
Distributed Process Discovery and Conformance
Checking

Wil M.P. van der Aalst1,2

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Queensland University of Technology, Brisbane, Australia

www.vdaalst.com

Abstract. Process mining techniques have matured over the last decade
and more and more organization started to use this new technology. The
two most important types of process mining are process discovery (i.e.,
learning a process model from example behavior recorded in an event
log) and conformance checking (i.e., comparing modeled behavior with
observed behavior). Process mining is motivated by the availability of
event data. However, as event logs become larger (say terabytes), per-
formance becomes a concern. The only way to handle larger applications
while ensuring acceptable response times, is to distribute analysis over a
network of computers (e.g., multicore systems, grids, and clouds). This
paper provides an overview of the different ways in which process min-
ing problems can be distributed. We identify three types of distribution:
replication, a horizontal partitioning of the event log, and a vertical par-
titioning of the event log. These types are discussed in the context of
both procedural (e.g., Petri nets) and declarative process models. Most
challenging is the horizontal partitioning of event logs in the context of
procedural models. Therefore, a new approach to decompose Petri nets
and associated event logs is presented. This approach illustrates that
process mining problems can be distributed in various ways.

Keywords: process mining, distributed computing, grid computing, pro-
cess discovery, conformance checking, business process management

1 Introduction

Digital data is everywhere – in every sector, in every economy, in every organi-
zation, and in every home – and will continue to grow exponentially [22]. Some
claim that all of the world’s music can be stored on a $600 disk drive. However,
despite Moore’s Law, storage space and computing power cannot keep up with
the growth of event data. Therefore, analysis techniques dealing with “big data”
[22] need to resort to distributed computing.

This paper focuses on process mining, i.e., the analysis of processes based on
event data [3]. Process mining techniques aim to discover, monitor, and improve
processes using event logs. Process mining is a relatively young research discipline
that sits between machine learning and data mining on the one hand, and process

analysis and formal methods on the other hand. The idea of process mining is
to discover, monitor and improve real processes (i.e., not assumed processes) by
extracting knowledge from event logs readily available in today’s (information)
systems. Process mining includes (automated) process discovery (i.e., extract-
ing process models from an event log), conformance checking (i.e., monitoring
deviations by comparing model and log), social network/organizational mining,
automated construction of simulation models, model extension, model repair,
case prediction, and history-based recommendations.

book car

c

add extra

insurance

d
change

booking

e

confirm initiate

check-in

j

check driver’s

license

k

charge credit

card

i

select car

g

supply

car

in

a

b

skip extra

insurance

f

h

add extra

insurance

skip extra

insurance

l

out

c1 c2

c3

c4

c5

c6

c7

c8

c9

c10

c11

acefgijkl

acddefhkjil

abdefjkgil

acdddefkhijl

acefgijkl

abefgjikl

...

process
discovery

conformance
checking

Fig. 1. Example illustrating two types of process mining: process discovery and con-
formance checking.

Figure 1 illustrates the two most important types of process mining: process
discovery and conformance checking. Starting point for process mining is an
event log. Each event in such a log refers to an activity (i.e., a well-defined step
in some process) and is related to a particular case (i.e., a process instance). The
events belonging to a case are ordered and can be seen as one “run” of the process.
For example, the first case in the event log shown in Fig. 1 can be described by
the trace 〈a, c, e, f, g, i, j, k, l〉. This is the scenario where a car is booked (activity
a), extra insurance is added (activity c), the booking is confirmed (activity e),
the check-in process is initiated (activity f), more insurance is added (activity
g), a car is selected (activity i), the license is checked (activity j), the credit
card is charged (activity k), and the car is supplied (activity l). The second case
is described by the trace 〈a, c, d, d, e, f, h, k, j, i, l〉. In this scenario, the booking
was changed two times (activity d) and no extra insurance was taken at check-in
(activity h). It is important to note that an event log contains only example

behavior, i.e., we cannot assume that all possible runs have been observed. In
fact, an event log often contains only a fraction of the possible behavior [3].

Process discovery techniques automatically create a model based on the ex-
ample behavior seen in the event log. For example, based on the event log shown
in Fig. 1 the corresponding Petri net is created. Note that the Petri net shown in
Fig. 1 is indeed able to generate the behavior in the event log. The model allows
for more behavior, but this is often desirable as the model should generalize the
observed behavior.

Whereas process discovery constructs a model without any a priori informa-
tion (other than the event log), conformance checking uses a model and an event
log as input. The model may have been made by hand or discovered through
process discovery. For conformance checking, the modeled behavior and the ob-
served behavior (i.e., event log) are compared. There are various approaches to
diagnose and quantify conformance. For example, one can measure the fraction
of cases in the log that can be generated by the model. In Fig. 1, all cases fit
the model perfectly. However, if there would have been a case following trace
〈a, c, f, h, k, j, i, l〉, then conformance checking techniques would identify that in
this trace activity e (the confirmation) is missing.

Given a small event log, like the one shown in Fig. 1, analysis is simple.
However, in reality, process models may have hundreds of different activities and
there may be millions of events and thousands of unique cases. In such cases,
process mining techniques may have problems to produce meaningful results in a
reasonable time. This is why we are interested in distributed process mining, i.e.,
decomposing challenging process discovery and conformance checking problems
into smaller problems that can be distributed over a network of computers.

Today, there are many different types of distributed systems, i.e., systems
composed of multiple autonomous computational entities communicating through
a network. Multicore computing, cluster computing, grid computing, cloud com-
puting, etc. all refer to systems where different resources are used concurrently
to improve performance and scalability. Most data mining techniques can be
distributed [16], e.g., there are various techniques for distributed classification,
distributed clustering, and distributed association rule mining [13]. However,
in the context of process mining only distributed genetic algorithms have been
examined in detail [15]. Yet, there is an obvious need for distributed process
mining. This paper explores the different ways in which process discovery and
conformance checking problems can be distributed. We will not focus on the tech-
nical aspects (e.g., the type of distributed system to use) nor on specific mining
algorithms. Instead, we systematically explore the different ways in which event
logs and models can be partitioned.

The remainder of this paper is organized as follows. First, in Section 2, we
discuss the different ways in which process mining techniques can be distributed.
Besides replication, we define two types of distribution: vertical distribution and
horizontal distribution. In Section 3 we elaborate on the representation of event
logs and process models. Here, we also discuss the differences between procedural
models and declarative models. We use Petri nets as typical representatives of

conventional procedural models. To illustrate the use of declarative models in
the context of distributed process mining, we elaborate on the Declare language
[8]. Section 4 discusses different ways of measuring conformance while zooming
in on the notion of fitness. The horizontal distribution of process mining tasks
is promising, but also particularly challenging for procedural models. Therefore,
we elaborate on a particular technique to decompose event logs and processes
(Section 5). Here we use the notion of passages for Petri nets which enables us to
split event logs and process models horizontally. Section 6 concludes the paper.

2 Distributed Process Mining: An Overview

This section introduces some basic process mining concepts (Section 2.1) and
based on these concepts it is shown that event logs and process models can be
distributed in various ways (Section 2.2).

2.1 Process Discovery and Conformance Checking

As explained in the introduction there are two basic types of process mining:
process discovery and conformance checking.3 Figure 2 shows both types.

abcd

acbd

abd

process

discovery

conformance

checking

acd

acbd

abcd

event log

process model diagnostics

a

b

c

d

Fig. 2. Positioning process mining techniques.

Process discovery techniques take an event log and produce a process model
in some notation. Figure 1 already illustrated the basic idea of discovery: learn
a process model from example traces.

Conformance checking techniques take an event log and a process model and
compare the observed behavior with the modeled behavior. As Fig. 2 shows

3 As described in [3], process mining is not limited to process discovery and confor-
mance checking and also includes enhancement (e.g., extending or repairing models
based on event data) and operational support (on-the-fly conformance checking,
prediction, and recommendation). These are out-of-scope for this paper.

the process model may be the result of process discovery or made by hand.
Basically, three types of conformance-related diagnostics can be generated. First
of all, there may be overall metrics describing the degree of conformance, e.g.,
80% of all cases can be replayed by the model from begin to end. Second, the
non-conforming behavior may be highlighted in the event log. Third, the non-
conforming behavior may be revealed by annotating the process model. Note that
conformance can be viewed from two angles: (a) the model does not capture the
real behavior (“the model is wrong”) and (b) reality deviates from the desired
model (“the event log is wrong”). The first viewpoint is taken when the model is
supposed to be descriptive, i.e., capture or predict reality. The second viewpoint
is taken when the model is normative, i.e., used to influence or control reality.

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

Fig. 3. Example illustrating process discovery.

To further illustrate the notion of process discovery consider the example
shown in Fig. 3. Based on the event log shown, a Petri net is learned. Note
that all traces in the event log start with activity a and end with activity g.
This is also the case in the Petri net (consider all full firing sequences starting
with a token in place in and ending with a token in out). After a, activity b
can be executed. Transition b in the Petri net is a so-called AND-split, i.e.,
after executing b, both c and d can be executed concurrently. Transition e is
a so-called AND-join. After executing e a choice is made: either g occurs and
the case completes or f is executed and the state with a token in place c1 is
revisited. Many process discovery algorithms have been proposed in literature
[9, 10, 12, 17–19, 23, 28–30]. Most of these algorithms have no problems dealing
with this small example.

Figure 4 illustrates conformance checking using the same example. Now the
event log contains some traces that are not possible according to the process
model shown in Fig. 4. As discussed in the context of Fig. 2, there are three
types of diagnostics possible. First of all, we can use metrics to describe the
degree of conformance. For example, 10 of the 16 cases (i.e., 62.5 percent) in

abcdeg
adcefbcfdeg

abdceg
abcdefbcdeg
abdfcefdceg
acdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

acdefg
adcfeg

abdcefcdfeg
abcdeg

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

abcdeg
abdceg

abcdefbcdeg
abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

adcefbcfdeg
abdfcefdceg
acdefbdceg

acdefg
adcfeg

abdcefcdfeg

b is often

skipped

f occurs

too often

Fig. 4. Example illustrating conformance checking.

Fig. 4 are perfectly fitting. Second, we can split the log into two smaller event
logs: one consisting of conforming cases and one consisting of non-conforming
cases. These logs can be used for further analysis, e.g., discover commonalities
among non-conforming cases using process discovery. Third, we can highlight
problems in the model. As Fig. 4 shows, there is a problem with activity b:
according to the model b should be executed before c and d but in the event log
this is not always the case. There is also a problem with activity f : it should
only be executed after e, but in the log it also appears at other places.

Figures 3 and 4 show the basic idea of process mining. Note that the example
is oversimplified. For example, most event logs contain much more information.
In the example log an event is fully described by an activity name. However,
often there is additional information about an event such as the resource (i.e.,
person or device) executing or initiating the activity, the timestamp of the event,
or data elements recorded with the event (e.g., the size of an order).

The process models shown thus far are all Petri nets (WF-nets [1, 6] to be
precise). Different process mining algorithms may use different representations.

Moreover, the notation used to visualize the result may be very different from the
representation used during the actual discovery process. All mainstream BPM
notations (Petri nets, EPCs, BPMN, YAWL, UML activity diagrams, etc.) can
be used to show discovered processes [3, 31]. In fact, later we will also elaborate
on so-called declarative process models. However, to explain the concept of dis-
tributed process mining, such differences are less relevant. Therefore, we defer a
discussion on the difference between procedural models and declarative models
to Section 3.4.

2.2 Distributing Event Logs and Process Models

New computing paradigms such as cloud computing, grid computing, cluster
computing, etc. have emerged to perform resource-intensive IT tasks. Modern
computers (even lower-end laptops and high-end phones) have multiple proces-
sor cores. Therefore, the distribution of computing-intensive tasks, like process
mining on “big data”, is becoming more important.

At the same time, there is an exponentially growing torrent of event data.
MGI estimates that enterprises globally stored more than 7 exabytes of new data
on disk drives in 2010, while consumers stored more than 6 exabytes of new data
on devices such as PCs and notebooks [22]. A recent study in Science suggests
that the total global storage capacity increased from 2.6 exabytes in 1986 to 295
exabytes in 2007 [20]. These studies illustrate the growing potential of process
mining.

Given these observations, it is interesting to develop techniques for distributed
process mining. In recent years, distributed data mining techniques have been
developed and corresponding infrastructures have been realized [16]. These tech-
niques typically partition the input data over multiple computing nodes. Each
of the nodes computes a local model and these local models are aggregated into
an overall model.

In [15], we showed that it is fairly easy to distribute genetic process mining al-
gorithms. In this paper (i.e., [15]), we replicate the entire log such that each node
has a copy of all input data. Each node runs the same genetic algorithm, uses the
whole event log, but, due to randomization, works with different individuals (i.e.,
process models). Periodically, the best individuals are exchanged between nodes.
It is also possible to partition the input data (i.e., the event log) over all nodes.
Experimental results show that distributed genetic process mining significantly
speeds-up the discovery process. This makes sense because the fitness test is
most time-consuming. However, individual fitness tests are completely indepen-
dent. Although genetic process mining algorithms can be distributed easily, they
are not usable for large and complex data sets. Other process mining algorithms
tend to outperform genetic algorithms [3]. Therefore, we also need to consider
the distribution of other process mining techniques.

To discuss the different ways of distributing process mining techniques we
approach the problem from the viewpoint of the event log. We consider three
basic types of distribution:

– Replication. If the process mining algorithm is non-deterministic, then the
same task can be executed on all nodes and in the end the best result can
be taken. In this case, the event log can be simply replicated, i.e., all nodes
have a copy of the whole event log.

– Vertical partitioning. Event logs are composed of cases. There may be thou-
sands or even millions of cases. These can be distributed over the nodes in
the network, i.e., each case is assigned to one computing node. All nodes
work on a subset of the whole log and in the end the results need to be
merged.

– Horizontal partitioning. Cases are composed of multiple events. Therefore,
we can also partition cases, i.e., part of a case is analyzed on one node whereas
another part of the same case is analyzed on another node. In principle, each
node needs to consider all cases. However, the attention of one computing
node is limited to a particular subset of events per case.

Of course it is possible to combine the three types of distribution.

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

Fig. 5. Partitioning the event log vertically : cases are distributed arbitrarily.

Figure 5 illustrates the vertical partitioning of an event log using our running
example. The original event log contained 16 cases. Assuming that there are two
computing nodes, we can partition the cases over these two nodes. Each case
resides in exactly one location, i.e., the nodes operate on disjoint sublogs. Each
node computes a process mining result for a sublog and in the end the results are
merged. Depending on the type of process mining result, merging may be simple
or complex. For example, it we are interested in the percentage of fitting cases it
is easy to compute the overall percentage. Suppose there are n nodes and each
node i ∈ {1 . . . n} reports on the number of fitting cases (xi) and non-fitting
cases (yi) in the sublog. The fraction of fitting cases can be computed easily:
(
∑
i xi)/(

∑
i xi + yi). When each node produces a process model, it is more

difficult to produce an overall result. However, by using lower-level output such

as the dependency matrices used by mining algorithms like the heuristic miner
and fuzzy miner [3], one can merge the results.

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

abcdeg
abdceg
abcdeg
abdceg
abcdeg
abcdeg
abdceg
abcdeg

abdcefbcdeg
abcdefbcdeg
abdcefbdceg
abcdefbdceg
abcdefbdceg
abdcefbcdeg

abdcefbdcefbdceg
abcdefbcdefbdceg

Fig. 6. Partitioning the event log vertically: cases are distributed based on a particular
feature (in this case the length of the case).

In Fig. 5 the cases are partitioned over the logs without considering partic-
ular features, i.e., the first eight cases are assigned to the first node and the
remaining eight cases are assigned to the second node. As Fig. 6 shows, one can
also distribute cases based on a particular feature. In this case all cases of length
6 are moved to the first node, cases of length 11 are moved to the second node,
and cases of length 16 are moved to the third node. Various features can be used,
e.g., the type of customer (one node analyzes the process for gold customers, one
for silver customers, etc.), the flow time of the case, the start time of the case,
the monetary value of the case, etc. Such a vertical partitioning may provide
additional insights. An example is the use of the start time of cases when dis-
tributing the event log. Now it is interesting to see whether there are significant
differences between the results. The term concept drift refers to the situation
in which the process is changing while being analyzed [14]. For instance, in the
beginning of the event log two activities may be concurrent whereas later in
the log these activities become sequential. Processes may change due to peri-
odic/seasonal changes (e.g., “in December there is more demand” or “on Friday
afternoon there are fewer employees available”) or due to changing conditions
(e.g., “the market is getting more competitive”). A vertical partitioning based
on the start time of cases may reveal concept drift or the identification of periods
with severe conformance problems.

Figure 7 illustrates the horizontal partitioning of event logs. The first sublog
contains all events that correspond to activities a, b, e, f , and g. The second
sublog contains all events that correspond to activities b, c, d, and e. Note that
each case appears in each of the sublogs. However, each sublog contains only a
selection of events per case. In other words, events are partitioned “horizontally”

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

abeg
abefbeg

abeg
abefbeg
abefbeg
abefbeg

abeg
abeg

abefbefbeg
abeg

abefbefbeg
abefbeg

abeg
abeg

abefbeg
abeg

bcde
bdcebcde

bdce
bcdebcde
bdcebdce
bcdebdce

bcde
bdce

bdcebdcebdce
bcde

bcdebcdebdce
bcdebdce

bcde
bdce

bdcebcde
bcde

Fig. 7. Partitioning the event log horizontally.

instead of “vertically”. Each node computes results for a particular sublog. In the
end, all results are merged. Figure 8 shows an example of two process fragments
discovered by two different nodes. The process fragments are glued together
using the common events. In Section 5 we will further elaborate on this.

abeg
abefbeg

abeg
abefbeg
abefbeg
abefbeg

abeg
abeg

abefbefbeg
abeg

abefbefbeg
abefbeg

abeg
abeg

abefbeg
abeg

bcde
bdcebcde

bdce
bcdebcde
bdcebdce
bcdebdce

bcde
bdce

bdcebdcebdce
bcde

bcdebcdebdce
bcdebdce

bcde
bdce

bdcebcde
bcde

a b e

c1in

g

outc6

f

b

c

d

ec2

c3

c4

c5

Fig. 8. Horizontally partitioned event logs are used to discover process fragments that
can be merged into a complete model.

3 Representation of Event logs and Process Models

Thus far, we have only discussed things informally. In this section, we formalize
some of the notions introduced before. For example, we formalize the notion of
an event log and provide some Petri net basics. Moreover, we show an example
of a declarative language (Declare [8]) grounded in LTL.

3.1 Multisets

Multisets are used to represent the state of a Petri net and to describe event
logs where the same trace may appear multiple times.

B(A) is the set of all multisets over some set A. For some multiset b ∈ B(A),
b(a) denotes the number of times element a ∈ A appears in b. Some examples:
b1 = [], b2 = [x, x, y], b3 = [x, y, z], b4 = [x, x, y, x, y, z], b5 = [x3, y2, z] are
multisets over A = {x, y, z}. b1 is the empty multiset, b2 and b3 both consist
of three elements, and b4 = b5, i.e., the ordering of elements is irrelevant and a
more compact notation may be used for repeating elements.

The standard set operators can be extended to multisets, e.g., x ∈ b2, b2]b3 =
b4, b5 \ b2 = b3, |b5| = 6, etc. {a ∈ b} denotes the set with all elements a for
which b(a) ≥ 1. [f(a) | a ∈ b] denotes the multiset where element f(a) appears∑
x∈b|f(x)=f(a) b(x) times.

3.2 Event Logs

As indicated earlier, event logs serve as the starting point for process mining. An
event log is a multiset of traces. Each trace describes the life-cycle of a particular
case (i.e., a process instance) in terms of the activities executed.

Definition 1 (Trace, Event Log). Let A be a set of activities. A trace σ ∈ A∗
is a sequence of activities. L ∈ B(A∗) is an event log, i.e., a multiset of traces.

An event log is a multiset of traces because there can be multiple cases having
the same trace. In this simple definition of an event log, an event refers to just
an activity. Often event logs may store additional information about events.
For example, many process mining techniques use extra information such as the
resource (i.e., person or device) executing or initiating the activity, the timestamp
of the event, or data elements recorded with the event. In this paper, we abstract
from such information. However, the results presented in this paper can easily
be extended to event logs with more information.

An example log is L1 = [〈a, b, c, d, e, g〉30, 〈a, b, d, c, e, g〉20, 〈a, b, c, d, e, f, b, c,
d, e, g〉5, 〈a, b, d, c, e, f, b, c, d, e, g〉3, 〈a, b, c, d, e, f, b, d, c, e, g〉2]. L1 contains infor-
mation about 60 cases, e.g., 30 cases followed trace 〈a, b, c, d, e, g〉.

Definition 2 (Projection). Let A be a set and X ⊆ A a subset.�X∈ A∗ → X∗

is a projection function and is defined recursively: (a) 〈 〉�X= 〈 〉 and (b) for
σ ∈ A∗ and a ∈ A: (σ; 〈a〉)�X= σ�X if a 6∈ X and (σ; 〈a〉)�X= σ�X ; 〈a〉 if a ∈ X.

The projection function is generalized to event logs, i.e., for some event log
L ∈ B(A∗) and set X ⊆ A: L�X= [σ�X | σ ∈ L]. For event log L1 define earlier:
L1�{a,f,g}= [〈a, g〉50, 〈a, f, g〉10].

3.3 Procedural Models

A wide variety of process modeling languages are used in the context of process
mining, e.g., Petri nets, EPCs, C-nets, BPMN, YAWL, and UML activity di-
agrams [3, 31]. Most of these languages are procedural languages (also referred
to as imperative languages). In this paper, we use Petri nets as a typical rep-
resentative of such languages. However, the ideas can easily be adapted to fit
other languages. Later we will formalize selected distribution concepts in terms
of Petri nets. Therefore, we introduce some standard notations.

Definition 3 (Petri Net). A Petri net is tuple PN = (P, T, F) with P the set
of places, T the set of transitions, and F ⊆ (P × T)∪ (T ×P) the flow relation.

Figure 9 shows an example Petri net. The state of a Petri net, called marking,
is a multiset of places indicating how many tokens each place contains. [in] is
the initial marking shown in Fig. 9. Another potential marking is [c210, c35, c55].
This is the state with ten tokens in c2, five tokens in c3, and five tokens in c5.

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

Fig. 9. A Petri net PN = (P, T, F) with P = {in, c1, c2, c3, c4, c5, c6, out}, T =
{a, b, c, d, e, f, g}, and F = {(in, a), (a, c1), (c1, b), . . . , (g, out)}.

Definition 4 (Marking). Let PN = (P, T, F) be Petri net. A marking M is a
multiset of places, i.e., M ∈ B(P).

As usual we define the preset and postset of a node (place or transition) in
the Petri net graph. For any x ∈ P ∪T , •x = {y | (y, x) ∈ F} (input nodes) and
x• = {y | (x, y) ∈ F} (output nodes).

A transition t ∈ T is enabled in marking M , denoted as M [t〉, if each of its
input places •t contains at least one token. Consider the Petri net in Fig. 9 with
M = [c3, c4]: M [e〉 because both input places are marked.

An enabled transition t may fire, i.e., one token is removed from each of
the input places •t and one token is produced for each of the output places
t• . Formally: M ′ = (M \ •t)] t• is the marking resulting from firing enabled
transition t in marking M . M [t〉M ′ denotes that t is enabled in M and firing t
results in marking M ′. For example, [in][a〉[c1] and [c1][b〉[c2, c3] for the net in
Fig. 9.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions. M [σ〉M ′ denotes
that there is a set of markings M0,M1, . . . ,Mn such that M0 = M , Mn = M ′,
and Mi[ti+1〉Mi+1 for 0 ≤ i < n. A marking M ′ is reachable from M if there
exists a σ such that M [σ〉M ′. For example, [in][σ〉[out] for σ = 〈a, b, c, d, e, g〉.

Definition 5 (Labeled Petri Net). A labeled Petri net PN = (P, T, F, Tv) is
a Petri net (P, T, F) with visible labels Tv ⊆ T . Let σv = 〈t1, t2, . . . , tn〉 ∈ T ∗v be a
sequence of visible transitions. M [σvBM ′ if and only if there is a sequence σ ∈ T ∗
such that M [σ〉M ′ and the projection of σ on Tv yields σv (i.e., σv = σ�Tv

).

If we assume Tv = {a, e, f, g} for the Petri net in Fig. 9, then [in][σv B [out]
for σv = 〈a, e, f, e, f, e, g〉 (i.e., b, c, and d are invisible).

In the context of process mining, we always consider processes that start in
an initial state and end in a well-defined end state. For example, given the net
in Fig. 9 we are interested in firing sequences starting in Mi = [in] and ending
in Mo = [out]. Therefore, we define the notion of a system net.

Definition 6 (System Net). A system net is a triplet SN = (PN ,Mi,Mo)
where PN = (P, T, F, Tv) is a Petri net with visible labels Tv, Mi ∈ B(P) is the
initial marking, and Mo ∈ B(P) is the final marking.

Given a system net, τ(SN) is the set of all possible visible full traces, i.e.,
firing sequences starting in Mi and ending in Mo projected onto the set of visible
transitions.

Definition 7 (Traces). Let SN = (PN ,Mi,Mo) be a system net. τ(SN) =
{σv |Mi[σvBMo} is the set of visible traces starting in Mi and ending in Mo.

If we assume Tv = {a, e, g} for the Petri net in Fig. 9, then τ(SN) = {〈a, e, g〉,
〈a, e, e, g〉, 〈a, e, e, e, g〉, . . .}.

The Petri net in Fig. 9 has a designated source place (in), a designated source
place (out), and all nodes are on a path from in to out . Such nets are called
WF-nets [1, 6].

Definition 8 (WF-net). WF = (PN , in, Ti, out , To) is a workflow net (WF-
net) if

– PN = (P, T, F, Tv) is a labeled Petri net,
– in ∈ P is a source place such that •in = ∅ and in• = Ti,
– out ∈ P is a sink place such that out• = ∅ and •out = To,
– Ti ⊆ Tv is the set of initial transitions and •Ti = {in},
– To ⊆ Tv is the set of final transitions and To• = {out}, and
– all nodes are on some path from source place in to sink place out.

WF-nets are often used in the context of business process modeling and
process mining. Compared to the standard definition of WF-nets [1, 6] we added
the requirement that the initial and final transitions need to be visible.

A WF-net WF = (PN , in, Ti, out , To) defines the system SN = (PN ,Mi,Mo)
with Mi = [in] and Mo = [out]. Ideally WF-nets are also sound, i.e., free of

deadlocks, livelocks, and other anomalies [1, 6]. Formally, this means that it is
possible to reach Mo from any state reachable from Mi.

Process models discovered using existing process mining techniques may be
unsound. Therefore, we cannot assume/require all WF-nets to be sound.

3.4 Declarative Models

Procedural process models (like Petri nets) take an “inside-to-outside” approach,
i.e., all execution alternatives need to be specified explicitly and new alternatives
must be explicitly added to the model. Declarative models use an “outside-to-
inside” approach: anything is possible unless explicitly forbidden. Declarative
models are particularly useful for conformance checking. Therefore, we elaborate
on Declare. Declare is both a language (in fact a family of languages) and a fully
functional WFM system [8, 24].

b

c

a e

non co-existence: activities

b and c cannot happen both

response: every occurrence of c

should be eventually followed by h

g

h

precedence: every occurrence

of c needs to be preceded by a

response

non co-existence

precedence

book car

add extra

insurance

confirm

skip extra

insurance

add extra

insurance

skip extra

insurance

Fig. 10. Example of a Declare model consisting of six activities and eight constraints.

Declare uses a graphical notation and its semantics are based on LTL (Lin-
ear Temporal Logic) [8]. Figure 10 shows a Declare specification consisting of
eight constraints. The construct connecting activities b and c is a so-called non-
coexistence constraint. In terms of LTL this constraint means “¬((♦b) ∧ (♦c))”;
♦b and ♦c cannot both be true, i.e., it cannot be the case that both b and c
happen for the same case. There is also a non-coexistence constraint preventing
the execution of both g and h for the same case. There are three precedence con-
straints. The semantics of the precedence constraint connecting a to b can also
be expressed in terms of LTL: “(¬b) W a”, i.e., b should not happen before a has
happened. Since the weak until (W) is used in “(¬b) W a”, traces without any
a and b events also satisfy the constraint. Similarly, g should not happen before
b has happened: “(¬g) W b”. There are three response constraints. The LTL
formalization of the precedence constraint connecting b to e is “�(b ⇒ (♦e))”,

i.e., every occurrence of b should eventually be followed by e. Note that the be-
havior generated by the WF-net in Fig. 1 satisfies all constraints specified in the
Declare model, i.e., none of the eight constraints is violated by any of the traces.
However, the Declare model shown in Figure 10 allows for all kinds of behaviors
not possible in Fig. 1. For example, trace 〈a, a, b, e, e, g, g〉 is allowed. Whereas in
a procedural model, everything is forbidden unless explicitly enabled, a declara-
tive model allows for anything unless explicitly forbidden. For processes with a
lot of flexibility, declarative models are more appropriate [8, 24].

In [5] it is described how Declare/LTL constraints can be checked for a given
log. This can also be extended to the on-the-fly conformance checking. Consider
some running case having a partial trace σp ∈ A∗ listing the events that have
happened thus far. Each constraint c is in one of the following states for σp:

– Satisfied : the LTL formula corresponding to c evaluates to true for the partial
trace σp.

– Temporarily violated : the LTL formula corresponding to c evaluates to false
for σp, however, there is a longer trace σ′p that has σp as a prefix and for
which the LTL formula corresponding to c evaluates to true.

– Permanently violated : the LTL formula corresponding to c evaluates to false
for σp and all its extensions, i.e., there is no σ′p that has σp as a prefix and
for which the LTL formula evaluates to true.

These three notions can be lifted from the level of a single constraint to the
level of a complete Declare specification, e.g., a Declare specification is satis-
fied for a case if all of its constraints are satisfied. This way it is possible to
check conformance on-the-fly and generate warnings the moment constraints are
permanently/temporarily violated [3].

c

h

p

0..1

curse

pray

become holy

cpcpccpph

pppphcp

hpp

ppph

ppp

ccccp

...

non co-existence constraint is

violated by the first two cases

(cpcpccpph and pppphcp)

precedence constraint is

violated by the third case (hpp)

Fig. 11. Conformance checking using a declarative model.

We use the smaller example shown in Fig. 11 to illustrate conformance check-
ing in the context of Declare. The process model shows four constraints: the
same person cannot “curse” and “become holy” (non-coexistence constraint),
after one “curses” one should eventually “pray” (response constraint), one can

only “become holy” after having “prayed” at least once (precedence constraint),
and activity h (“become holy”) can be executed at most once (cardinality con-
straint).

Two of the four constraints are violated by the event log shown in Fig. 11.
The first two traces/persons cursed and became holy at the same time. The third
trace/person became holy without having prayed before.

Conformance checking can be distributed easily for declarative models. One
can partition the log vertically and simply check per computing node all con-
straints on the corresponding sublog. One can also partition the set of con-
straints. Each node of the computer network is responsible for a subset of the
constraints and uses a log projected onto the relevant activities, i.e., the event
log is distributed horizontally. In both cases, it is easy to aggregate the results
into overall diagnostics.

c

h

p

0..1

curse

pray

become holy

cpcpccppp

pppph

pcccp

ppph

ppp

ccccp

...

Fig. 12. Discovering a declarative model.

Figure 12 illustrates the discovery of Declare constraints from event logs
[21]. A primitive discovery approach is to simply investigate a large collection
of candidate constraints using conformance checking. This can be distributed
vertically or horizontally as just described. It is also possible to use smarter
approaches using the “interestingness” of potential constraints. Here ideas from
distributed association rule mining [13] can be employed.

4 Measuring Conformance

Conformance checking techniques can be used to investigate how well an event
log L ∈ B(A∗) and the behavior allowed by a model fit together. Figure 4 shows
an example where deviations between an event log and Petri net are diagnosed.
Figure 11 shows a similar example but now using a Declare model. Both examples
focus on a particular conformance notion: fitness. A model with good fitness
allows for most of the behavior seen in the event log. A model has a perfect
fitness if all traces in the log can be replayed by the model from beginning to
end. This notion can be formalized as follows.

Definition 9 (Perfectly Fitting Log). Let L ∈ B(A∗) be an event log and
let SN = (PN ,Mi,Mo) be a system net. L is perfectly fitting SN if and only if
{σ ∈ L} ⊆ τ(SN).

The above definition assumes a Petri net as process model. However, the
same idea can be operationalized for Declare models [5], i.e., for each constraint
and every case the corresponding LTL formula should hold.

Consider two event logs L1 = [〈a, c, d, g〉30, 〈a, d, c, g〉20, 〈a, c, d, f, c, d, g〉5,
〈a, d, c, f, c, d, g〉3, 〈a, c, d, f, d, c, g〉2] and L2 = [〈a, c, d, g〉8, 〈a, c, g〉6, 〈a, c, f, d, g〉5]
and the system net SN of the WF-net depicted in Fig. 9 with Tv = {a, c, d, f, g}.
Clearly, L1 is perfectly fitting SN whereas L2 is not. There are various ways to
quantify fitness [3, 4, 11, 19, 23, 25–27], typically on a scale from 0 to 1 where 1
means perfect fitness. To measure fitness, one needs to align traces in the event
log to traces of the process model. Some example alignments for L2 and SN :

γ1 =
a c d g
a c d g

γ2 =
a c� g
a c d g

γ3 =
a c f d g
a c� d g

γ4 =
a c� f d� g
a c d f d c g

The top row of each alignment corresponds to “moves in the log” and the bottom
row corresponds to “moves in the model”. If a move in the log cannot be mim-
icked by a move in the model, then a “�” (“no move”) appears in the bottom
row. For example, in γ3 the model is unable to do f in-between c and d. If a
move in the model cannot be mimicked by a move in the log, then a “�” (“no
move”) appears in the top row. For example, in γ2 the log did not do a d move
whereas the model has to make this move to enable g and reach the end. Given
a trace in the event log, there may be many possible alignments. The goal is to
find the alignment with the least number of � elements, e.g., γ3 seems better
than γ4. Finding a optimal alignment can be viewed as an optimization problem
[4, 11]. After selecting an optimal alignment, the number of � elements can be
used to quantify fitness.

Fitness is just one of the four basic conformance dimensions defined in [3].
Other quality dimensions for comparing model and log are simplicity, precision,
and generalization.

The simplest model that can explain the behavior seen in the log is the best
model. This principle is known as Occam’s Razor. There are various metrics to
quantify the complexity of a model (e.g., size, density, etc.).

The precision dimension is related to the desire to avoid “underfitting”. It
is very easy to construct an extremely simple Petri net (“flower model”) that is
able to replay all traces in an event log (but also any other event log referring to
the same set of activities). See [4, 25–27] for metrics quantifying this dimension.

The generalization dimension is related to the desire to avoid “overfitting”. In
general it is undesirable to have a model that only allows for the exact behavior
seen in the event log. Remember that the log contains only example behavior
and that many traces that are possible may not have been seen yet.

Conformance checking can be done for various reasons. First of all, it may
be used to audit processes to see whether reality conforms to some normative of
descriptive model [7]. Deviations may point to fraud, inefficiencies, and poorly

designed or outdated procedures. Second, conformance checking can be used
to evaluate the performance of a process discovery technique. In fact, genetic
process mining algorithms use conformance checking to select the candidate
models used to create the next generation of models [23].

5 Example: Horizontal Distribution Using Passages

The vertical distribution of process mining tasks is often fairly straightforward;
just partition the event log and run the usual algorithms on each sublog residing
at a particular node in the computer network. The horizontal partitioning of
event logs is more challenging, but potentially very attractive as the focus of
analysis can be limited to a few activities per node. Therefore, we describe a
generic distribution approach based on the notion of passages.

5.1 Passages in Graphs

A graph is a pair G = (N,E) comprising a set N of nodes and a set E ⊆ N ×N
of edges. A Petri net (P, T, F) can be seen as a particular graph with nodes
N = P ∪ T and edges E = F . Like for Petri nets, we define preset •n = {n′ ∈
N | (n′, n) ∈ E} (direct predecessors) and postset n• = {n′ ∈ N | (n, n′) ∈ E}
(direct successors). This can be generalized to sets, i.e., for X ⊆ N : •X =
∪n∈X • n and X• = ∪n∈X n• .

To decompose process mining problems into smaller problems, we partition
process models using the notion passages. A passage is a pair of non-empty sets
of nodes (X,Y) such that the set of direct successors of X is Y and the set of
direct predecessors of Y is X.

Definition 10 (Passage). Let G = (N,E) be a graph. P = (X,Y) is a passage
if and only if ∅ 6= X ⊆ N , ∅ 6= Y ⊆ N , X• = Y , and X = •Y . pas(G) is the
set of all passages of G.

Consider the sets X = {a, b, c, e, f, g} and Y = {c, d, g, h, i} in the graph
fragment shown in Fig. 13. (X,Y) is a passage. As indicated, there may be no
edges leaving from X to nodes outside Y and there may be no edges into Y from
nodes outside X.

Definition 11 (Operations on Passages). Let P1 = (X1, Y1) and P2 =
(X2, Y2) be two passages.

– P1 ≤ P2 if and only if X1 ⊆ X2 and Y1 ⊆ Y2,
– P1 < P2 if and only if P1 ≤ P2 and P1 6= P2,
– P1 ∪ P2 = (X1 ∪X2, Y1 ∪ Y2),
– P1 \ P2 = (X1 \X2, Y1 \ Y2).

The union of two passages P1 ∪ P2 is again a passage. The difference of two
passages P1 \P2 is a passage if P2 < P1. Since the union of two passages is again
a passage, it is interesting to consider minimal passages. A passage is minimal
if it does not “contain” a smaller passage.

a b

d

X

Y

fe

h

c g

i

Fig. 13. (X,Y) is a passage because X• = {a, b, c, e, f, g}• = {c, d, g, h, i} = Y and
X = {a, b, c, e, f, g} = •{c, d, g, h, i} = •Y .

Definition 12 (Minimal Passage). Let G = (N,E) be a graph with passages
pas(G). P ∈ pas(G) is minimal if there is no P ′ ∈ pas(G) such that P ′ < P .
pasmin(G) is the set of minimal passages.

The passage in Figure 13 is not minimal. It can be split into the passages
({a, b, c}, {c, d}) and ({e, f, g}, {g, h, i}). An edge uniquely determines one min-
imal passage.

Lemma 1. Let G = (N,E) be a graph and (x, y) ∈ E. There is precisely one
minimal passage P(x,y) = (X,Y) ∈ pasmin(G) such that x ∈ X and y ∈ Y .

Passages define an equivalence relation on the edges in a graph: (x1, y1) ∼
(x2, y2) if and only if P(x1,y1) = P(x2,y2). For any {(x, y), (x′, y), (x, y′)} ⊆ E:
P(x,y) = P(x′,y) = P(x,y′), i.e., P(x,y) is uniquely determined by x and P(x,y) is
also uniquely determined by y. Moreover, pasmin(G) = {P(x,y) | (x, y) ∈ E}.

5.2 Distributed Conformance Checking Using Passages

Now we show that it is possible to decompose and distribute conformance check-
ing problems using the notion of passages. In order to do this we focus on the
visible transitions and create the so-called skeleton of the process model. To de-

fine skeletons, we introduce the notation x
σ:E#Q
 y which states that there is a

non-empty path σ from node x to node y where the set of intermediate nodes
visited by path σ does not include any nodes in Q.

Definition 13 (Path). Let G = (N,E) be a graph with x, y ∈ N and Q ⊆ N .

x
σ:E#Q
 y if and only if there is a sequence σ = 〈n1, n2, . . . nk〉 with k > 1 such

that x = n1, y = nk, for all 1 ≤ i < k: (ni, ni+1) ∈ E, and for all 1 < i < k:
ni 6∈ Q. Derived notations:

– x
E#Q
 y if and only if there exists a path σ such that x

σ:E#Q
 y,

– nodes(x
E#Q
 y) = {n ∈ σ | ∃σ∈N∗ x

σ:E#Q
 y}, and

– for X,Y ⊆ N : nodes(X
E#Q
 Y) = ∪(x,y)∈X×Y nodes(x

E#Q
 y).

Definition 14 (Skeleton). Let PN = (P, T, F, Tv) be a labeled Petri net. The
skeleton of PN is the graph skel(PN) = (N,E) with N = Tv and E = {(x, y) ∈
Tv × Tv | x

F#Tv y}.

Figure 14 shows the skeleton of the WF-net in Fig. 1 assuming that Tv =
{a, b, c, d, e, f, l}. The resulting graph has four minimal passages.

book car

c

add extra

insurance

d

change

booking

e

confirm initiate

check-in

supply

car

a

b

skip extra

insurance

f l

Fig. 14. The skeleton of the labeled Petri net in Fig. 1 (assuming that Tv =
{a, b, c, d, e, f, l}). There are four minimal passages: ({a}, {b, c}), ({b, c, d}, {d, e}),
({e}, {f}), and ({f}, {l}).

Note that only the visible transitions Tv appear in the skeleton. For example,
if we assume that Tv = {a, f, l} in Fig. 1, then the skeleton is ({a, f, l}, {(a, f),
(f, l)}) with only two passages ({a}, {f}) and ({f}, {l}).

If there are multiple minimal passages in the skeleton, we can decompose con-
formance checking problems into smaller problems by partitioning the Petri net
into net fragments and the event log into sublogs. Each passage (X,Y) defines one

net fragment PN (X,Y) and one sublog L�X∪Y . We will show that conformance
can be checked per passage.

Consider event log L = [〈a, b, e, f, l〉20, 〈a, c, e, f, l〉15, 〈a, b, d, e, f, l〉5, 〈a, c, d, e,
f, l〉3, 〈a, b, d, d, e, f, l〉2], the WF-net PN shown in Fig. 1 with Tv = {a, b, c, d, e,
f, l}, and the skeleton shown in Fig. 14. Based on the four passages, we define
four net fragments PN 1, PN 2, PN 3 and PN 4 as shown in Fig. 15. Moreover,
we define four sublogs: L1 = [〈a, b〉27, 〈a, c〉18], L2 = [〈b, e〉20, 〈c, e〉15, 〈b, d, e〉5,
〈c, d, e〉3, 〈b, d, d, e〉2], L3 = [〈e, f〉45], and L4 = [〈f, l〉45]. To check the confor-
mance of the overall event log on the overall model, we check the conformance
of Li on PN i for i ∈ {1, 2, 3, 4}. Since Li is perfectly fitting PN i for all i, we can
conclude that L is perfectly fitting PN . This illustrates that conformance check-
ing can indeed be decomposed. To formalize this result, we define the notion of
a net fragment corresponding to a passage.

Definition 15 (Net Fragment). Let PN = (P, T, F, Tv) be a labeled Petri
net. For any two sets of transitions X,Y ⊆ Tv, we define the net fragment
PN (X,Y) = (P ′, T ′, F ′, T ′v) with:

book car

c

add extra

insurance

a

b

skip extra

insurance

c1

c

add extra

insurance

d

change

booking

e

confirm

b

skip extra

insurance

c2

e

confirm initiate

check-in

f

c3

(a)

initiate

check-in

j

check driver’s

license

k

charge credit

card

i

select car

g

supply

car

f

h

add extra

insurance

skip extra

insurance

l

c4

c5

c6

c7

c8

c9

c10

c11

(b)

(c)

(d)

Fig. 15. Four net fragments corresponding to the four passages of the skeleton in
Fig. 14: (a) PN 1 = PN ({a},{b,c}), (b) PN 2 = PN ({b,c,d},{d,e}), (c) PN 3 = PN ({e},{f}),
and (c) PN 4 = PN ({f},{l}). The invisible transitions, i.e., the transitions in T \Tv, are
shaded.

– Z = nodes(X
F#Tv Y) \ (X ∪ Y) are the internal nodes of the fragment,

– P ′ = P ∩ Z,
– T ′ = (T ∩ Z) ∪X ∪ Y ,
– F ′ = F ∩ ((P ′ × T ′) ∪ (T ′ × P ′)), and
– T ′v = X ∪ Y .

A process model can be decomposed into net fragments corresponding to
minimal passages and an event log can be decomposed by projecting the traces
on the activities in these minimal passages. The following theorem shows that
conformance checking can be done per passage.

Theorem 1 (Distributed Conformance Checking). Let L ∈ B(A∗) be an
event log and let WF = (PN , in, Ti, out , To) be a WF-net with PN = (P, T, F, Tv).
L is perfectly fitting system net SN = (PN , [in], [out]) if and only if

– for any 〈a1, a2, . . . ak〉 ∈ L: a1 ∈ Ti and ak ∈ To, and

– for any (X,Y) ∈ pasmin(skel(PN)): L�X∪Y is perfectly fitting SN (X,Y) =

(PN (X,Y), [], []).

For a formal proof, we refer to [2]. Although the theorem only addresses the
notion of perfect fitness, other conformance notions can be decomposed in a

similar manner. Metrics can be computed per passage and then aggregated into
an overall metric.

Assuming a process model with many passages, the time needed for con-
formance checking can be reduced significantly. There are two reasons for this.
First of all, as Theorem 1 shows, larger problems can be decomposed into a
set of independent smaller problems. Therefore, conformance checking can be
distributed over multiple computers. Second, due to the exponential nature of
most conformance checking techniques, the time needed to solve “many smaller
problems” is less than the time needed to solve “one big problem”. Existing
approaches use state-space analysis (e.g., in [27] the shortest path enabling a
transition is computed) or optimization over all possible alignments (e.g., in [11]
the A∗ algorithm is used to find the best alignment). These techniques do not
scale linearly in the number of activities. Therefore, decomposition is useful even
if the checks per passage are done on a single computer.

abcdeg
abdcefbcdeg

abdceg
abcdefbcdeg
abdcefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbdcefbdceg
abcdeg

abcdefbcdefbdceg
abcdefbdceg

abcdeg
abdceg

abdcefbcdeg
abcdeg

a b

c

d

e g

f

ab
abfb
ab
...

bcd
bdcbcd

bdc
...

cde
dcecde

dce
...

eg
efeg
eg
...

a

in

g

out

b

f

a

b

c

d

c

d

e

f

e

g

a b

c

d

e

c1in

c2

c3

c4

c5

g

outc6

f

Fig. 16. Distributed discovery based on four minimal passages: ({a, f}, {b}),
({b}, {c, d}), ({c, d}, {e}), and ({e}, {f, g}). A process fragment is discovered for each
passage. Subsequently, the fragments are merged into one overall process.

5.3 Distributed Process Discovery Using Passages

As explained before, conformance checking and process discovery are closely
related. Therefore, we can exploit the approach used in Theorem 1 for process
discovery provided that some coarse causal structure (comparable to the skeleton
in Section 5.2) is known. There are various techniques to extract such a causal
structure, see for example the dependency relations used by the heuristic miner
[29]. The causal structure defines a collection of passages and the detailed dis-
covery can be done per passage. Hence, the discovery process can be distributed.
The idea is illustrated in Fig. 16.

The approach is independent of the discovery algorithm used. The only as-
sumption is that the casual structure can be determined upfront. See [2] for more
details.

By decomposing the overall discovery problem into a collection of smaller
discovery problems, it is possible to do a more refined analysis and achieve sig-
nificant speed-ups. The discovery algorithm is applied to an event log consisting
of just the activities involved in the passage under investigation. Hence, process
discovery tasks can be distributed over a network of computers (assuming there
are multiple passages). Moreover, most discovery algorithms are exponential in
the number of activities. Therefore, the sequential discovery of all individual
passages is still faster than solving one big discovery problem.

6 Conclusion

This paper provides an overview of the different mechanisms to distribute pro-
cess mining tasks over a set of computing nodes. Event logs can be decomposed
vertically and horizontally. In a vertically distributed event log, each case is an-
alyzed by a designated computing node in the network and each node considers
the whole process model (all activities). In a horizontally distributed event log,
the cases themselves are partitioned and each node considers only a part of the
overall process model. These distribution approaches are fairly independent of
the mining algorithm and apply to both procedural and declarative languages.
Most challenging is the horizontal distribution of event logs while using a proce-
dural language. However, as shown in this paper, it is still possible to horizontally
distribute process discovery and conformance checking tasks using the notion of
passages.

Acknowledgments. The author would like to thank all that contributed to
the ProM toolset. Many of their contributions are referred to in this paper.
Special thanks go to Boudewijn van Dongen and Eric Verbeek (for their work on
the ProM infrastructure), Carmen Bratosin (for her work on distributed genetic
mining), Arya Adriansyah and Anne Rozinat (for their work on conformance
checking), and Maja Pesic, Fabrizio Maggi, and Michael Westergaard (for their
work on Declare).

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. W.M.P. van der Aalst. Decomposing Process Mining Problems Using Passages.
BPM Center Report BPM-11-19, BPMcenter.org, 2011.

3. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer-Verlag, Berlin, 2011.

4. W.M.P. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History
on Process Models for Conformance Checking and Performance Analysis. WIREs
Data Mining and Knowledge Discovery, 2012.

5. W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen. Process Mining and
Verification of Properties: An Approach based on Temporal Logic. In R. Meersman
and Z. Tari et al., editors, On the Move to Meaningful Internet Systems (CoopIS
2005), volume 3760 of Lecture Notes in Computer Science, pages 130–147. Springer-
Verlag, Berlin, 2005.

6. W.M.P. van der Aalst, K.M. van Hee, A.H.M. ter Hofstede, N. Sidorova, H.M.W.
Verbeek, M. Voorhoeve, and M.T. Wynn. Soundness of Workflow Nets: Classifi-
cation, Decidability, and Analysis. Formal Aspects of Computing, 23(3):333–363,
2011.

7. W.M.P. van der Aalst, K.M. van Hee, J.M. van der Werf, and M. Verdonk. Audit-
ing 2.0: Using Process Mining to Support Tomorrow’s Auditor. IEEE Computer,
43(3):90–93, 2010.

8. W.M.P. van der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows:
Balancing Between Flexibility and Support. Computer Science - Research and
Development, 23(2):99–113, 2009.

9. W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E. Kindler,
and C.W. Günther. Process Mining: A Two-Step Approach to Balance Between
Underfitting and Overfitting. Software and Systems Modeling, 9(1):87–111, 2010.

10. W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Discovering Process Models from Event Logs. IEEE Transactions on Knowledge
and Data Engineering, 16(9):1128–1142, 2004.

11. A. Adriansyah, B. van Dongen, and W.M.P. van der Aalst. Conformance Checking
using Cost-Based Fitness Analysis. In C.H. Chi and P. Johnson, editors, IEEE
International Enterprise Computing Conference (EDOC 2011), pages 55–64. IEEE
Computer Society, 2011.

12. R. Agrawal, D. Gunopulos, and F. Leymann. Mining Process Models from Work-
flow Logs. In Sixth International Conference on Extending Database Technology,
volume 1377 of Lecture Notes in Computer Science, pages 469–483. Springer-
Verlag, Berlin, 1998.

13. R. Agrawal and J.C. Shafer. Parallel Mining of Association Rules. IEEE Trans-
actions on Knowledge and Data Engineering, 8(6):962–969, 1996.

14. R.P. Jagadeesh Chandra Bose, W.M.P. van der Aalst, I. Zliobaite, and M. Pech-
enizkiy. Handling Concept Drift in Process Mining. In H. Mouratidis and C. Rol-
land, editors, International Conference on Advanced Information Systems Engi-
neering (Caise 2011), volume 6741 of Lecture Notes in Computer Science, pages
391–405. Springer-Verlag, Berlin, 2011.

15. C. Bratosin, N. Sidorova, and W.M.P. van der Aalst. Distributed Genetic Process
Mining. In H. Ishibuchi, editor, IEEE World Congress on Computational Intelli-
gence (WCCI 2010), pages 1951–1958, Barcelona, Spain, July 2010. IEEE.

16. M. Cannataro, A. Congiusta, A. Pugliese, D. Talia, and P. Trunfio. Distributed
Data Mining on Grids: Services, Tools, and Applications. IEEE Transactions on
Systems, Man, and Cybernetics, Part B, 34(6):2451–2465, 2004.

17. J. Carmona, J. Cortadella, and M. Kishinevsky. A Region-Based Algorithm
for Discovering Petri Nets from Event Logs. In Business Process Management
(BPM2008), pages 358–373, 2008.

18. J.E. Cook and A.L. Wolf. Discovering Models of Software Processes from Event-
Based Data. ACM Transactions on Software Engineering and Methodology,
7(3):215–249, 1998.

19. S. Goedertier, D. Martens, J. Vanthienen, and B. Baesens. Robust Process Dis-
covery with Artificial Negative Events. Journal of Machine Learning Research,
10:1305–1340, 2009.

20. M. Hilbert and P. Lopez. The World’s Technological Capacity to Store, Commu-
nicate, and Compute Information. Science, 332(60), 2011.

21. F.M. Maggi, A.J. Mooij, and W.M.P. van der Aalst. User-Guided Discovery of
Declarative Process Models. In N. Chawla, I. King, and A. Sperduti, editors,
IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011),
pages 192–199, Paris, France, April 2011. IEEE.

22. J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. By-
ers. Big Data: The Next Frontier for Innovation, Competition, and Productivity.
McKinsey Global Institute, 2011.

23. A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge Dis-
covery, 14(2):245–304, 2007.

24. M. Montali, M. Pesic, W.M.P. van der Aalst, F. Chesani, P. Mello, and S. Storari.
Declarative Specification and Verification of Service Choreographies. ACM Trans-
actions on the Web, 4(1):1–62, 2010.

25. J. Munoz-Gama and J. Carmona. A Fresh Look at Precision in Process Confor-
mance. In R. Hull, J. Mendling, and S. Tai, editors, Business Process Management
(BPM 2010), volume 6336 of Lecture Notes in Computer Science, pages 211–226.
Springer-Verlag, Berlin, 2010.

26. J. Munoz-Gama and J. Carmona. Enhancing Precision in Process Conformance:
Stability, Confidence and Severity. In N. Chawla, I. King, and A. Sperduti, editors,
IEEE Symposium on Computational Intelligence and Data Mining (CIDM 2011),
Paris, France, April 2011. IEEE.

27. A. Rozinat and W.M.P. van der Aalst. Conformance Checking of Processes Based
on Monitoring Real Behavior. Information Systems, 33(1):64–95, 2008.

28. M. Sole and J. Carmona. Process Mining from a Basis of Regions. In J. Lilius and
W. Penczek, editors, Applications and Theory of Petri Nets 2010, volume 6128 of
Lecture Notes in Computer Science, pages 226–245. Springer-Verlag, Berlin, 2010.

29. A.J.M.M. Weijters and W.M.P. van der Aalst. Rediscovering Workflow Models
from Event-Based Data using Little Thumb. Integrated Computer-Aided Engi-
neering, 10(2):151–162, 2003.

30. J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, and A. Serebrenik.
Process Discovery using Integer Linear Programming. Fundamenta Informaticae,
94:387–412, 2010.

31. M. Weske. Business Process Management: Concepts, Languages, Architectures.
Springer-Verlag, Berlin, 2007.

