Present
and Future. In B. Pernici, editor, Advanced Information Systems Engineering, Proceedings of the 22nd
International Conference on Advanced Information Systems Engineering (CAiSE’10), volume 6051 of
Lecture Notes in Computer Science, pages 38–52. Springer-Verlag, Berlin, 2010.

[3] W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F. van Dongen, A.K. Alves de Medeiros,
M. Song, and H.M.W. Verbeek. Business Process Mining: An Industrial Application. Information
Systems, 32(5):713–732, 2007.

[4] W.M.P. van der Aalst, V. Rubin, B.F. van Dongen, E. Kindler, and C.W. Günther. Process Mining: A
Two-Step Approach to Balance Between Underfitting and Overfitting. Software and Systems Modeling,
9(1):87–111, 2010.

[5] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm, and A.J.M.M. Weijters.
Workflow Mining: A Survey of Issues and Approaches. Data and Knowledge Engineering, 47(2):237–267,
2003.

[6] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining: Discovering Process
Models from Event Logs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1128–1142,
2004.

[7] R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Workflow Logs. In Sixth
International Conference on Extending Database Technology, pages 469–483, 1998.

[8] J.S. Armstrong and F. Collopy. Error Measures For Generalizing About Forecasting Methods: Empirical
Comparisons. International Journal of Forecasting, 8(1):69–80, 1992.

[9] J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-Based Data. ACM
Transactions on Software Engineering and Methodology, 7(3):215–249, 1998.

[10] R. Crooy. Predictions in Information Systems: A process mining perspective. Master’s thesis, Eindhoven
University of Technology, Eindhoven, 2008.

[11] A. Datta. Automating the Discovery of As-Is Business Process Models: Probabilistic and Algorithmic
Approaches. Information Systems Research, 9(3):275–301, 1998.

[12] S.N. den Hertog. Case prediction in BPM systems: Research to the predictability of the remaining time
of individual cases. Master’s thesis, Eindhoven University of Technology, Eindhoven, 2008.

31

[13] B.F. van Dongen, R.A. Crooy, and W.M.P. van der Aalst. Cycle Time Prediction: When Will This
Case Finally Be Finished? In R. Meersman and Z. Tari, editors, Proceedings of the 16th International
Conference on Cooperative Information Systems, CoopIS 2008, OTM 2008, Part I, volume 5331 of
Lecture Notes in Computer Science, pages 319–336. Springer-Verlag, Berlin, 2008.

[14] M. Dumas, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Process-Aware Information Systems:
Bridging People and Software through Process Technology. Wiley & Sons, 2005.

[15] J. Eder, E. Panagos, and M. Rabinovich. Time Constraints in Workflow Systems. In M. Jarke and
A. Oberweis, editors, Proceedings of the 11th International Conference on Advanced Information Systems
Engineering (CAiSE ’99), volume 1626 of Lecture Notes in Computer Science, pages 286–300. Springer-
Verlag, Berlin, 1999.

[16] J. Eder and H. Pichler. Probabilistic Calculation of Execution Intervals for Workflows. In Proceed-
ings of the 12th International Symposium on Temporal Representation and Reasoning, pages 183–185,
Washington, DC, USA, 2005. IEEE Computer Society.

[17] C.W. Günther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process Simplification Based on
Multi-perspective Metrics. In G. Alonso, P. Dadam, and M. Rosemann, editors, International Conference
on Business Process Management (BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages
328–343. Springer-Verlag, Berlin, 2007.

[18] J. Herbst. A Machine Learning Approach to Workflow Management. In Proceedings 11th European
Conference on Machine Learning, volume 1810 of Lecture Notes in Computer Science, pages 183–194.
Springer-Verlag, Berlin, 2000.

[19] K. Jensen, L.M. Kristensen, and L. Wells. Coloured Petri Nets and CPN Tools for Modelling and
Validation of Concurrent Systems. International Journal on Software Tools for Technology Transfer,
9(3-4):213–254, 2007.

[20] J. Kleijnen and W. van Groenendaal. Simulation: A Statistical Perspective. John Wiley and Sons, New
York, 1992.

[21] A.K. Alves de Medeiros and C.W. Günther. Process Mining: Using CPN Tools to Create Test Logs
for Mining Algorithms. In K. Jensen, editor, Proceedings of the Sixth Workshop on the Practical Use
of Coloured Petri Nets and CPN Tools (CPN 2005), volume 576 of DAIMI, pages 177–190, Aarhus,
Denmark, October 2005. University of Aarhus.

[22] J. Nakatumba and W.M.P. van der Aalst. Analyzing Resource Behavior Using Process Mining. In
S. Rinderle-Ma, S. Sadiq, and F. Leymann, editors, BPM 2009 Workshops, Proceedings of the Fifth
Workshop on Business Process Intelligence (BPI’09), volume 43 of Lecture Notes in Business Informa-
tion Processing, pages 69–80. Springer-Verlag, Berlin, 2010.

[23] M. Pesic, H. Schonenberg, and W.M.P. van der Aalst. DECLARE: Full Support for Loosely-Structured
Processes. In M. Spies and M.B. Blake, editors, Proceedings of the Eleventh IEEE International Enter-
prise Distributed Object Computing Conference (EDOC 2007), pages 287–298. IEEE Computer Society,
2007.

[24] H. A. Reijers. Case Prediction in BPM Systems: A Research Challenge. Journal of the Korean Institute
of Industrial Engineers, 33:1–10, 2006.

[25] S.M. Ross. A Course in Simulation. Macmillan, New York, 1990.

[26] A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based on Monitoring Real
Behavior. Information Systems, 33(1):64–95, 2008.

[27] A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Colored Petri Nets From Event
Logs. International Journal on Software Tools for Technology Transfer, 10(1):57–74, 2008.

32

[28] A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst. Discovering Simulation Models. Information
Systems, 34(3):305–327, 2009.

[29] A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge. Workflow Simu-
lation for Operational Decision Support Using Design, Historic and State Information. In M. Dumas,
M. Reichert, and M.C. Shan, editors, International Conference on Business Process Management (BPM
2008), volume 5240 of Lecture Notes in Computer Science, pages 196–211. Springer-Verlag, Berlin, 2008.

[30] B. Schellekens. Cycle Time Prediction in Staffware. Master’s thesis, Eindhoven University of Technology,
Eindhoven, 2009.

[31] H. Schonenberg, B. Weber, B.F. van Dongen, and W.M.P. van der Aalst. Supporting Flexible Processes
Through Recommendations Based on History. In M. Dumas, M. Reichert, and M.C. Shan, editors,
International Conference on Business Process Management (BPM 2008), volume 5240 of Lecture Notes
in Computer Science, pages 51–66. Springer-Verlag, Berlin, 2008.

[32] M.H. Schonenberg, N. Sidorova, W.M.P. van der Aalst, and K. van Hee. History-Dependent Stochastic
Petri Nets. In A. Pnueli, I. Virbitskaite, and A. Voronkov, editors, Perspectives of Systems Informatics,
volume 5947 of Lecture Notes in Computer Science, pages 366–379. Springer-Verlag, Berlin, 2010.

[33] Staffware. Staffware Process Suite Version 2 – White Paper. Staffware PLC, Maidenhead, UK, 2003.

[34] N. Trcka, M. Pechenizkiy, and W.M.P. van der Aalst. Chapter 9: Process Mining from Educational
Data. In C. Romero, S. Ventura, M. Pechenizkiy, and R. Baker, editors, Handbook of Educational Data
Mining, Data Mining and Knowledge Discovery Series. Taylor and Francis, 2010.

[35] S.E. Verwer, M.M. de Weerdt, and C. Witteveen. Efficiently Learning Timed Models from Observations.
In L. Wehenkel, P. Geurts, and R. Maree, editors, Benelearn, pages 75–76. University of Liege, 2008.

[36] B. Weber, W. Wild, and R. Breu. CBRFlow: Enabling Adaptive Workflow Management Through
Conversational Case-Based Reasoning. In Advances in Case-Based Reasoning, volume 3155 of Lecture
Notes in Computer Science, pages 434–448. Springer-Verlag, Berlin, 2004.

[37] A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models from Event-Based Data
using Little Thumb. Integrated Computer-Aided Engineering, 10(2):151–162, 2003.

[38] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik. Process Discovery using
Integer Linear Programming. In K. van Hee and R. Valk, editors, Proceedings of the 29th International
Conference on Applications and Theory of Petri Nets (Petri Nets 2008), volume 5062 of Lecture Notes
in Computer Science, pages 368–387. Springer-Verlag, Berlin, 2008.

33

