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1 Introduction

Free choice Petri nets are a twenty-�ve year old branch of net theory. Free choice nets are

a generalization of state machines (S-systems) and marked graphs (T-systems) for which

strong theoretical results hold and e�cient analysis techniques exist. However, in many

application domains realistic models are not free choice. Therefore, much e�ort has been

devoted to investigating possible generalizations of free choice nets. Examples of net classes

for which some of the results for free choice nets have been generalized are: equal-conict

nets [TS93], and well-handled nets [ES90]. Weaker results (typically only one direction

of a theorem for free choice nets) have been generalized to larger net classes. A typical

example is the work on asymmetric choice nets [Hac72, BS87, DE95]. For example one

direction of Commoner's Theorem can be generalized to asymmetric choice nets.

In this paper, we explore further generalizations of asymmetric choice nets. In an

asymmetric choice net, it is not allowed that two transitions compete for a token in a

shared input place while they both have private input places, i.e., the input set of the �rst

transition must be included in the input set of the other transition or vise versa. Clearly,

free choice nets satisfy this structural property. In this paper, we extend the notion of

asymmetric choice with test arcs, also called loops or self loops. If a place is both an

input and an output place of a transition, the set of two arcs connecting the place and the

transition is called a test arc because the transition only tests the presence of the token and

does not really remove it while �ring. We will investigate several alternative de�nitions.

It turns out that allowing arbitrary test arcs in addition to the classical de�nition of

asymmetric choice is not suitable. The most basic results do not hold for these naive

extensions. Therefore, we give a more sophisticated de�nition of a net class we call extended

asymmetric choice nets. For this class, we will show that it is possible to generalize one

direction of Commoner's Theorem: If every proper siphon of an extended asymmetric choice

system includes an initially marked trap, the system is live.

This work is motivated by the fact that in many application domains test arcs are

needed to model the behavior of systems and business processes. Test arcs are for example



used to test signals in models of transport and production systems. In the workow

management domain, test arcs are often used to model that the execution of one task in

one sub-procedure has to wait until another sub-procedure has advanced until a prede�ned

point (milestone). See for example the workow process de�nition shown in Figure 15 in

[Aal98].

The remainder of this paper is organized as follows. First, we introduce some basic

notations and standard results. Then, we give �ve de�nitions of (naively) (extended)

asymmetric choice nets and show the equivalence of some of these net classes. Finally, we

prove some results for one of the net classes identi�ed and discuss the relevance of these

results.

2 Basic concepts

In this section, we introduce the notation used in this paper and some of the standard

results for Petri nets [Pet81, Rei85, Mur89, DE95]. A Petri net consists of a �nite set of

places P , a �nite set of transitions T , and a ow relation F which relates transitions and

places. A marking of a net associates a natural number with each place. This number

represents the number of tokens residing at that place. In a textual representation, we

use multi-set notation for markings, e.g. [A;C;A] represents a marking with two tokens at

place A, a single token at place C, and no tokens on all other places.

De�nition 1 (Net, marking, system net)

Let P and T be two �nite and disjoint sets and let F be a relation F � (P �T )[(T�

P ). Then, we call N = (P; T; F ) a net. A mapping M : P �! IN is called a marking

of N . A net N equipped with a marking M is called a system net � = (N;M) and

M is called the initial marking of �.

The places and transitions of a net are also called the elements of the net. For a given

element x, the preset �x denotes all elements which have an arc towards x; the postset x�

denotes all those elements which have an arc coming from x.

De�nition 2

Let N = (P; T; F ) be a net.

1. For an element x 2 P [ T , we de�ne the preset of x by �x = fy 2 P [ T j

(y; x) 2 Fg. We de�ne the postset of x by x� = fy 2 P [ T j (x; y) 2 Fg.

2. A set S � P is called a siphon of N , if for every transition t 2 T with t�\S 6= ;,

we also have �t \ S 6= ;.

3. A set S � P is called a trap of N , if for every transition t 2 T with �t \ S 6= ;,

we also have t� \ S 6= ;.

4. A set of places S is unmarked at a marking M , if for every p 2 S we have

M(p) = 0.



The de�nitions of siphons and traps are structural. Still, there are behavioral conse-

quences (cf. Prop. 5).

A transition is enabled at a marking, if every place in its preset is marked. An enabled

transition may occur in which case one token is removed from every place in the transition's

preset and one token is added to every place in the transition's postset.

De�nition 3 (Behaviour of nets)

Let N = (P; T; F ) be a net and let M be a marking of N .

1. A transition t 2 T is enabled at M , if for every p 2 �t we have M(p) � 1.

2. If transition t 2 T is enabled at M, it may occur and its occurrence changes the

marking into the successor marking M 0 de�ned by

M 0(p) =

8>><
>>:

M(p) if p 62 �t and p 62 t�

M(p) if p 2 �t and p 2 t�.

M(p) � 1 if p 2 �t and p 62 t�

M(p) + 1 if p 62 �t and p 2 t�

Then, we write M
t
!M 0

3. A markingM 0 is reachable fromM , if there exists a (possibly empty) sequence of

markings M1;M2; : : : ;Mn�1 and transitions t1; t2; : : : ; tn such that M
t1
!M1

t2
!

M2 ! : : :
tn
!M 0.

If M
t1
! M1

t2
! M2 ! : : :

tn
! M 0, then � = t1; t2; : : : ; tn is the occurrence sequence

leading from M to M 0 (notation M
�
! M 0). With these basic concepts, we are able to

de�ne liveness and place liveness.

De�nition 4 (Liveness, place liveness)

Let � = (N;M) be a system net.

1. A transition t of � is dead, if there is no reachable marking which enables t.

2. A transition t of � is live, if for every marking M1 which is reachable from M

there exists a marking M2 which enables t and is reachable from M1.

3. � is live, if every transition of � is live.

4. A place p of � is dead, if there is no reachable marking which marks p.

5. A place p of � is live, if for every marking M1 which is reachable from M there

exists a marking M2 which marks p and is reachable from M1.

6. � is place live, if every place of � is place live.

If a transition/place is live, then it is not dead. However, there may be transi-

tions/places which are neither dead nor live. We say that a transition/place of net N is

dead at a marking M , if and only if, the transition/place is dead in the system � = (N;M).

The following results are well-known in Petri net theory (e.g. [DE95]) and will be used in

the second part of this paper.



Proposition 5

Let � = (N;M) be a system net.

1. Let S be a siphon of N and M1 be a marking in which S is unmarked. Then, S

is unmarked at every marking M2 reachable from M1.

2. Let S be a trap of N and M1 be a marking in which S is marked. Then, S is

marked at every marking M2 reachable from M1.

3. Let S be a siphon of N and M1 be a marking which is reachable from M and

at which S is unmarked. If there exists a transition t with �t\ S 6= ;, then � is

not live.

3 Extended asymmetric choice nets

Asymmetric choice nets are a generalization of free choice nets. Therefore, we start with

the de�nition of free choice nets [DE95]. In a free-choice net, a marking that enables a

transition t will enable all other transitions sharing an input place with t. The free choice

property is a structural property which can be de�ned in many ways.

De�nition 6 A net N = (P; T; F ) is free choice is for every two places p1 and p2
either p1

� \ p2
� = ; or p1

� = p2
�.

.

In the following de�nition we give �ve possible generalizations of free choice nets. The

�rst two correspond to the notion of asymmetric choice, the other extend this notion with

test arcs.

De�nition 7 (PAC,TAC,EAC,NEPAC,NETAC) Let N = (P; T; F ) be a net.

1. Net N is a place asymmetric choice (PAC) net, if for each two places p1; p2 2 P

with p1
� \ p2

� 6= ;, we have p1
� � p2

� or p2
� � p1

�.

2. Net N is a transition asymmetric choice (TAC) net, if for each triplet of tran-

sitions t; t1; t2 2 T , we have �t \ �t1 �
�t2 or

�t \ �t2 �
�t1.

3. For each transition t 2 T we de�ne a relation ;t on the places �t as follows.

For p1; p2 2
�t we have p1 ;t p2, if and only if there exists a transition t0 2 T

such that p1 2
�t0 n t0

�

and p2 62
�t0.

Net N is called an extended asymmetric choice (EAC) net, if for every transition

t 2 T the relation ;t is acyclic.

4. Net N is a naively extended place asymmetric choice (NEPAC) net, if for each

two places p1; p2 2 P with p1
�\p2

� 6= ;, we have (p1
�n�p1) � p2

� or (p2
� n�p2) �

p1
�.



 

 
  

Figure 1: Asymmetric choice nets.

5. Net N is a naively extended transition asymmetric choice (NETAC) net, if for

each triplet of transitions t; t1; t2 2 T , we have (�t\�t1) � (t1
�[�t2) or (

�t\�t2) �

(t2
� [ �t1).

In Proposition 8, we will prove that the �rst two notions (PAC and TAC) and the

last two notions (NEPAC and NETAC) are equivalent. PAC and TAC correspond to the

usual notion of asymmetric choice [Bes87, DE95]. Some author use the term extended

simple to denote this class of nets [Hac72, BS87, Bes84]. Figure 1 illustrates the notion

of asymmetric choice: The conict sets of transitions form an ascending chain. NEPAC

is a generalization of PAC where test arcs are partially omitted. Note that p1
� � p2

�

implies that (p1
� n �p1) � p2

�. Similar remarks hold for NETAC and TAC. The de�nition

of extended asymmetric choice (EAC) nets is more involved. If we compare extended

asymmetric choice nets with the diagram shown in Figure 1, there may be test arcs violating

the ascending chain of conict sets as long as relation;t is acyclic. Note that de�nition of

extended asymmetric choice is not equivalent to any of the other de�nitions. It is easy to

construct an extended asymmetric choice net which is not asymmetric choice and Figure 2

shows a system net �1 which is naively extended asymmetric choice but not extended

asymmetric choice because ;t has a cycle.

Proposition 8 Let N = (P; T; F ) be a net.

1. Net N is place asymmetric choice (PAC), if and only if, N is transition asym-

metric choice (TAC).

2. Net N is naively extended place asymmetric choice (NEPAC), if and only if, N

is naively extended transition asymmetric choice (NETAC).

Proof:

1. First, we prove the \if" direction. Assume that N is not PAC. There are places

p1 and p2 such that p1
� \ p2

� 6= ;, p1
� 6� p2

� and p2
� 6� p1

�. Therefore, there are

transitions t, t1 and t2 such that t 2 p1
� \ p2

�, t1 2 p1
� n p2

�, and t2 2 p2
� n p1

�.

Hence, p1 2
�t, p2 2

�t, p1 2
�t1, p2 62

�t1, p2 2
�t2, and p1 62

�t2. Combining

these properties shows that p1 2 (�t\�t1)n
�t2 and p2 2 (�t\�t2)n

�t1. Therefore,
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Figure 2: A NEAC system �1 which is not EAC.

N is not TAC since �t \ �t1 6�
�t2 and

�t \ �t2 6�
�t1. The \only i" direction can

be proved in a similar way. Assume that N is not TAC and prove that N is not

PAC.

2. We start by proving the \only if" direction. Assume that N is not NETAC.

There are transitions t, t1 and t2 such that (�t\ �t1) 6� (t1
�[ �t2) and (�t\ �t2) 6�

(t2
� [ �t1). Hence, there is a place p1 such that p1 2

�t, p1 2
�t1, p1 62 t1

�, and

p1 62
�t2. Moreover, there is a place p2 such that p2 2

�t, p2 2
�t2, p2 62 t2

�, and

p2 62
�t1. Reformulating these terms and combining them shows that t 2 p1

�\p2
�,

t1 2 (p1
� n �p1) n p2

�, and t2 2 (p2
� n �p2) n p1

�. Hence, N is not NEPAC. The\if"

direction can be proved by reversing the order of argumentation.

2

Since PAC and TAC are equivalent, we use the term asymmetric choice (AC) in the

remainder of this paper. Moreover, we will use the term naively extended asymmetric choice

(NEAC) instead of NEPAC or NETAC. The proof that PAC and TAC are equivalent was

already given in [BS87]. However, Best and Shields give an alternative formulation of TAC

(with the addition that t 2 (�t1)
�

\ (�t2)
�

).

Proposition 9 Let N = (P; T; F ) be a net.

1. If N is asymmetric choice (AC), then N is extended asymmetric choice (EAC).

2. If N is extended asymmetric choice (EAC), then N is naively extended asym-

metric choice (NEAC).



Proof:

1. Let t 2 T and assume that N is AC. We have to prove that the relation ;t

de�ned in Def. 7 is acyclic. Let p1; p2 2
�t. SinceN is AC, p1

� � p2
� or p2

� � p1
�.

Hence, p1 ;t p2 implies that p2
� � p1

�. Clearly, ;t is a subset of the relation

R � P � P with p1Rp2 := p2
� � p1

�. Since R is acyclic, ;t is also acyclic.

Therefore, N is EAC.

2. Assume N is EAC. Let p1; p2 2 S be two places with p1
�\p2

� 6= ;. We will prove

that (p1
�n�p1) � p2

� or (p2
�n�p1) � p1

�. There is a transition t 2 p2
�\p2

�. Since

N is EAC, it is not possible that p1 ;t p2 and p2 ;t p1 hold (;t is acyclic).

Therefore, p1 6;t p2 or p2 6;t p1. If p1 6;t p2, then for all t0 2 T : p1 62
�t0 n t0

� or

p2 2
�t0. Hence, (p1

� n �p1) � p2
�. If p2 6;t p1, then for all t0 2 T : p2 62

�t0 n t0
�

or

p1 2
�t0. Hence, (p2

� n �p2) � p1
�. In both cases, we conclude that N is NEAC.

2

If we consider the �ve classes de�ned in De�nition 7 in conjuncion with Propositions 8

and 9, we see that PAC coincides with TAC, NEPAC coincides with NETAC, PAC and

TAC are included in EAC, and EAC is both included in NEPAC and NETAC.

4 Commoner's Theorem for EAC systems

The generalization of one direction of Commoner's Theorem to asymmetric choice systems

is due to Commoner, and can be found in Hack's Master Thesis [Hac72, DE95]. In this

section, we will show that this result can be generalized to extended asymmetric choice

systems but not to naively extended asymmetric choice systems. For this purpose, we

prove three propositions that hold for extended asymmetric choice systems.

Proposition 10 Let � = (N;M) be an extended asymmetric choice system. If

transition t is dead at M , then some input place of t is dead at some marking

reachable from M .

Proof: We prove the contraposition. Assume that no input place of t is dead at

any marking reachable from M . We have to prove that t is not dead at M . Let
�t = fp1; : : : ; png. The input places of t are ordered in such a way that i < j, implies

that for all t0 2 T : if t0 2 pi
� n �pi, then t0 2 pj

�. Note that pi 6;t pj, if and only if,

for all t0 2 T : if t0 2 pi
� n �pi, then t0 2 pj

� (see De�nition 7). It is possible to order

the input places of t in such a way because ;t is acyclic. Since no input place of t is

dead at any marking reachable from M , there exists an occurrence sequence

M
�1
!M1

�2
!M2 ! : : :!Mn�1

�n
!Mn



such that Mi(pi) > 0 for 1 � i � n. Assume without loss of generality that all

sequences �i are minimal, i.e., no intermediate marking marks pi.

We show that Mn marks every place in �t, and therefore enables t. We proceed by

induction on the index i and prove that, for 1 � i � n and 1 � j � i, marking Mi

marks place pj .

i = 1: For i = 1, Mi =M1, and M1 marks p1 by construction.

i! i+ 1: Let us assume by induction hypothesis that for all 1 � j � i, marking Mi

marks place pj . If j = i+1, then pi+1 = pj and Mi+1 marks pj by construction.

If j < i + 1, then Mi marks pj (induction hypothesis). By the minimality of

Mi

�i+1
! Mi+1, no transition of pi+1

� occurs in �i+1. Since j < i+1, we have that

for all t0 2 T : if t0 2 pj
� n �pj , then t0 2 pi+1

�. Hence, no transition in pj
� n �pj

occurs in �i+1 (i.e., no tokens are removed from pj). Therefore, Mi+1 marks pj .

Since Mn enables t and Mn is reachable from M , t is not dead at M . 2

Note that the proof of Proposition 11 is simular to the proof of Lemma 10.2 in [DE95].

To generalize the proof to extended asymmetric choice systems we have de�ned another

ordering relation on places and modi�ed the induction step.

Proposition 11 An extended asymmetric choice system is live, if it is place live.

Proof: Assume that � = (N;M) is an extended asymmetric choice system which

is not live. There is a reachable marking M 0 and a transition t such that t is dead

at marking M 0. By the previous proposition, some input place of t is dead at some

marking reachable fromM 0. Since this marking is also reachable fromM , the system

is not place live. 2

Note that the reverse holds for any system, i.e., live systems are always place live (cf.

[DE95]).

Proposition 12

If an extended asymmetric choice system is not place live, there is a proper siphon

which is unmarked in some reachable marking.

Proof: Assume that � = (N;M) is an extended asymmetric choice system which is

not place live. Since � is not place live, there is a place p and a reachable marking

M1 such that p is dead at M1. Let M2 be a marking reachable from M1 such that

every place not dead at M2 is not dead at any marking reachable from M2. Such a

marking exists, because dead places remain dead, and the set of places in �nite. It

follows that all markings reachable fromM2 have the same set of dead places, say D.

We claim that D is a proper siphon, and that D is unmarked at M2. We �rst prove

the following three claims:



1. D is not empty.

The place p is dead at M1. Since dead places remain dead, p is dead at M2. So

p 2 D.

2. Every transition t with t� \D 6= ; is dead at M2.

Let q 2 D. Then q is dead at M2. So every transition in �q is dead at M2.

3. Every transition t dead at M2 has an input place in D.

By Proposition 10, some place q 2 �t is dead at a marking reachable from M2.

By the de�nition of M2, this place is already dead at M2, and therefore in D.

Combining these three observations, we conclude that D is a proper siphon. D is

unmarked at M2 because by de�nition of dead places, every place dead at M2 is

unmarked at M2. 2

Using the three propositions, we can now prove Commoner's Theorem for extended

asymmetric choice systems.

Theorem 13 (Commoner's Theorem for EAC)

An extended asymmetric choice system is live, if every proper siphon includes an

initially marked trap.

Proof: By contradiction. Assume that the extended asymmetric choice system

� = (N;M) is not live. We will prove that there is a proper siphon which does not

contain an initially marked trap. By Proposition 11, we know that � is not place

live. By Proposition 12, this implies that there is a proper siphon D which is not

marked at a state M2 reachable fromM . So every trap included in D is unmarked at

M2. Since traps remain marked, every trap included in D is unmarked in the initial

marking M . 2

It is quite easy to show that the other direction of Commoner's Theorem does not

hold for extended asymmetric choice nets (cf. Figure 10.2 in [DE95]). Moreover, it is not

possible to generalize Theorem 13 to naively extended asymmetric choice systems. Consider

for example the net shown in Figure 3. The net is naively extended asymmetric choice but

not extended asymmetric choice. The net has the following proper siphons: fa; bg, fa; cg,

fb; cg, and fa; b; cg. Since fa; bg, fa; cg, and fb; cg are also traps, every proper siphon

includes an initially marked trap. However, it is easy to see that �2 is not live (transition

t is dead). This example illustrates that Commoner's Theorem (one direction) cannot be

extended to naively extended asymmetric choice systems. This is a consequence of the fact

that Proposition 11 does not hold for naively extended asymmetric choice systems, e.g.,

�2 is place live but not live.



y

z

x

b

ca

t

Figure 3: Although every proper siphon includes an intially marked trap, the NEAC system

�2 is not live.

5 Conclusion

In this paper, we discussed possible extensions of asymmetric choice nets. The extensions

are inspired by the fact that test arcs are an important modeling construct used in many

applications domains. Most of the results for asymmetric choice systems have been ex-

tended to the class of extended asymmetric choice systems. For example, in Theorem 13

is was shown that one direction of Commoner's Theorem also holds for this class. These

results are far from trivial since there is no straightforward translation from extended

asymmetric choice nets to asymmetric choice nets. Moreover, we have showed that for

more naive extensions of asymmetric choice systems with test arcs, Theorem 13 does not

hold.

In another paper [KA98], we show that extended asymmetric choice nets also have some

elegant properties with respect to the relation between liveness, fairness and recurrence.

If we only consider fair occurrence sequences of an extended asymmetric choice system,

then liveness coincides with recurrence (i.e. if transitions can �re, they will �re). This

result was already known for free choice nets. The example shown in Figure 2 illustrates

that this does not apply to naively extended asymmetric choice nets. �1 is live but not

recurrent. Think for example of the following in�nite sequence of transition occurrences:

t1 (t2 t
0

1
t3 t

0

2
t1 t

0

3
)!. The corresponding computation is fair but t does not occur.

Both studies (i.e. reported in this paper and [KA98]) show that extended asymmetric

choice (EAC) nets, as de�ned in this paper, are an adequate extension of asymmetric choice

nets for which interesting theoretical results hold.



References

[Aal98] W.M.P. van der Aalst. The Application of Petri Nets to Workow Management.

The Journal of Circuits, Systems and Computers, 8(1):21{66, 1998.

[Bes84] E. Best. Fairness and conspiracies. Information Processing Letters, 18:215{220,

1984.

[Bes87] E. Best. Structure theory of Petri nets: the free choice hiatus. In W. Brauer,

W. Reisig, and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri

Nets, central models and their properties, volume 254 of Lecture Notes in Com-

puter Science, pages 168{206. Springer-Verlag, Berlin, 1987.

[BS87] E. Best and M.W. Shields. Some equivalence results for free choice nets and simple

nets, and on the periodicity of live free choice nets. In W. Brauer, W. Reisig, and

G. Rozenberg, editors, Proceedings of CAAP '83, volume 159 of Lecture Notes in

Computer Science, pages 141{154. Springer-Verlag, Berlin, 1987.

[DE95] J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge tracts in

theoretical computer science. Cambridge University Press, Cambridge, 1995.

[ES90] J. Esparza and M. Silva. Circuits, Handles, Bridges and Nets. In G. Rozenberg,

editor, Advances in Petri Nets 1990, volume 483 of Lecture Notes in Computer

Science, pages 210{242. Springer-Verlag, Berlin, 1990.

[Hac72] M.H.T. Hack. Analysis production schemata by Petri nets. Master's thesis, Mas-

sachusetts Institute of Technology, Cambridge, Mass., 1972.

[KA98] E. Kindler and W.M.P. van der Aalst. Liveness, fairness, and recurrence. Sub-

mitted, 1998.

[Mur89] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the

IEEE, 77(4):541{580, April 1989.

[Pet81] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, En-

glewood Cli�s, 1981.

[Rei85] W. Reisig. Petri nets: an introduction, volume 4 of Monographs in theoretical

computer science: an EATCS series. Springer-Verlag, Berlin, 1985.

[TS93] E. Teruel and M. Silva. Liveness and home states in equal conict systems. In

M. Ajmone Marsan, editor, Application and Theory of Petri Nets 1993, volume

691 of Lecture Notes in Computer Science, pages 415{432. Springer-Verlag, Berlin,

1993.

[TV84] P.S. Thiagarajan and K. Voss. A fresh look at free choice nets. Information and

Control, 61(2):85{113, 1984.


