
Context-Aware Compliance Checking

Jan Martijn van der Werf, Eric Verbeek, and Wil M.P. van der Aalst

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven

P.O. Box 513, 5600 MB Eindhoven, The Netherlands
{j.m.e.m.v.d.werf,h.m.w.verbeek,w.m.p.v.d.aalst}@tue.nl

Abstract. Organizations face more and more the burden to show that
their business is compliant with respect to many different boundaries.
The activity of compliance checking is commonly referred to as auditing.
As information systems supporting the organization’s business record
their usage, process mining techniques such as conformance checking
offer the auditor novel tools to automate the auditing activity. However,
these techniques tend to look at process instances (i.e., cases) in isolation,
whereas many compliance rules can only be evaluated when considering
interactions between cases and contextual information. For example, a
rule like “a paper should not be reviewed by a reviewer that has been
a co-author” cannot be checked without considering the corresponding
context (i.e., other papers, other issues, other journals, etc.). To check
such compliance rules, we link event logs to the context. Events modify
a pre-existing context and constraints can be checked on the resulting
context. The approach has been implemented in ProM. The resulting
context is represented as an ontology, and the semantic web rule language
is used to formalize constraints.

Keywords: auditing, compliance checking, process mining, business
rules, ontologies.

1 Introduction

Organizations need to ensure that their business stays within boundaries. A
boundary restricts the organization in its operation. Boundaries may be imposed
by all kinds of external sources, like legislation, regulatory bodies, best practices,
but also from sources within the organization itself, e.g., based on its corporate
culture or management style. These boundaries are often expressed in terms
of the business environment, called the context. A boundary may restrict the
business in behavior, in structure, or in data.

As a consequence, organizations need to constantly monitor their business.
The activity of checking whether the business execution adheres to the defined
boundaries is called auditing. Traditionally, an audit can only provide reasonable
assurance that the business is compliant, i.e., that the business is executed within
the given boundaries. Auditors can only assess the operating effectiveness by
checking samples of factual data.

A. Barros, A. Gal, and E. Kindler (Eds.): BPM 2012, LNCS 7481, pp. 98–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Context-Aware Compliance Checking 99

The advance of information systems supporting organizations in their business
enables a new formof auditing. The large amount of data recorded by these systems
allow to constantly monitor the business execution. Continuous auditing [21, 25]
focuses to bring auditing closer to the operational process, and away from the tra-
ditional backward-looking once-a-year examination of financial statements [6].

Continuous auditing is an automated form of auditing that can take all execu-
tion data into account [6,11,25]. As such, this form of auditing can provide more
assurance. However in order to automate the process of auditing [4, 7, 16], it first
requires the formalization of the boundaries in terms of the execution data, and
secondly, it can only use context data if an automated link is provided from the
execution data to the context data. As the boundaries are typically formalized in
terms of the context data, and as the automated link from execution data to con-
text data is typically not available, continuous auditing is restricted in its use.

Consider a journal that publishes papers. To support the journal’s operation,
it may use a system that supports the entire process starting from the submission
of a paper to the final publication or rejection. This system typically records
everything that happens to a submitted paper into a so-called event log. Next
to this Process-Aware Information System (PAIS) [10], other systems may also
collect and store data about this paper. In the remainder of this paper, this
other data is referred to as context data, while the PAIS data is referred to as
execution data.

To insure the quality of published papers, a journal needs to discourage un-
desirable behavior. Therefore, most journals impose a number of boundaries on
its own operation to guarantee this high quality:

1. For each submitted paper a notification is sent;
2. Each paper needs to be reviewed by at least three different reviewers;
3. The author of a paper cannot be a reviewer of that paper;
4. A reviewer should work at a different affiliation than any of the authors;
5. A reviewer has never been a co-author with any of the authors;

To check whether the journal indeed respects these boundaries, audits are used.
However, in practical situations, auditing can only be done on a small part of
the available data. Hence auditing is incomplete. This may lead, for example, to
a paper being rejected by a reviewer which has a conflict of interest, while this
conflict does not get noticed.

This paper proposes a link from execution data to context data, which removes
some of these restrictions on continuous auditing. As a result of this link, we can
bring the execution data to the context data, which allows automated checking
of the boundaries and automated linking with other context data.

Please note that although we use a journal to explain the issues at hand,
the proposed approach can be used in any other compliance setting. It offers a
generic approach for the problem that continuous auditing is restricted to the
available execution data.

This paper is organized as follows. Sec. 2 introduces the necessary concepts on
which our approach is based. Next, Sec. 3 presents our approach how to link the

100 J.M. van der Werf, E. Verbeek, and W.M.P. van der Aalst

context data with execution data. Sec. 4 shows the applicability of the approach
with a proof of concept, using both existing tools as developing our own. Last,
Sec. 5 concludes this paper and hints at possible future directions.

2 Basic Notions

2.1 Business Context

The environment in which an organization like the journal operates is called
its context. The context is “the combination of all situational circumstances
that impact process design and execution” [18], and describes the concepts that
influence and bound the business of an organization and the relations between
these concepts.

In this paper, we use the notion of a context model, which can be viewed as a
data model, e.g., using UML class diagrams, the relational database schema or
Entity-Relationship diagrams (ERD). A context model defines the concepts, their
relationships, and their attributes. Concepts can inherit from other concepts, have
different relationships and different attributes. A relationship is from a source
concept to a target concept, where a cardinality can be associated to both these
concepts. Let A denote the attribute name universe.

Definition 1 (Context model). A context model is a 6-tuple (O, α, ι,R, σ, τ)
where

– O is a set of concepts;
– α : O → P(A) is a function defining for each concept the set of attributes;
– ι : O ⇀ P(O) is a partial function defining the inheritance relation. If for a

concept A ∈ O a B ∈ O exists such that B ∈ ι(A), we say B is a parent of
A. The transitive closure of ι has to be irreflexive;

– R ⊆ O × A × O is a set of relationships between concepts such that if
{(A, l, B1), (A, l, B2)} ⊆ R implies B1 = B2. Given a relationship r =
(A, l, B) ∈ R, A is called the source of r, B is called the target of r, and l
is called the name of r;

– σ : R → (N × (N ∪ {∗})) defines the source cardinality (lower bound and
upper bound) of each relationship;

– τ : R→ (N× (N ∪ {∗})) defines the target cardinality of each relationship.

For inheritance, we do not allow overriding of attributes and relationships, i.e.,
for all B ∈ ι+(A) and l ∈ A that α(A) ∩ α(B) = ∅ and if (B, l, ·) ∈ R, then
(A, l, ·) 	∈ R, where ι+ is the transitive closure of ι.

An example context model for the journal (using an UML class diagram) is de-
picted in Fig. 1. In this example context model there are six concepts (Affiliation,
Author, Journal, Paper, Researcher, and Reviewer), six relationships (authors,
is submitted to, reviews, works at, and two unnamed inheritance relations), and
nine attributes (abstract, notificationdate, name, number, publicationdate, sub-
missiondate, title, volume, and year). The works at relation indicates that each

Context-Aware Compliance Checking 101

Researcher is connected to exactly one Affiliation and that an Affiliation is con-
nected to multiple (possibly none) Researchers. Likewise, the reviews relation
indicates that a Paper is connected to multiple (possibly none, if not under re-
view) Reviewers, and that a Reviewer is connected to at least one Paper, and
the authors relation indicates that an Author is connected to at least one Paper,
and a Paper to at least one Author. A researcher can both write papers as well
as review those. Therefore, the Author and Reviewer concepts inherit from the
Researcher concept.

A context model can be instantiated, i.e., the context model can be popu-
lated with instances of each concept, and associations between these instances,
reflecting the relationships defined on the concepts in the model. Let U denote
the concept instance universe, i.e., the set of all possible concept instances, and
let V be the attribute value universe.

Definition 2 (Instance of a context model). An instance of a context model
M = (O, α, ι,R, σ, τ) is a 3-tuple (IO, IA, IR) where

– IO : O → P(U) defines the available concept instances. Each concept has a,
possibly empty, set of instances;

– IA : (U × A) → P(V) defines for each concept instance and attribute the
corresponding set of attribute values;

– IR : R → P(U × U) is the set of associations between concept instances.

Let A,B ∈ O be two concepts, let l ∈ α(A) be an attribute of A, and let
(A, r,B) ∈ R be a relationship. Given an instance I = (I0, IA, IR) of M , we
write a ∈ A for a ∈ IO(A), a.l = v for ((a, l), v) ∈ IA and (a, b) ∈ r for
(a, b) ∈ IR((A, r,B)). The set of all instances of M is denoted by I(M).

Given two instances I1 = (IO,1, IA,1, IR,1) and I1 = (IO,2, IA,2, IR,2), we
define their union by I1 ⊕ I2 = (IO,1 ⊕ IO,2, IA,1 ⊕ IA,2, IR,1 ⊕ IR,2) where
f ⊕ g : V → P(O) with (f ⊕ g)(v) = f(v) ∪ g(v) for all sets V ,O, functions
f, g : V → P(O), and v ∈ V .

-title
-abstract
-submissiondate
-notifcationdate
-publicationdate

Paper

-title
-volume
-number
-year

Journal

-name

Affiliation

-name

Researcher

Reviewer

Author

works_at

1 *

reviews

1..* *

authors

1..* 1..*

is_submitted_to

0..* 1..*

Fig. 1. Context model of the review process context

102 J.M. van der Werf, E. Verbeek, and W.M.P. van der Aalst

submit paper

request
reviews

review collect reviews
decision

review

review

notify accept

notify reject

submit final
version

request review

review

i

f

a

b

c

p

Fig. 2. The review process

Please note that, in principle, an attribute has a set of values, instead of just
a single value. For example, a paper will have a set of authors, and not just a
single author. However, many attributes will have a singleton set as value. In
such cases, we allow the value of the attribute to be the single element of that
set instead of the set itself. As a consequence, for a concept instance a and an
attribute label l, a.l can either be a set of values (a.l ∈ P(V)), or the value of
its only element in case of a singleton set (a.l ∈ V). From the context, it will
typically be clear which interpretation is used.

An instantiation of a context model is called consistent if all the constraints
enforced by the cardinalities and inheritance relations are satisfied.

2.2 Process-Aware Information Systems

Business processes form the heart of any organization. A business process can
be seen as a set of interdependent tasks and resources needed to produce some
product or to deliver some service. In modeling and describing a business process,
context plays a natural role. As an example, the names of the activities and
resources in the business process are typically aligned with the context in which
the process operates. In our example, the journal has a review process that
defines for a paper the tasks and resources needed in order to publish the paper
in the journal, as depicted in Fig. 2.

In this process model, authors may submit a paper, which will be reviewed
by three researchers. Based on the review outcomes, the editor decides whether
the paper is accepted, a revision is needed, or whether the paper is rejected, and
notifies any accept/reject decision to the authors. Some reviewers may forget to
review, or are too late, which is modeled as a skip, using the black transitions.
The editor can decide to request an additional review, up to the point that he
has sufficient information to make a proper decision.

Context-Aware Compliance Checking 103

More and more information systems are developed and implemented to sup-
port an organization like the journal in executing their business. A Process Aware
Information System (PAIS) [10] assists an organization in the execution of its
business process. The business process is then used to configure the system.

A PAIS records each and every step in the business process. For example, the
PAIS of the journal records when a paper is submitted, when the reviewers are
invited, and whether and when the reviews have been returned. As a result, a
PAIS generates enormous amounts of execution data.

For each user action on the system, an event is raised. An event records its
type, for which activity it has been raised, for which case or business process
instance, when it was raised, by whom, and the data inserted by the user. Such
a recording is called an event log [1]. Let E be the event universe and let C be
the case universe.

Definition 3 (Event log). An event log is a 3-tuple L = (C,E,#) where

– C ⊆ C is a set of case identifiers in the event log;
– E ⊆ E is a set of event identifiers in the log;
– # : A× (C ∪ E)→ P(V) is an attribute mapping.

For an attribute n ∈ A we write #n(·) as a shorthand for #(n, ·).
Each event belongs to exactly one case, denoted by the mandatory attribute

case ∈ A, i.e., #case : E → P(C) such that |#case(e)| = 1 for all e ∈ E. Each
case has at least one event, i.e., for all cases c ∈ C an event e ∈ E exists
such that #case(e) = c. An event may have a successor, denoted by next ∈ A,
i.e., #next : E → P(E) such that |#next(e)| ≤ 1 for all e ∈ E. The transitive
closure of #next is irreflexive. Each case has exactly one start event, denoted by
first ∈ A, and exactly one end event, denoted by last ∈ A, i.e., #first,#last :
C → P(E), such that |#first(c)| = |#last(c)| = 1 for all c ∈ C, if #next(e) = ∅
then #last(#case(e)) = e, and if no event p ∈ E exists with #next(p) = e, then
#first(#case(e)) = e for an event e ∈ E . The set of all possible event logs is
denoted by L.
An event log represents a period of business execution. Event logs representing
consecutive periods of business execution may be concatenated. Suppose event
log L′ represents the initial business execution, and L′′ represents the consecutive
business execution. When a case identifier, say c occurs in both L′ and L′′, it
means that this case was not finished in L′. Consequently, all events for c in L′′

follow after the last event for case c in L′. In the concatenation of two event
logs representing two consecutive periods of business execution, these cases are
concatenated: the first event of the second log is the next event of the last event
for this case in the first log. Note that by definition of event logs, the sets of
event identifiers of two consecutive event logs need to be disjoint. Further, remark
that the functions #first and #last return singleton sets, i.e., these functions are
always defined and return a single event.

Definition 4 (Concatenation of event logs). Let L′ = (E′, C′,#′) and L′′ =
(E′′, C′′,#′′) be two event logs such that E′ and E′′ are disjoint. The concatena-
tion of L′ with L′′, denoted by L′;L′′, results in a new event log (C,E,#) with

104 J.M. van der Werf, E. Verbeek, and W.M.P. van der Aalst

Table 1. Event log of journal reviewing process

Case Activity Resource Time stamp Data

118 submit paper system 24-12-2011 17:00:12 title: “Title paper 118”,
author: 192
author: 193

119 submit paper system 24-12-2011 17:05:49 title: “Title paper 119”,
author: 194

.

118 request reviews editor 29-12-2011 10:19:23 reviewer: 112
reviewer: 149
reviewer: 195

119 request reviews editor 29-12-2011 10:22:43 reviewer: 112
reviewer: 149
reviewer: 195

118 review 149 07-01-2012 16:39:21 verdict: accept

.

C = C′ ∪C′′, E = E′ ∪E′′ and # = (#′ \ {((last, c), e) | c ∈ C′ ∩C′′, e ∈ E′})∪
(#′′ \ {((first, c), e) | c ∈ C′ ∩ C′′, e ∈ E′′}) ∪ {((next,#′(last, c)),#′′(first, c)) |
c ∈ C′ ∩ C′′}.
An example of an event log is shown in Tbl. 1. This example represents a small
part of an event log generated by the journal review system. It shows for example
the submission of papers 118 and 119 with one and respectively two authors, the
editor who is requesting reviews for these papers, and a returned review for
paper 118 by reviewer 149.

In an event log, we may group the events per case or business process instance.
In this way, the events form execution traces per case. For example, from the
partial event log in Tbl. 1, we have for case 118 the partial execution trace
“submit paper”, “request reviews” and “review”.

The example event log in Tbl. 1 already shows the tight relation between the
context and the business execution. For example, solely based on the event log,
resource 149 is meaningless, whereas in an instance of the context model, it can
be related to some researcher and his affiliation.

2.3 Auditing

Organizations like the journal need to constantly monitor their business to assure
that they stay within their boundaries. The activity of checking whether the
business execution adheres to the defined boundaries is called auditing [4, 7].

Traditionally, an audit can only provide reasonable assurance that the business
is compliant, i.e., that the business is executed within the given boundaries. As
an audit is typically a manual chore, auditors can only assess the operating
effectiveness by checking samples of factual data [7].

To audit a system, the auditors may place process controls to assess the bound-
aries, such that the control reports the violation of a boundary [9,14,19,20]. Only

Context-Aware Compliance Checking 105

if a control is not in place or if it is not functioning as expected, the auditor will
typically check factual data. In order to audit a PAIS that supports the review
process, a control may be placed counting the number of different reviews per
submitted paper. A second control may monitor the time between submission
and notification, in order to check the boundary on the time to review a paper.

It is important to realize that a process control may not be sufficient for
checking a boundary. Consider, for example, boundary 5, which states that a
reviewer may not be a co-author. A control could check, at the moment of the
review, whether the reviewer is a co-author, but it will not check this again in
the future. Thus, if in the very near future some paper appears in some journal
from which it is clear that the reviewer actually was co-authoring a paper, then
the control would miss this fact.

Placing controls already increases the assurance an auditor can give. However,
adding controls changes the business processes implemented in a PAIS. Hence,
if either the business process or a boundary changes, both systems need to be
changed. Therefore, process analysis techniques can help in separating process
controls from the control flow [17].

3 Context-Aware Continuous Auditing

Since information systems more and more record their usage in event logs, the
execution data can be used to check for compliance. Whereas traditional audit
only relies on sample-based checks, continuous auditing [7, 21] focuses on the
analysis of the execution data to perform an audit.

The omnipresence of execution data, coupled with process mining [1] tech-
niques, allows the auditor to perform an audit on the whole business execution,
rather than only sample-based [3,4,7,16]. However, boundaries are typically de-
fined on the context data, and not solely based on the execution data [5, 17].
As a result, to be able to check these boundaries, continuous auditing requires
both execution data as well as context data. Only if the boundaries are formal-
ized, algorithms and techniques can be developed to automate the process of the
auditor. Consequently, not only the boundaries need to be formalized, also the
context needs to be modelled.

3.1 Formalization of Boundaries

One way to formalize a boundary is by constraining the concepts in the context
model by using the right cardinalities between concepts. In this way, one can
easily formalize the boundary that a Paper has at least one Author. It is enforced
by the cardinalities of the relationship authors. However, not every boundary can
be formalized using only the cardinalities.

Dependencies over different concepts cannot be expressed by local constraints,
like the cardinalities, only. For example, the boundary that a Reviewer and Au-
thor should be of a different Affiliation cannot be expressed by local constraints.
For this reason, we use a constraint language on the context model in first-order

106 J.M. van der Werf, E. Verbeek, and W.M.P. van der Aalst

logic. The aforementioned boundary can then be expressed by the following non-
local constraint:

∀p ∈ Paper, a ∈ Author, r ∈ Reviewer, w1, w2 ∈ Affiliation :

((a, p) ∈ authors ∧ (r, p) ∈ reviews ∧
(a, w1) ∈ works at ∧ (a, w2) ∈ works at

) =⇒ w1 	= w2

This constraint formalizes that in any instance of the context model, the affilia-
tions of an author and a reviewer of the same paper should be different.

3.2 Relating the Process Execution with the Context

By formalizing the boundaries, compliance checking becomes checking whether
each constraint is satisfied by the business execution. However, the constraints
are expressed using the context data, while the execution is expressed using the
execution data. As a consequence, we need to link both data: Either we trans-
form the constraints in terms of the execution data, or the event log needs to be
transformed in terms of the the context data. For example, the rule that a paper
has been reviewed by three different reviewers, can be expressed like “Each exe-
cution trace contains at least three activities named ‘review’ executed by different
resources”. However, many constraints, like the one that corresponds to bound-
ary 5 (“A reviewer has never been a co-author of any of the authors”), are global
constraints, i.e., constraints over a set of traces, rather than local constraints over
a single execution trace. As a consequence, replay techniques [2] cannot be used,
as these only consider single execution traces. Such constraints cannot be trans-
formed into a constraint in terms of the execution data, as the co-author relation
does not only depend on the execution data, as authors may decide to submit pa-
pers to other journals as well. Clearly, this influences the co-author relation, while
these submission will not be stored in the PAIS of the journal at hand.

The context model describes the concepts and their relationships. An instance
of the context model describes a state of the business. By execution a business
process, the state of the business changes, and hence, the instance of the con-
text model. For example, executing the “submit paper” activity corresponds to
the insertion of a Paper concept in the current instance. Likewise, the “request
reviews” activity corresponds in the insertion of new associations between one
instance of Paper and several instances of Reviewer.

Each event in an event log corresponds to an update of the current state of
business. As a consequence, executing an event can be seen as a function from
one instance of the context model to a new instance. We denote with I(M) the
universe of instances of context model M .

Definition 5 (Transformation function). Given a context model M , a trans-
formation function transforms a given context model instance and an event log
into a new instance of the context model, i.e, a function f : I(M)× L → I(M)
such that for I ∈ I(M) and L1, L2 ∈ L we have f(I, ∅) = I and f(I, L1;L2) =
f(f(I, L1), L2).

Context-Aware Compliance Checking 107

title = Title paper 118
abstract
submissiondate = 24-12-2011 17:00:12
notifcationdate
publicationdate

Paper 118 : Paper

name
Author 192 : Author

name
Author 193 : Author

authors

authors

1: Submit paper 118

(a) After first step

title = Title paper 118
abstract
submissiondate = 24-12-2011 17:00:12
notifcationdate
publicationdate

Paper 118 : Paper

name

Author 192 : Author

name

Author 193 : Author

authors

authors

title = Title paper 119
abstract
submissiondate = 24-12-2011 17:05:49
notifcationdate
publicationdate

Paper 119 : Paper

name

Author 194 : Author

authors

name

Reviewer 112 : Reviewer

name

Reviewer 149 : Reviewer

name

Reviewer 195 : Reviewer

reviews

reviews

reviews

reviews

reviews

reviews

1: Submit paper 118

2: Submit paper 119

3: Request reviews 118

4: Request reviews 119

(b) After four steps

Fig. 3. Replaying the event log of Tbl. 1 on the context

In this way, we are able to replay the event log in terms of the context. As
each event updates the context, we define an additional function that transforms
a context model instance and an event log into a new context model instance.
Let us consider the journal example again. Let I be a consistent instance of the
context model depicted in Fig. 1, let L be the current event log, and let e be
the event that corresponds to the submission of paper 118. The event causes the
creation of the Paper 118 object, the Author 192 and Author 193 objects, and it
creates the author relation from these Author objects to the Paper object. We
can formalize this to an update of the context model instance:

f(I, ({c}, {e},#)) =

{
I ⊕ (eO, eA, eR) if #name(e) = ‘submit paper’;
I otherwise,

where

eO = {Paper �→ {c},Author,Researcher �→ #author(e)},
eA = {(c, title) �→ #title(e), (c, submissiondate) �→ #timestamp(e)},
eR = {(Paper, authors) �→ {(c, a) | a ∈ #author(e)}}.

108 J.M. van der Werf, E. Verbeek, and W.M.P. van der Aalst

Note that the creation of an object is only necessary if the object does not already
exist. If, for example, the object for Author 192 would have already existed, then
the existing object would be reused. Likewise, the event that corresponds to the
other submission creates the Paper 119 object, the Author 194 object, and the
authors relation between both. Fig. 3 shows the result of replaying the first
events from Tbl. 1 on an empty journal context model instance.

Similar functions can be created for the other events. The first request review
event creates the Reviewer 112, Reviewer 149, and Reviewer 195 objects, and
the reviews relations to the Paper 118 object, whereas the second request review
reuses the Reviewer objects and creates reviews relations from these objects to
the Paper 119 object. As a result of replaying the event log in the context model,
we have now extended the context model with the execution data. Hence, we
can use the execution data as if it were context data.

3.3 Compliance Checking

The first step in checking compliance, is the check whether the initial instance
of the context satisfies each of the constraints. After this check, we can start to
replay the event log. For this, we need to sort all events in the event log based
on their time stamp, so that the context is updated in the same order as the
business has been executed.

While replaying the events on the context model, after each update the current
instance needs to be checked to see whether the constraints are still satisfied. If
in a step a constraint is violated, we need to report this event and the violation.
An auditor then needs to test the severity of the violation. For example, if after
completing the trace, the constraint is repaired, the impact of the violation may
be less than if the constraint remains violated.

In this approach, we only allow the event log to change the context. In re-
ality, not only the business execution changes the context, also external events,
like researchers that change affiliation, or people that write papers for different
journals, may change the context. These external changes to the context are (for
now) ignored by our approach.

4 Implementation

As a proof of concept, we implemented the approach in the process mining
toolkit ProM6 [22]. In literature, ontologies are often used to capture context (cf.
[12,13,18]). An ontology can be seen as a collection of concepts with associations
between these concepts [23]. Further, ontologies allow for modularization using
the import concept. In this way, different ontologies can be combined into a
single context model. For example the context of the journal could be split into
an ontology for the publications and reviews, and a separate ontology for the
researchers and their affiliation.

Context-Aware Compliance Checking 109

4.1 Event Logs as Ontologies

Not only the context model can be represented in an ontology. Also event logs can
be represented in an ontology. This allows us to reason over both the context as
well as the process execution in a single formal representation. The XES standard
[22] defines the important concepts in an event log, and their relationships. In
the XES standard, a Log uses zero or more Extensions that each define a set of
Attributes. An Attribute has a set of values, represented by the Value concept
in the ontology. The concepts Log, Event, Trace and Value are subclasses of the
Attributable concept, meaning that they can have Values attached. Each Trace
belongs to a Log, and has a start event and an end event. Events belong to a
Trace, and each can have a predecessor and a successor Event. The ontology also
stores the transitive closure of the predecessor and successor relation, i.e., the
set of all predecessors or successors, respectively, of an Event.

The Ontologies package of ProM6 provides an automatic transformation from
event logs into the ontology format. For a log of the journal with 1000 cases and
12461 events, the transformation results in an ontology with 455.990 axioms,
i.e., concept, individuals, and relations between these individuals.

4.2 Linking Events to the Ontology

As seen in the previous section, each event belongs to an update of the context
model. For example, the event ‘submit paper’ creates a paper. In the formaliza-
tion, we represented this by stating that each trace in the event log creates an
instance of the concept Paper. In terms of ontologies, this means that each trace
of this event log is not only an individual of the concept Trace, but also of the
concept Paper. Hence, we want to add this relation between the ontology of the
event log and the ontology of the context model. To automate the process of
relating the different individuals, we introduce the notion of annotation rules.

An annotation rule relates individuals between the ontologies of the event log
and of the context model. It defines a source element, a target element and the

(a) Event log as ontology in ProM6 (b) Annotation rule in ProM6

Fig. 4. Implementation of context models as ontologies in ProM6

110 J.M. van der Werf, E. Verbeek, and W.M.P. van der Aalst

relation between the source and target, like inheritance relation, instantiation,
and an ontology object or data property. If the relation between source and
target is an ontology property, we also need to specify which property is used.

To select elements from the event log, we use XPath, which allows us to select
multiple elements in an event log. For example, the rule that each trace is a
paper, can be expressed by the following annotation rule, assuming that the
Paper ontology has the namespace http://localhost/publication.owl:

AR 1 (A paper) Creates an instance of the concept ‘Paper’ for each trace
source //trace

relation instance of
target http://localhost/publicatizon.owl#Paper

This rule selects each trace (//trace) in the event log, and adds the correspond-
ing Trace individual to the concept Paper. As the transformation also specifies
that a paper has a title, we need another annotation rule to express this.

AR 2 (A paper has a title) The title is specified in the activity ‘submit paper’
as an attribute named ‘title’
source //trace

relation has data property: http://localhost/publication.owl#title
target ./event[/string[@key=’concept:name’ and @value=’submit

paper’]]/string[@key=’title’]@value

This rule iterates over each trace, as specified in the source of the annotation
rule, and gets the corresponding title by retrieving the attribute ‘title’ of its
‘submit paper’ event. In case multiple elements are selected by the target XPath
query, then a relation is created for each of the selected elements. In this way, we
need to create five annotation rules for the transformation of the ‘submit paper’
event: one to add the Trace to the Paper concept (AR 1), two to add the title
(AR 2) and a similar rule for the submission date of the paper, one to create
the authors, and one to relate the authors to the paper.

Fig. 4(b) depicts an annotation rule as it is implemented in ProM6. Simi-
lar annotation rules can be created for each of the events. In this way, we get
an ontology that connects the ontology of the event log with the ontology of
the context model. This connecting ontology serves as input for the compliance
checking.

4.3 Compliance Checking

The approach results in three ontologies: one ontology being the initial context
model instance, one ontology representing the event log and one that provides the
connection between these two. In order to check whether the organization stayed
within its boundaries, we need to check whether all three ontologies together
satisfy these boundaries. The previous section showed how each of the boundaries
can be formalized into a set of constraints expressed in first order logic. Next
step is to express these constraints in a language that can be used on ontologies.

Context-Aware Compliance Checking 111

One such language is the Semantic Web Rule Language (SWRL) [8]. SWRL
rules are expressed in terms of an ontology. Hence, we can create a separate
ontology containing these rules.

For example, to express the rule that states that for each paper no reviewer
may be a coauthor of one of the authors of that paper, we first add a data
property to each paper, e.g., violatesBound5, with domain Paper and the Boolean
values as range. Next, we can express when this rule is true: if a paper has
been submitted earlier by both a reviewer and an author of the current paper.
Expressed in SWRL:

violatesBound5(?p, true)← Paper(?p) ∧ reviews(?r, ?p) ∧ authors(?a, ?p)

∧ Paper(?y) ∧ authors(?a, ?y) ∧ authors(?r, ?y)

∧ submitdate(?y) < submitdate(?p)

As ontologies are being used to express both execution data and context, other
formalisms can be exploited to express constraints, like SBVR [15].

Important to realize when working with ontologies is the open world assump-
tion. In the open world assumption, a statement is either true, false, or unknown,
whereas in a closed world a statement is either true or false. This is an impor-
tant difference. For example, in the rule above we can only express when the
statement is true. If no witness is found, in the closed world assumption the con-
straint is satisfied, whereas in the open world assumption, the statement results
in unknown.

To increase the expressivity of the constraints, the closed world assumption is
needed. For example, a logic language like Prolog would be a natural next step,
as the translation from ontologies to Prolog is straightforward [24].

5 Conclusions

All kinds of sources enforce boundaries on the way an organization runs its
business. Typically, these boundaries are phrased in terms of the environment
of the business, called the context. In this paper, we proposed a novel approach
to support the auditor in checking whether the organization stays within its
boundaries.

Mostly, the work of an auditor is manual. As more and more organizations are
supported by information systems that record their usage in event logs, more
and more data becomes available to automate the work of the auditor. The
enormous amounts of data available allows the auditor to use techniques like
process mining.

In order to automate the compliance checking, also the boundaries need to
be formalized. In this paper, we propose context models. However, as event logs
are in terms of the system, and the boundaries in terms of the context, we argue
the need of transforming the information available in event logs into information
available in terms of the context.

112 J.M. van der Werf, E. Verbeek, and W.M.P. van der Aalst

The approach presented in this paper is a next step towards continuous audit-
ing. To show the applicability of the approach we implemented it in ProM6 using
ontologies as a context model. Although ontologies provide a powerful mecha-
nism to reason over the context, more research is needed to further automate
the task of the auditor.

Current replay techniques only visualize control flow related aspects, like con-
formance checking, of a business execution. The approach proposed in this paper
allows to replay the business execution in its context. In this way, business ana-
lysts and auditors have the possibility to inspect how business execution changes
the business environment.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying History on
Process Models for Conformance Checking and Performance Analysis. Wiley Inter-
disciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

3. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M., Kumar, A., Ver-
donk, M.: Conceptual Model for Online Auditing. Decision Support Systems 50(3),
636–647 (2011)

4. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M.E.M., Verdonk, M.:
Auditing 2.0: Using Process Mining to Support Tomorrow’s Auditor. IEEE Com-
puter 43(3), 102–105 (2010)

5. Accorsi, R., Stocker, T.: On the Exploitation of Process Mining for Security Audits:
The Conformance Checking Case. In: ACM Symposium on Applied Computing.
ACM (2012)

6. Alles, M.G., Kogan, A., Vasarhelyi, M.A.: Putting Continuous Auditing Theory
into Practice: Lessons from Two Pilot Implementations. Journal of Information
Systems 22(2), 195–214 (2008)

7. Chan, D.Y., Vasarhelyi, M.A.: Innovation and Practice of Continuous Auditing.
International Journal of Accounting Information Systems 12(2), 152–160 (2011)

8. World Wide Web Consortium. SWRL: A Semantic Web Rule Language Combining
OWL and RuleML (2011), http://www.w3.org/Submission/SWRL/

9. Haworth, D.A., Pietron, L.R.: Sarbanes-Oxley: Achieving compliance by starting
with ISO 17799. Information Systems Management 23(1), 73–87 (2006)

10. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. John
Wiley & Sons, Inc. (2005)

11. Elliot, R.K.: Assurance Service Opportunities: Implications for Academia. Ac-
counting Horizons 11(4), 61–74 (1997)

12. Filipowska, A., Kaczmarek, M., Kowalkiewicz, M., Markovic, I., Zhou, X.: Or-
ganizational Ontologies to Support Semantic Business Process Management. In:
International Workshop on Semantic Business Process Management, pp. 35–42.
ACM (2009)

13. Fox, M.S., Barbuceanu, M., Gruninger, M.: An Organisation Ontology for En-
terprise Modelling: Preliminary Concepts for Linking Structure and Behaviour.
Computers in Industry 29(1-2), 123–134 (1996); WET ICE 1995

http://www.w3.org/Submission/SWRL/

Context-Aware Compliance Checking 113

14. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

15. Goedertier, S., Mues, C., Vanthienen, J.: Specifying Process-Aware Access Control
Rules in SBVR. In: Paschke, A., Biletskiy, Y. (eds.) RuleML 2007. LNCS, vol. 4824,
pp. 39–52. Springer, Heidelberg (2007)

16. Jans, M., van der Werf, J.M.E.M., Lybaert, N., Vanhoof, K.: A Business Process
Mining Application for Internal Transaction Fraud Mitigation. Expert Systems
with Applications 38(10), 13351–13359 (2011)

17. Ramezani, E., Fahland, D., van der Werf, J.M., Mattheis, P.: Separating Compli-
ance Management and Business Process Management. In: Daniel, F., Barkaoui, K.,
Dustdar, S. (eds.) BPM Workshops 2011, Part II. LNBIP, vol. 100, pp. 459–464.
Springer, Heidelberg (2012)

18. Rosemann, M., Recker, J.C., Flender, C.: Contextualisation of Business Processes.
Int. Journal of Business Process Integration and Management 3(1), 47–60 (2008)

19. Green, S.: Manager’s Guide to the Sarbanes-Oxley Act: Improving Internal Con-
trols to Prevent Fraud. Wiley (2004)

20. Sadiq, S., Governatori, G., Namiri, K.: Modeling Control Objectives for Business
Process Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 149–164. Springer, Heidelberg (2007)

21. Vasarhelyi, M.A., Halper, F.: The Continuous Audit of Online Systems. Auditing:
A Journal of Practice & Theory 10(1), 110–125 (1991)

22. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: XES,
XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010. LNBIP,
vol. 72, pp. 60–75. Springer, Heidelberg (2011)

23. W3C. OWL 2 Web Ontology Language (2009)
24. Wielemaker, J., Schreiber, G., Wielinga, B.: Prolog-Based Infrastructure for RDF:

Scalability and Performance. In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC
2003. LNCS, vol. 2870, pp. 644–658. Springer, Heidelberg (2003)

25. Williams, B.C.: Auditing and recent Developments in IT. Managerial Auditing
Journal 7(5), 18–25 (1992)

	Context-Aware Compliance Checking
	Introduction
	Basic Notions
	Business Context
	Process-Aware Information Systems
	Auditing

	Context-Aware Continuous Auditing
	Formalization of Boundaries
	Relating the Process Execution with the Context
	Compliance Checking

	Implementation
	Event Logs as Ontologies
	Linking Events to the Ontology
	Compliance Checking

	Conclusions

