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Abstract. This paper provides three aggregation algorithms for deriv-
ing system nets from sets of partially-ordered causal runs. The three
algorithms differ with respect to the assumptions about the information
contained in the causal runs. Specifically, we look at the situations where
labels of conditions (i.e. references to places) or events (i.e. references to
transitions) are unknown. Since the paper focuses on aggregation in the
context of process mining, we solely look at workflow nets, i.e. a class of
Petri nets with unique start and end places. The difference of the work
presented here and most work on process mining is the assumption that
events are logged as partial orders instead of linear traces. Although the
work is inspired by applications in the process mining and workflow do-
mains, the results are generic and can be applied in other application
domains.

1 Introduction

This paper proposes different approaches to “discover” process models from ob-
served runs, i.e., runs (also known as causal nets or occurrence nets, cf. [14])
are aggregated into a single Petri net that captures the observed behavior. Runs
provide information about events together with pre- and post-conditions which
constitute a (partial) order between these events. This is useful in many domains
where processes are studied based on their recorded behavior, such as:

– Discovering administrative processes by following the document flows in the
organization with the goal to improve efficiency.

– Auditing processes in organizations in order to make sure that they conform
to some predefined rules.

– Constructing enterprise models by observing transaction logs or document
flows in enterprise systems such as SAP, Peoplesoft and Oracle.

– Monitoring the flow of SOAP messages between web-services to see how
different services interact.

– Observing patient flows in hospitals to improve careflows and to verify med-
ical guidelines.



There are many techniques to discover process models based on sequential event
logs (also known as transaction logs, audit trails, etc). People working on pro-
cess mining techniques [6] generally tackle situations where processes may be
concurrent and the set of observations is incomplete. Especially since the set of
possible sequences is typically larger than the number of process instances, it is
unrealistic to assume that all possible sequences have been observed.

In many applications, event logs are assumed to be linear, for example since
all events are ordered in time. However, there are many processes where it is
possible to monitor causal dependencies (e.g., by analyzing the dataflows). In
the examples mentioned before, it is easy to identify situations where activities
are causally linked by documents or explicit messages which can be monitored
and hence explicit information about the causal dependencies between events
is available. Consider for example service-oriented systems where one service
calls another service. These services have input and output data. Using these
dataflow one can find explicit causal dependencies. Furthermore, we encoun-
tered several Business Process Management (BPM) systems that actually log
behavior using a representation similar to runs. The ad-hoc workflow manage-
ment system InConcert of Tibco (formerly Xerox) allows end users to define
and modify process instances (e.g., customer orders) while capturing the causal
dependencies between the various activities. The representation used by these
systems directly corresponds to the notion of runs. The analysis tool ARIS PPM
(Process Performance Monitor) of IDS Scheer can extract runs represented as
so-called instance EPCs (Event-driven Process Chains) from systems such as
SAP R/3 and Staffware. These examples show that in real-life systems and pro-
cesses runs can be recorded or already are being recorded, thus motivating the
work presented in this contribution.

The remainder of this paper is structured as follows. After discussing related
work in Section 2 and some preliminary definitions in Section 3, we provide
algorithms for the aggregation of runs. In Section 4, three algorithms are pre-
sented for the aggregation of runs for the situations depicted in Figures 1 to 3.
Figures 1 to 3 each show two runs on the left-hand side and the most likely can-
didate for the aggregated model on the right hand side. The first algorithm we
present assumes we have full knowledge of each event, its preconditions and its
postconditions. This is shown in Figure 1, where all events and conditions are la-
beled and these labels uniquely identify the corresponding transition or place in
the aggregated model. Then, we assume that we cannot uniquely identify events,
i.e. the label of an event may refer to multiple transitions, as shown in Figure 2,
where send goods and send bill cannot be distinguished, since both of them are
recorded as send something. In the aggregated model however, two occurrences
of the transition send something have been identified. Finally, we provide an al-
gorithm that assumes less knowledge about pre- and post-conditions, as shown
in Figure 3, where no conditions have labels, while the corresponding aggregated
model shows the same structure as in Figure 1. In Section 5, we formally prove
that the algorithms we presented in Section 4 are correct, i.e. that the aggregated
nets can reproduce the original causal nets. We conclude the paper in Section 6.
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Fig. 1. Example of aggregating runs with known event and condition labels (Sec-
tion 4.1).
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Fig. 2. Example of aggregating runs with known condition labels and unknown or
non-unique event labels (Section 4.2).
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Fig. 3. Example of aggregating runs with known event labels and unknown condition
labels (Section 4.3).



2 Related Work

For an extensive overview of the process mining domain, we refer to the recent
book on process mining [2].

Since the mid-nineties several groups have been working on techniques for
automated process discovery based on event logs [5, 7, 8, 12, 13, 20, 28, 29]. In [6]
an overview is given of the early work in this domain. The idea to apply pro-
cess mining in the context of workflow management systems was introduced
in [8]. In parallel, Datta [13] looked at the discovery of business process models.
Cook et al. investigated similar issues in the context of software engineering pro-
cesses [12]. Herbst [22] was one of the first to tackle more complicated processes,
e.g., processes containing duplicate tasks. Most of the classical approaches have
problems dealing with concurrency. The α-algorithm [7] is an example of a sim-
ple technique that takes concurrency as a starting point. However, this simple
algorithm has problems dealing with complicated routing constructs and noise
(like most of the other approaches described in literature).

In all of the algorithms mentioned above, these tasks (i.e., events) in each
case are totally ordered (typically based on the timestamps). In this paper, we
take a different approach. We start by looking at so-called runs. These runs are a
partial ordering on the tasks within each case. However, in addition to the partial
ordering of tasks, we may have information about the local states of the system
from which the logs originated, i.e. for each event the pre- and post-conditions
are known. This closely relates to the process mining algorithms presented in [17]
and [18]. However, also in these papers only causal dependencies between events
are considered and no state information is assumed to be known.

The generation of system nets from their causal runs has been investigated
before. The first publication on this topic is [27]. Here the basis is assumed to be
the set of all runs. These runs are folded, i.e., events representing the occurrence
of the same transition are identified, and so are conditions representing a token
on the same place. In [15] a similar folding approach is taken, but there the
authors start with a set of causal runs, as we do in the present paper. [15]
does not present algorithms in details for the aggregation of runs but rather
concentrates on correctness criteria for the derived system net. [11] presents an
aggregation algorithm that constructs event-driven process chains from sets of
partially ordered sets of events (without conditions).

The problem tackled in this paper is closely related to the so-called synthesis
problem of Petri nets (see [16] and [19] for the synthesis of elementary net systems
and [9] for more general cases). In this work, the behavior is given in the form
of state graphs (where the events are known but the states are anonymous). In
process mining, the observed behavior is not complete and it is not known, which
process executions lead to identical global states. More recently, [26] extracts
Petri nets from models which are based on Message Sequence Charts (MSCs), a
concept quite similar to causal runs. Less related is the work presented in [21],
where a special variant of MSCs is used to generate a system implementation.

In [24], so-called regions are defined for partial orders of events representing
runs. These regions correspond to anonymous places of a synthesized place/tran-



sition net, which can generate these partial orders. In contrast to our work, the
considered partial orders are any linearizations of causal orders, i.e., two ordered
events can either occur in a sequence (then there is a causal run with a condition
”between” the events) or they can occur concurrently. Consequently, conditions
representing tokens on places are not considered in these partial orders whereas
our approach heavily depends on these conditions. More recently, this region-
based approach was used for the synthesis of place/transition nets from sets of
finite [10] or infinite [11] partially ordered sets of events.

3 Preliminaries

In this section, we introduce some basic definitions used in the remainder of this
paper and formalize the starting point for the aggregation of partially ordered
runs. Typically, a partial order is represented by a graph, and therefore we
introduce some concepts related to graphs, such as a complete subgraph and a
graph coloring. A graph-coloring is a way to label the nodes of a graph in such
a way that no two neighboring nodes (i.e. nodes connected by an edge) have the
same color.

Definition 3.1. (Graphs)
Let G = (N,E) be a directed graph, i.e. N is the set of nodes and E ⊆ N ×N is
the set of edges. If N ′ ⊆ N , we say that G′ = (N ′, E ∩ (N ′ ×N ′)) is a subgraph
of G. G is a complete graph if and only if E = (N ×N).

In the sequel, we assume G = (N,E) is a directed graph.

Definition 3.2. (Undirected path in a graph)
Let a ∈ N and b ∈ N . We define an undirected path from a to b as a sequence of
nodes denoted by < n1, . . . , nk > with k ≥ 1 such that n1 = a and nk = b and
∀i∈{1...k−1}((ni, ni+1) ∈ E ∨ (ni+1, ni) ∈ E).

Definition 3.3. (Connected graph)
G is a connected graph if for all n1, n2 ∈ N holds that there is an undirected
path from n1 to n2. A set of vertices N ′ ⊆ N generates a maximal connected
subgraph if it is a maximal set of vertices generating a connected subgraph.

Definition 3.4. (Graph coloring)
Let µ be a set of colors. A function f : N → µ is a coloring function if, for all
(n1, n2) ∈ E, either n1 = n2 or f(n1) ̸= f(n2).

Lemma 3.5. (Colorings on subgraphs can be combined)
Let E1, E2 ⊆ E, such that E1 ∪ E2 = E. Furthermore, let f : N → µ be a
coloring function on the graph (N,E1) as well as a coloring function on the
graph (N,E2). Then f is also a coloring function on G.

Proof. Let (n1, n2) ∈ E and n1 ̸= n2. Since E = E1 ∪ E2, we either have
(n1, n2) ∈ E1 or (n1, n2) ∈ E2. Since f is a coloring function on both (N,E1)
and (N,E2), f(n1) ̸= f(n2). ⊓⊔



In graphs, we would like to be able to talk about predecessors and successors
of nodes. Therefore, we introduce a special notation for that.

Definition 3.6. (Pre-set and post-set)

Let n ∈ N . We define
G
•n = {m ∈ N | (m,n) ∈ E} as the pre-set and n

G
•= {m ∈

N | (n,m) ∈ E} as the post-set of n with respect to the graph G. If the context
is clear, the superscript G may be omitted, resulting in •n and n•.

As stated in the introduction, our starting point is not only a partial order
of events within a case, but also information about the state of a case. Since we
want to be able to represent both events and states, Petri nets provide a natural
basis for our approach. In this paper, we use the standard definition of finite
marked place/transition (P/T-nets) nets N = (P, T, F,M0).

Definition 3.7. (Bag)
Let S be a set. A bag over S is a function from S to the natural numbers IN.

Definition 3.8. (Place/Transition net)
N = (P, T, F,M0) is a marked place/transition net (or P/T-net) if:

– P is a finite set of places,

– T is a finite, non-empty set of transitions, such that P ∩ T = ∅,
– F ⊆ (P × T ) ∪ (T × P ) is the flow relation of the net,

– M0 : P → IN represents the initial marking of the net, where a marking is a
bag over the set of places P .

Note that any P/T-net N = (P, T, F,M0) defines a directed graph ((P ∪ T ), F ).
In this paper, we restrict ourselves to P/T-nets where for each transition t holds
that •t ̸= ∅ and t• ≠ ∅.

Definition 3.9. (Bag notations)
We use square brackets for the enumeration of the elements of a bag represent-
ing a marking of a P/T-net. The sum of two bags (X ⊎ Y ), the presence of an
element in a bag (a ∈ X), and the notion of subbags (X ≤ Y ) are defined in a
straightforward way, and they can handle a mixture of sets and bags. Further-
more,

⊎
a∈A

(
f(a)

)
denotes the sum over the bags that are results of function f

applied to the elements a of a bag A.

Petri nets specify processes. The behavior of a Petri net is given in terms of
causal nets, representing process instances (i.e. cases). Therefore, we introduce
some concepts (notation taken from [14]). First, we introduce the notion of a
causal net, this is a specification of one process instance.

Definition 3.10. (Causal net)
The P/T-net (C,E,K, S0) is called a causal net if:

– for every place c ∈ C holds that | • c| ≤ 1 and |c • | ≤ 1,

– the transitive closure of K is irreflexive, i.e. it is a partial order on C ∪ E,

– for each place c ∈ C holds that S0(c) = 1 if •c = ∅ and S0(c) = 0 if •c ̸= ∅.
In causal nets, we refer to places as conditions and to transitions as events.



Each event of a causal net should refer to a transition of a corresponding
P/T-net and each condition should refer to a token on some place of the P/T-
net. These references are made by mapping the conditions and the events of a
causal net onto places and transitions, respectively, of a Petri net. We call the
combination of a causal net and such a mapping a run.

Definition 3.11. (Run)
A run (N,α, β) of a P/T-net (P, T, F,M0) is a causal net N = (C,E,K, S0),
together with two mappings α : C → P and β : E → T , such that:

– For each event (transition) e ∈ E, the mapping α induces a bijection from
•e to •β(e) and a bijection from e• to β(e)•,

– α(S0) = M0 where α is generalized to markings by α : (C → IN) → (P →
IN), such that α(S0)(p) =

∑
c|α(c)=p S0(c).

The causal behavior of the P/T-net (P, T, F,M0) is defined as its set of runs. To
avoid confusion, the P/T-net (P, T, F,M0) is called system net in the sequel.

In this paper, we take a set of runs as a starting point. From these runs, we
generate a system net describing the behavior of all individual runs. Remember
that we do not assume to have all runs as a starting point.

4 Aggregation of Runs

In this section, we introduce an approach that takes a set of runs as a starting
point. From this set of runs, a system net is constructed. Moreover, we need
to find a mapping from all the events and conditions in the causal nets to the
transitions and places in the system net. From Definition 3.11, we know that
there should exist a bijection between all conditions in the pre- or post-set of
an event in the causal net and the pre- or post-set of a transition in a system
net. Therefore, two conditions belonging to the pre- or post-set of a single event
should not be mapped onto the same place. This restriction is in fact merely
another way to express the fact that our P/T-nets do not allow for more than
one edge between a place and a transition or vice versa. More generally, we
define a labeling function on the nodes of a graph as a function that does not
give the same label to two nodes that have a common element in their pre-sets
or a common element in their post-sets.

Definition 4.1. (Labeling function)
Let µ be a set of labels. Let G = (N,E) be a graph. Let R = {(n1, n2) ⊆
N ×N | n1

G
• ∩n2

G
• ̸= ∅ ∨ G

•n1∩ G
•n2 ̸= ∅}. We define f : N → µ to be a labeling

function if f is a coloring function on the graph (N,R).

We focus on the aggregation of runs that originate from a Petri net with
clearly defined starting state and completion state, i.e. processes that describe
a lifespan of some case. This assumption is very natural in the context of work-
flow management systems. However, it applies to many other domains where
processes are instantiated for specific cases. Hence, we will limit ourselves to a
special class of Petri nets, namely workflow nets.



Definition 4.2. (Workflow nets)
A P/T-net N = (P, T, F,M0) is a workflow net (WF-net) if:

1. P contains an input place pini such that •pini = ∅,
2. P contains an output place pout such that pout• = ∅,
3. there is a path from pini to every node and a path from every node to pout,

4. M0 = [pini], i.e. the initial marking marks only pini.

As a consequence, a WF-net has exactly one input place. When looking at a
run of a WF-net, we can therefore conclude that there is exactly one condition
containing a token initially and all other conditions do not contain tokens. A set
of causal nets fulfilling this condition and some structural consequences is called
a causal set.

Definition 4.3. (Causal set)
Let n ∈ IN and let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a set of causal nets. We
call this set a causal set if the sets Ci, Ei and Ki are pairwise disjoint and, for
0 ≤ i < n holds:

–
∑

c∈Ci
Si(c) = 1, i.e. exactly one condition has an empty pre-set,

– If for some c ∈ Ci, holds that Si(c) = 1 and e ∈ c•, then {c} = •e, i.e. each
event in the postset of an initially marked condition has only this condition
in its preset,

– If for some c ∈ Ci, holds that c• = ∅ and e ∈ •c, then e• = {c}, i.e. each
event in the preset of a condition with empty postset (representing a token
on the place pout) has only this condition in its postset.

The concept of constructing a system net from a causal set is called aggre-
gation. This concept can be applied if we assume that each causal net in the
given set can be called a run of some system net. From Definition 3.11 we know
that we need two mappings α and β satisfying the two properties mentioned.
Using the definition of a system net and the relation between system nets and
runs, we can conclude that any aggregation algorithm should have the following
functionality:

– it should provide the set of places P of the system net,

– it should provide the set of transitions T of the system net,

– it should provide the flow relation F of the system net,

– it should provide the initial marking M0 of the system net,

– for each causal net in the causal set, it should provide the mappings αi :
Ci → P and βi : Ei → T , in such a way that for all causal nets, αi(Si) is
the same (i.e. they have the same initial marking) and they induce bijections
between pre- and post-sets of events and their corresponding transitions.

Each event that appears in a causal net has a corresponding transition in the
original system net. Moreover, bijections exist between the pre- and post-sets of
this event and the corresponding transitions. In order to express this in terms
of labeling functions of causal nets, we formalize this concept using the notion
of transition equivalence.



Definition 4.4. (Transition equivalence)

Let µ, ν be two disjoint sets of labels. Let Φ = {Ni = (Ci, Ei,Ki, Si) | 0 ≤ i < n}
be a causal set, and let Ψ = {(αi : Ci → µ, βi : Ei → ν) | 0 ≤ i < n} be a
corresponding set of labeling functions for each (Ci, Ei,Ki, Si). We define (Φ, Ψ)
to respect transition equivalence if and only if for each ei ∈ Ei and ej ∈ Ej with
βi(ei) = βj(ej) the following holds:

– for each (ci, ei) ∈ Ki there is a (cj , ej) ∈ Kj such that αi(ci) = αj(cj),

– for each (ei, ci) ∈ Ki there is a (ej , cj) ∈ Kj such that αi(ci) = αj(cj).

Using the concepts of a causal set and transition equivalence, we introduce
three aggregation algorithms with different requirements on the available infor-
mation. First, in Section 4.1 we introduce an algorithm to aggregate causal nets
where all places and transitions have known labels. Then, in Section 4.2, we
show an algorithm that can deal with the situation where different transitions
have the same label. The final algorithm, presented in Section 4.3, deals with
the situation where transitions are correctly labeled, but places are not labeled
at all.

4.1 Aggregation with Known Labels

In this section, we present an aggregation algorithm that assumes that we know
all mapping functions, and that these mapping functions adhere to the definition
of a run. To illustrate the aggregation process, we make use of a running example.
Consider Figure 4 where four parts of runs are shown. We assume that the events
A,B,C,D,E,F and G do not appear in any other part of each run.

Our first aggregation algorithm is calledALK (short for “All Labels Known”).
This algorithm assumes known labels for events and known labels for conditions,
such as in Figure 4. These labels refer to concrete transitions and places in the
aggregated system net.

Definition 4.5. (ALK aggregation algorithm)

Let µ, ν be two disjoint sets of labels. Let Φ be a causal set of size n with causal
nets (Ci, Ei,Ki, Si) (0 ≤ i < n).

Furthermore, let {(αi : Ci → µ, βi : Ei → ν) | 0 ≤ i < n} be a set of labeling
functions respecting transition equivalence, such that for all causal nets αi(Si)
is the same. We construct the system net (P, T, F,M0) belonging to these runs
as follows:

– P =
∪

0≤i<n rng(αi) is the set of places (note that P ⊆ µ)3,

– T =
∪

0≤i<n rng(βi) is the set of transitions (note that T ⊆ ν),

– F =
∪

0≤i<n{(αi(c), βi(e)) ∈ P × T | (c, e) ∈ Ki ∩ (Ci × Ei)}∪∪
0≤i<n{(βi(e), αi(c)) ∈ T × P | (e, c) ∈ Ki ∩ (Ei × Ci)}

is the flow relation,

– M0 = α0(S0) is the initial marking.
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Fig. 4. Four examples of parts of runs.

The result of the ALK aggregation algorithm applied to the parts presented
in Figure 4 is shown in Figure 5. Another example is given in Figure 1.

The aggregated net shown in Figure 5 can generate the runs of Figure 4.
However, it also allows for the possibility to execute transitions F followed by
C. The token flow from F to C through place p1 was never directly observed
in any of the runs. Nonetheless, from the run in Figure 4(a) we can see that
the C can fire using a token from p1 and from the run in Figure 4(d) we can
derive that transition F indeed produces this token, hence no “new” behavior is
introduced.

The ALK algorithm is a rather trivial aggregation over a set of runs. Although
we prove its correctness in Section 5.1, the algorithm relies on the assumption
that the mapping functions αi and βi are known for each causal net. Further-
more, we assume two sets of labels µ and ν to be known. However, when applying
these techniques in the context of process mining, it is often not realistic to as-
sume that all of these are present. Therefore, in the remainder of this paper, we
relax some of these assumptions to obtain more usable aggregation algorithms
for process mining.

. . .
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Fig. 5. The aggregated Petri net.

4.2 Aggregation with Duplicate or Missing Transition Labels

In this section, we assume that the causal set used to generate the system net
and the labeling functions do not respect transition equivalence (Definition 4.4).
We introduce an algorithm to change the labeling function for events in such a
way that this property holds again. In the domain of process mining, the problem
of so-called “duplicate transitions” (i.e. several transitions with the same label)

3 With rng we denote the range of a function, i.e. rng(f) = {f(x) | x ∈ dom(f)}



is well-known (cf. [3, 23, 25]). Therefore, there is a need for algorithms to find
out which events actually belong to which transition. We assume that we have
causal nets with labeling functions, where some events have the same label, even
though they may refer to different transitions (see Figure 6). Note that this
figure is similar to Figure 4, except that we now labeled the events previously
labeled with F and G with a new label X.

Since the previous aggregation algorithm given in Definition 4.5 assumes that
transition equivalence holds, we provide an algorithm to redefine the labeling
functions for events it this is not the case.

Definition 4.6. (Relabeling algorithm)
Let µ, ν be two disjoint sets of labels. Let Φ = {Ni | Ni = (Ci, Ei,Ki, Si) ∧
0 ≤ i < n} be a causal set and let Ψ = {(αi : Ci → µ, βi : Ei → ν) | 0 ≤
i < n} be a set of labeling functions in (Ci, Ei,Ki, Si) such that αi(Si) is the
same for all causal nets. Furthermore, assume that µ and ν are minimal, i.e.∪

0≤i<n rng(αi) = µ and
∪

0≤i<n rng(βi) = ν. Let E⋆ =
∪

0≤i<n Ei be the set of
all events in the causal set.

We define the relabeling algorithm as follows:

1. Define ◃▹⊆ E⋆×E⋆ as an equivalence relation on the elements of E⋆ in such
a way that ei ◃▹ ej with ei ∈ Ei and ej ∈ Ej if and only if βi(ei) = βj(ej),

αi(
Ni• ei) = αj(

Ni• ej), and αi(ei
Ni• ) = αj(ej

Ni• ).

2. For each e ∈ E⋆, we say eqvl(e) = {e′ ∈ E⋆ | e ◃▹ e′}.
3. Let ν′ be the set of equivalence classes of ◃▹, i.e. ν′ = {eqvl(e) | e ∈ E⋆}.
4. For all causal nets (Ci, Ei,Ki, Si) and labeling functions αi, define a labeling

function β′
i : Ei → ν′ such that for an event ei, β

′
i(ei) = eqvl(ei), i.e. it

returns the equivalence class of ◃▹ containing ei.

After re-labeling the events, the part of the run shown in Figure 6(d) is rela-
beled to include the pre- and post-conditions. Figure 7 shows the fragment after
relabeling. (We only show the relabeling with respect to the post-conditions.)
Applying the ALK algorithm of Definition 4.5 to the relabeled runs yields the
result as shown in Figure 8. Note that we do not show the ν′ labels explicitly,
i.e. B refers to the equivalence class of events labeled B.

What remains to be shown is that our algorithm does not only work for
our small running example, but also in the general case. The only difference
between the assumptions in Definition 4.5 and Definition 4.6 is the requirement
with respect to transition equivalence. Therefore, if suffices to show that after
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applying the relabeling algorithm on a causal set, we can establish transition
equivalence.

Property 4.7. (Transition equivalence holds after relabeling)
Let µ, ν be two disjoint sets of labels. Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n}
be a causal set, and let Ψ = {(αi : Ci → µ, βi : Ei → ν) | 0 ≤ i < n} be a
set of labeling functions in (Ci, Ei,Ki, Si), such that αi(Si) is the same for all
causal nets. After applying the relabeling algorithm, the property of transition
equivalence holds for (Φ, Ψ ′), with Ψ ′ = {(αi : Ci → µ, β′

i : Ei → ν′) | 0 ≤ i < n},
and β′

i as defined in Definition 4.6.

Proof. We prove that Property 4.4 holds for (Φ, Ψ ′) after applying the relabeling
function. Assume (Ci, Ei,Ki, Si) and (Cj , Ej ,Kj , Sj) are two causal nets from Φ.
The new function β′

i is indeed a function, since for each event ei ∈ Ei there exists
exactly one equivalence class containing ei. Furthermore, let ei ∈ Ei and ej ∈ Ej ,
such that β′

i(ei) = β′
j(ej). We know that ei ◃▹ ej and from the definition of ◃▹,

we know that αi(•ei) = αj(•ej) and αi(ei•) = αj(ej•), which directly implies
transition equivalence. ⊓⊔

The algorithm presented above is capable of finding events that have the
same label, but correspond to different transitions in the system net. When no
transition labels are known at all, it can be applied to find all transition labels,
by using an initial ν = {τ} and initial mapping functions βi, mapping everything
onto τ . However, in that case, no distinction can be made between events that
have the same pre- and post-set, but should have different labels. After applying
this relabeling algorithm, the ALK algorithm of Section 4.1 can be used to find
the system net belonging to the given causal nets.

4.3 Aggregation with Unknown Place Labels

In Section 4.2, we have shown a way to identify the transitions in a system net,
based on the labels of events in causal nets. However, what if condition labels
are not known? Notice that the difference to other approaches based on partial
orders is that here we do know the conditions constituting the order between
events but do not know which two conditions refer to a token in the same place
of the P/T-net representing the process.

So, in this section, we take one step back. We assume all events to refer to
the correct transition, as we did in Section 4.1 and we try to identify the labels
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of conditions. We introduce an algorithm to aggregate causal nets to a system
net, such that the original causal nets are indeed runs of that system net.

In Figure 9, we again show our small example of the aggregation problem,
only this time there are no labels for conditions p1 and p2, which we did have
in Figures 4 and 6.

Consider the four runs of Figure 9. Remember that they are parts of causal
nets, in such a way that the tasks A,B,C,D,E, F and G do not appear in
any other way in another causal net. In contrast to the algorithms presented in
previous sections, we cannot always derive a unique aggregated system net for
causal nets if we do not have labels for the conditions. Instead, we define an
aggregation class, describing a class of WF-nets that could have generated these
causal nets. The following table shows some requirements all WF-nets in the
aggregation class of our example should satisfy.

Table 1. Information derived from runs shown in Figure 9.

Fragment Conclusions

Fig. 9(a) A• = •B ⊎ •C
Fig. 9(b) A• = •D
Fig. 9(c) E• = •B
Fig. 9(d) F • ⊎G• = •D

The information in Table 1 is derived from the runs of Figure 9 in the fol-
lowing way. Figure 9(a) shows that the transition A produces two tokens in two
places and that transitions B and C consume these two tokens, while at the
same time they do not need more input. Hence, we can conclude that in any
aggregated net, the multiset of tokens produced by A should be equal to the
multiset of tokens consumed by B and C together, which is stated in the first
line of Table 1.

In the general case, this information can be derived using the concept of a
segment, which can be considered to be the context of a condition in a causal net.
A segment consists of two sets of events (an input set and an output set), such
that the tokens produced by the transitions in the system net, corresponding
to the events in the input set are exactly the tokens consumed by the transi-
tions corresponding to the events in the output set, i.e. we formally capture the
relations described in Table 1.
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Definition 4.8. (Segment)
Let N = ((C,E,K), S0) be a causal net and let N ′ = (C ′, Ein, Eout) be such
that C ′ ⊆ C, Ein ∪ Eout ⊆ E, Ein ̸= ∅ and Eout ̸= ∅. We call N ′ a segment if:

– for all c ∈ C ′ holds that •c ⊆ Ein and c• ⊆ Eout, and

– for all e ∈ Ein holds that e• ⊆ C ′, and

– for all e ∈ Eout holds that •e ⊆ C ′, and

– the subgraph of N made up by C ′ ∪ Ein ∪ Eout is connected.

We call the events in Ein the input events and the events in Eout the output
events.

A segment is called minimal if C ′ is minimal, i.e. if there does not exist a
segment N ′′ = (C ′′, E′

in, E
′
out) with C ′′ ⊂ C ′ and C ′′ ̸= ∅.

For the fragments of Figure 9, it is easy to see that each of them contains
only one minimal segment, where the input events are the events on the left
hand side and the output events are the events on the right hand side.

The meaning of a segment is as follows. If we have a run and a segment in
that run, then we know that after all events in the input set of the segment
occurred, all the events in the output set occurred in the execution represented
by this run. This translates directly to a marking in a system net, since the
occurrence of a set of transitions would lead to some marking (i.e. a bag over
places), which enables another set of transitions. Furthermore, each transition
only produces one token in each output place. Combining this leads to the fact
that for each minimal segment in a causal net the bag of places following the
transitions corresponding to the input events of the segment should be the same
as the bag of places preceding the transitions corresponding to the output set of
events, as indicated in Table 1.

Clearly, when looking only at these fragments, what we are looking for are
the places that should be put between tasks A,E, F and G on the one hand,
and B,C and D on the other hand. Therefore, we only focus on this part of the
causal nets. For this specific example, there are two possibilities, both of which
are equally correct, namely the two WF-net fragments shown in Figure 10.

From the small example, we have seen that it is possible to take a set of
causal nets without labels for any of the conditions (but with labels for all the
events) and to define a class of potential system nets of the causal nets. In the
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Fig. 11. Three causal nets of a review process of a paper.

remainder of this section, we show that this is indeed possible for all causal sets.
For this, we first introduce the NCL algorithm.

4.4 NCL Algorithm

Before presenting the NCL algorithm (which stands for “No Condition Labels”),
we first take a look at a more intuitive example. Consider Figure 11, where we
present three causal nets, each of which corresponds to a paper review process. In
the first causal net, three reviewers are invited to review the paper and after the
three reviews are received, the paper is accepted. In the second causal net, only
two reviews are received (the third one is not received on time), but the paper
is rejected nonetheless (apparently the two reviewers that replied rejected the
paper). In the third example only one review is received in time, and therefore
an additional reviewer is invited, which hands in his review in time, but does
not accept the paper.

As we stated before, we define an aggregation class of a causal set that
contains all WF-nets that are capable of generating the causal nets in the causal
set. The information needed for this aggregation class comes directly from the



Table 2. Information derived from review example.

Causal net Conclusions on transitions in the aggregation class

Fig. 11(a) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” ⊎
•“Get review 2” ⊎
•“Get review 3”

“Get review 1” • ⊎
“Get review 2” • ⊎
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Accept paper”

|“Accept paper” • | = 1

Fig. 11(b) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Get review 1” ⊎
•“Get review 2” ⊎
•“Time-out review 3”

“Get review 1” • ⊎
“Get review 2” • ⊎
“Time-out review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Reject paper”

|“Reject paper” • | = 1

Fig. 11(c) •“Invite reviewers” = [pini]

“Invite reviewers”• = •“Time-out review 1” ⊎
•“Time-out review 2” ⊎
•“Get review 3”

“Time-out review 1” • ⊎
“Time-out review 2” • ⊎
“Get review 3”•

= •“Collect & Decide”

“Collect & Decide”• = •“Invite add. reviewer”

“Invite add. reviewer”• = •“Get add. review”

“Get add. review”• = •“Reject paper”

|“Reject paper” • | = 1



causal nets, using minimal segments. In Table 2, we present the conclusions we
can draw based on the three causal nets of Figure 11. In this table we consider
bags of pre- and post-sets of transitions in the aggregation class. The information
in this table is obtained from the causal nets in the following way. Consider for
example Figure 11(a), where Invite reviewers is followed by Get review 1,Get
review 2 and Get review 3. This implies that the bag of output places of invite
reviewers should be the same as the sum over the bags of the input places of
Get review 1, Get review 2 and Get review 3.

Definition 4.9. (NCL algorithm: Aggregation Class)
Let Φ = {(Ci, Ei,Ki, Si) | 0 ≤ i < n} be a causal set, and let N = (P, T, F,M0)
be a marked WF-net. For each causal net Ni ∈ Φi, let βi : Ei → T be a mapping
from the events of that causal net to T , such that βi is a labeling function for
Ei. We define AΦ, the aggregation class of Φ, as the set of all pairs (N,B) such
that the following conditions are satisfied:

1. T =
∪

0≤i<n rng(βi) is the set of transitions, i.e. each transition appears as
an event at least once in some causal net,

2. For all p ∈ P holds that
N
•p ∪ p

N
• ̸= ∅,

3. M0 = [pini] and
N
•pini = ∅,

4. B is the set of all labeling functions, i.e. B = {βi | 0 ≤ i < n}. We use βi ∈ B
to denote the labeling function for events belonging to Ni ∈ Φ,

5. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds

that if Si(
Ni• e) = 1 then pini ∈N

•t,

6. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei and βi(e) = t holds

that |tN• | = |eNi• | and | N
•t| = | Ni• e|,

7. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T

holds that |tN• ∩
∪

t′∈T ′(
N
•t′)| ≥

∑
e′∈Ei,β(e′)∈T ′ |e

Ni• ∩ Ni• e′|,
8. For each causal net Ni = (Ci, Ei,Ki, Si), with e ∈ Ei, βi(e) = t and T ′ ⊆ T

holds that |
∪

t′∈T ′(t′
N
•)∩ N

•t| ≥
∑

e′∈Ei,β(e′)∈T ′ |e′
Ni• ∩ Ni• e|,

9. For each causal net Ni = (Ci, Ei,Ki, Si) and any minimal segment

(C ′
i, Ein, Eout) of Ni, holds that

⊎
e∈Ein

(
βi(e)

N
•
)
=

⊎
e∈Eout

(
N
•βi(e)

)
.

Definition 4.9 defines an aggregation class of models in the following way:

– For each workflow net in the class, Items 1 to 4 define the transitions, places,
initial marking and the labeling functions, labeling all events and conditions
of each causal net with the transitions and places of that workflow net.

– Item 5 guarantees that all events in causal sets consuming the initial to-
kens are labeled with output transitions of the initially marked place in the
workflow net.

– Item 6 guarantees that, for all events, the numbers of input and output
conditions correspond to the numbers of input and output places of the
corresponding transition.



– Items 7 and 8 refer to the token flow in the model, in relation to the causal
nets, i.e. when considering the flow between a set of transitions and one
other transitions (in any direction), the number of tokens ever observed in
any causal set cannot be larger than the number of tokens allowed according
to the model. Hence, choices in the model do not correspond to parallel
behavior in any causal net.

– Figure 12 is used to gain more insight into Item 9 of Definition 4.9. In
the lower causal net of that figure, there is a token traveling from A to D
and another one from B to C. The upper causal net only connects A and
C. Assuming that these are the only causal nets in which these transitions
appear, we know that the conditions between A and D and between B
and C should represent a token in the same place, since there is a minimal
segment ({c4, c5, c6}, {A,B}, {C,D}) in the lower causal net and therefore,
A • ⊎B• = •C ⊎ •D = [p1, 2p2].

A
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c1 C
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p1

p2

C

D

T

B
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c4
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D

T
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… …

… …

Fig. 12. Example explaining the use of bags.

Consider the information presented in Table 2 and the two Petri nets in
Figure 13. Both nets in Figure 13 adhere to all constraints of Table 2. As this
example shows, there is no unique Petri net satisfying all constraints. Instead,
there is a class of nets satisfying all constraints.

The condition provided in Item 9 of Definition 4.9 provides the key to con-
structing the actual elements of the aggregation class. By considering all minimal
segments in the provided runs that refer to the same transitions, possible sets of
places can be identified that satify this condition. However, in this paper, we do
not provide construction steps for constructing the aggregation class. Instead,
in the next section, we show that if a set of runs is generated by a system net,
then that system net is a member of the aggregation class.

5 Correctness of the Aggregation Algorithms

In Section 4, we described three scenarios for which we can construct an ag-
gregated net from a set of runs. In Section 4.1, we showed the ALK algorithm,
which assumes that in the runs, all conditions and events are labeled with the
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Fig. 13. Two possible aggregated nets, both obeying the constraints of Table 2.

corresponding places and transitions of the aggregated net. In Section 4.2, we
showed that in case some transition labels are duplicated or missing, we can still
use the ALK algorithm after relabeling the transitions using the surrounding
places. Finally, in Section 4.3, we presented the NCL algorithm that provides
an aggregation class of nets that are all capable of reproducing the given set of
runs in which none of the conditions is labeled.

In this section, we formally prove correctness of the ALK and the NCL algo-
rithms.

5.1 Correctness of the ALK algorithm

The ALK algorithm defines a single aggregated net for a given set of runs.
In order to prove its correctness, we show that the runs used as input can be
generated by the resulting aggregated net.

Property 5.1. (The ALK algorithm is correct)
For all 0 ≤ i < n and Ni = (Ci, Ei,Ki, Si), the tuple (Ni, αi, βi) is indeed a
run of N = (P, T, F,M0) (i.e., the requirements stated in Definition 3.11 are
fulfilled).



Proof. Since we assumed that all causal nets Ni = (Ci, Ei,Ki, Si) are elements
of the causal set Φ, we need to prove the following for each αi and βi.

1. αi is a function from Ci onto P . This trivially follows from Definition 4.5.

2. βi is a function from Ei onto T . This trivially follows from Definition 4.5.

3. αi(Si) = M0 holds by definition, since it holds for S0 and for all causal nets,
αi(Si) is the same.

4. For each event e ∈ Ei, the mapping αi induces a bijection from •e to •βi(e)
and a bijection from e• to βi(e)•.
Let e ∈ Ei. We start by showing that αi(

Ni• e) =
N
•βi(e) and αi(e

Ni• ) = βi(e)
N
• .

Assume p ∈ αi(
Ni• e)\ N

•βi(e), i.e. there exists a c ∈ Ci with (c, e) ∈ Ki, such
that p = αi(c), βi(e) = t and (p, t) ̸∈ F . Clearly this contradicts with the

definition of F in Definition 4.5. Now assume p ∈N
•βi(e) \ αi(

Ni• e), i.e. there
is a (p, t) ∈ F such that βi(e) = t and there is no c ∈ Ci with αi(c) = p,
such that (c, e) ∈ Ki. If this is the case in all causal nets for 0 ≤ i < n, then
this leads to a contradiction since this would imply (p, t) ̸∈ F (cf. Definition
of F in Definition 4.5). If there is a 0 ≤ j < n, such that (c′, e′) ∈ Kj with
βj(e

′) = t and αj(c
′) = p, then there has to be a c ∈ Ci such that (c, e) ∈ Ki,

since αi(
Ni• e) = αj(

Ni• e′) (cf. Definition 4.4). Combined with the fact that αi

and βi are labeling functions, αi(
Ni• e) =

N
•βi(e) and αi(e

Ni• ) = βi(e)
N
• yields

the bijection. Similar arguments apply for the post-set.
⊓⊔

Property 5.1 shows that the ALK algorithm indeed results in a system net
of which the causal nets used as input are runs.

5.2 Correctness of the NCL algorithm

In case that no condition labels are present, the NCL algorithm defines an equiv-
alence class of aggregated nets. In this section, we show that for each net in this
aggregation class, the causal nets used as inputs can be considered runs. Fur-
thermore, we show that if we take the runs of a sound workflow model as input,
then that model is part of the aggregation class.

Definition 4.9 defines a finite class of WF-nets for a causal set. What remains
to be given are the conditions under which it is a finite non-empty class of
Petri nets and the proof that each Petri net with its mappings is indeed a system
net for the causal set. To prove this, we first introduce the concept of a condition
graph.

Definition 5.2. (Condition graph)
Let Ni = (Ci, Ei,Ki, Si) be a causal net. The undirected graph ∆Ni = (Ci, A),

with A = {(c1, c2) ∈ Ci × Ci | ∃e∈Ei{c1, c2} ⊆Ni• e ∨ {c1, c2} ⊆ e
Ni• } is called a

condition graph. Note that (c1, c2) ∈ A implies that (c2, c1) ∈ A.

We use condition graphs to prove that each Petri net with its mappings in
the aggregation class of a causal set is indeed a system net for that causal set.



For this, we first introduce some lemmas on these condition graphs that show
the relation between condition graphs and causal nets. We start by showing that
pre- and post-sets of events correspond to complete subgraphs in the condition
graph, i.e. subgraphs where each pair of nodes is connected by an edge.

Lemma 5.3. (Pre- and post sets relate to complete subgraphs in con-
dition graphs)
Let Ni = (Ci, Ei,Ki, Si) be a causal net and ∆Ni = (Ci, A) its condition graph.

We show that, for each e ∈ Ei, holds that ∆Ni restricted to
Ni• e is a complete

subgraph and ∆Ni restricted to e
Ni• is a complete subgraph. Furthermore, for

each complete subgraph (C ′, A′), there exists an e ∈ Ei such that C ′ ⊆Ni• e or

C ′ ⊆ e
Ni• .

Proof. Since for all {c1, c2} ⊆Ni• e, holds that (c1, c2) ∈ A by definition, the

first part is correct. The same applies to e
Ni• . Now assume (C ′, A′) is a complete

subgraph. Assume {c1, c2} ⊆ C ′. and c1 ̸= c2. Since we are looking at a complete
subgraph, we know (c1, c2) ∈ A′, therefore there exists an e1 ∈ Ei, such that

{c1, c2} ⊆Ni• e1 or {c1, c2} ⊆ e1
Ni• .

Assume {c1, c2} ⊆Ni• e1 (The proof is symmetrical for e1
Ni• ).

Now assume c3 ∈ C ′ such that c1 ̸= c3 and c2 ̸= c3. Let

c3 ̸∈Ni• e1. We show that this leads to a contradiction. Since

for all c ∈ C holds that |cNi• | ≤ 1 and {c1, c2} ⊆Ni• e1, we
know that there must be an e2 ∈ Ei, such that {c2, c3} ⊆
e2

Ni• .

c1 c2

c3

e1

e2e3

Similarly, we know that there is an e3 ∈ Ei, such that {c1, c3} ⊆ e3
Ni• . However,

since | Ni• c3| ≤ 1, this implies that e2 = e3 and thus {c1, c2, c3} ⊆ e2
Ni• . ⊓⊔

Using the fact that each pre- and post-set correspond to a complete sub-
graph, we can infer that each minimal segment in a causal net corresponds to a
connected subgraph in the condition graph, i.e. a subgraph such that there is a
path between each two nodes. Furthermore, we show that these connected sub-
graphs are maximal, i.e. all nodes in the subgraph are only connected to nodes
inside the subgraph.

Lemma 5.4. (Minimal segments correspond to maximal connected sub-
graphs in condition graphs)
Let Ni = (Ci, Ei,Ki, Si) be a causal net and ∆Ni = (Ci, A) its condition graph.
Let (C ′, Ein, Eout) be a minimal segment in Ni. We show that (C ′, A∩(C ′×C ′))
is a maximal connected subgraph of ∆Ni .

Proof. From Definition 4.8 we know that the graph (C ′ ∪Ein ∪Eout,Ki∩ ((C ′ ∪
Ein ∪ Eout) × (C ′ ∪ Ein ∪ Eout))) is a connected graph. Now, let c ∈ C ′ be a

condition in the minimal segment and assume that {ein} =
Ni• c and {eout} = c

Ni• .

From Lemma 5.3, we know that ein
Ni• and

Ni• eout make up a complete subgraph

in ∆Ni and since c ∈Ni• eout ∩ ein
Ni• that these two complete subgraphs make



up a connected subgraph. By induction over the elements of C ′, it is easy to
show that C ′ makes up a connected subgraph in ∆Ni . Therefore, each minimal
segment defines a complete subgraph G′ in ∆Ni . Furthermore, let G′ = (C ′, A′)
be the connected subgraph of ∆Ni corresponding to the segment. Let c ∈ Ci \C ′

and assume there exists a c′ ∈ C ′, such that (c, c′) ∈ A. This implies that there

is an e ∈ Ei, such that {c, c′} ⊆Ni• e or {c, c′} ⊆ e
Ni• . However, this implies that

e ∈ Ein or e ∈ Eout, either of which imply that c ∈ C ′. Therefore, such a c does
not exist and G′ is maximal. ⊓⊔

At this point, we look at the definitions of Section 3 again. If we assume that
we have a system net and the causal behavior of this system net, we can derive
the next lemma using Definition 3.4.

Lemma 5.5. (System nets color condition graphs)
Let N = (P, T, F,M0) be a system net and (Ni, αi, βi) be a run of that system
net, with Ni = (Ci, Ei,Ki, Si). Furthermore, let ∆Ni = (Ci, A) be the condition
graph of Ni. The mapping αi : Ci → P is a coloring function of ∆Ni , with the
set of colors being P .

Proof. Let n1, n2 ∈ Ci be two nodes in ∆Ni with n1 ̸= n2. For αi to be a
coloring, αi(n1) ̸= αi(n2) should hold if (n1, n2) ∈ A. Assume (n1, n2) ∈ A. This

means that there is an e ∈ Ei such that {n1, n2} ⊆Ni• e or {n1, n2} ⊆ e
Ni• . From

Definition 3.11, we know that αi induces a bijection from
Ni• e to

N
•βi(e) and from

e
Ni• to βi(e)

N
• . Therefore, αi(n1) ̸= αi(n2). ⊓⊔

We have shown that system nets color condition graphs. However, we can go
one step further and introduce the concept of a condition coloring, which is a
coloring on the condition graph, such that the coloring function, when applied to
the conditions in a causal net, induces local bijections for the input and output
sets of events.

Definition 5.6. (Condition coloring)
Let Φ be a causal set and let AΦ be the aggregation class of Φ. Moreover, let
(N,B) ∈ AΦ, with N = (P, T, F,M0) and let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a
causal net and ∆Ni = (Ci, A) be the condition graph of Ni. Assume αi : Ci → P
is a function, such that αi is a coloring on ∆Ni and for all c ∈ Ci holds that

αi(c) ∈ {p ∈ P | β(Ni• c) ⊆N
• p ∧ β(c

Ni• ) ⊆ p
N
•}. 4 We then call αi a condition

coloring of ∆Ni .

The concept of a condition coloring we introduced here is often referred to
in mathematics as a list coloring.

Lemma 5.7. (Condition coloring induces bijections)
Let Φ be a causal set and let AΦ be the aggregation class of Φ, and let (N,B) ∈
AΦ, with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net and
∆Ni = (Ci, A) be the condition graph of Ni. Let αi : Ci → P be a condition

4 Note that β is generalized, i.e. for a set E holds that β(E) = {β(e) | e ∈ E}.



coloring of ∆Ni . We show that for all e ∈ Ei, αi induces a bijection from
Ni• e to

N
•βi(e) and from e

Ni• to β(ei)
N
• .

Proof. The requirements stated in Definition 4.9, imply that | Ni• e| = | N
•β(e)|.

Furthermore, since ∆Ni restricted to
Ni• e is a complete graph (Lemma 5.3), and

αi is a coloring function (Lemma 5.5), we know that |αi(
Ni• e)| = | Ni• e| Since

all elements in
Ni• e are mapped to different colors. Combining both implies that

|αi(
Ni• e)| = | N

•βi(e)|.
For all c ∈Ni• e holds that αi(c) ∈ {p ∈ P | βi(

Ni• c) ⊆N
• p ∧ βi(c

Ni• ) ⊆ p
N
•}

(Definition 5.6) and c
Ni• = {e}, because Ni is a causal net we know that αi(c) ∈

{p ∈ P | βi(e) ∈ p
N
•} and thus αi(c) ∈N

•βi(e). Since this holds for all c ∈Ni• e, we

can conclude that αi(
Ni• e) ⊆N

• βi(e). By combining the above, we can conclude

that αi(
Ni• e) =

N
•β(e), and thus that αi induces a bijection from

Ni• e to
N
•βi(e). A

similar proof holds for the mapping from e
Ni• to βi(e)

N
• . ⊓⊔

At this point we still need to prove the following for an arbitrary WF-net in
the aggregation class. For each causal net in a causal set, we should be able to
color its condition graph using a condition coloring. If we are able to construct
such a coloring, we have satisfied the first requirement stated in Definition 3.11.

Lemma 5.8. (Condition coloring exists)
Let Φ be a causal set, let AΦ be the aggregation class of Φ, and let (N,B) ∈ AΦ,
with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net and
∆Ni = (Ci, A) be the condition graph of Ni. Let βi ∈ B be the labeling function
belonging to Ni. We show that we can construct a mapping αi : Ci → P , such
that αi is a condition coloring of ∆Ni .

Proof. First, we look at the initial condition, i.e. the initially marked source

condition. Assume c ∈ Ci such that
Ni• c = ∅. We call c

Ni• = {e}. From the

definition of a causal set (Def. 4.3), we know that {c} =
Ni• e and thus that there

is no c′ ∈ Ci with c ̸= c′ and (c, c′) ∈ A. We know that
N
•βi(e) = {pini} (Def. 4.9).

By setting αi(c) = pini, we have a correct coloring for the initial condition c in
N .

Second, we look at the final conditions, i.e. the sink conditions. Assume

c ∈ Ci such that c
Ni• = ∅. We call

Ni• c = {e}. From the definition of a causal set

(Def. 4.3), we know that {c} = e
Ni• and thus that there is no c′ ∈ Ci with c ̸= c′

and (c, c′) ∈ A. We know that |βi(e)
N
• | = 1 (Def. 4.9). We say that βi(e)

N
•= {p}.

By setting αi(c) = p, we have a correct coloring for any final condition c in Ni.
Finally, we split the graph up into two subgraphs. Let Ain = {(c1, c2) ∈

A | Ni• c1 =
Ni• c2} and let Aout = {(c1, c2) ∈ A | c1

Ni• = c2
Ni• }. Using the definition

of a condition graph it is easy to see that Ain∪Aout = A. We now show that for
each subgraph δin(Ni) = (C,Ain) and δout(Ni) = (C,Aout) we can construct at
least one condition coloring. Then, we show that there is at least one condition
coloring that is the same for both subgraphs after which we can use Lemma 3.5
to show that this is a condition coloring on the complete graph.



Consider the subgraph δin(Ni) = (C,Ain). Using Lemma 5.3, it is easy to see
that this graph consists of several complete components and that each component

is a complete graph. Let e ∈ Ei. We know that e
Ni• ⊆ C and that e

Ni• defines
a complete component in δin(Ni). Now, let V1, . . . , Vn be maximal sets, such

that for each 0 < i ≤ n holds that Vi ⊆ E
Ni• and for all c1, c2 ∈ Vi holds that

c1
Ni• = c2

Ni• . For each Vi and c ∈ Vi, we say that Vi,in = {e} and Vi,out = c
Ni• .

From Definition 5.6, we know that for each c ∈ Vi must hold that αi(c) ∈ {p ∈
P | βi({e}) ⊆N

•p ∧ β(Vi,out) ⊆ p
N
•}. Using Item 7 of Definition 4.9, we first prove

a necessary condition for this. Assume βi({e}) = {t}, and βi(Vi,out) = T ′ = {t′}.
Item 7 shows us that |tN• ∩ N

•t′| ≥
∑

e′∈Vi,out
|eNi• ∩ Ni• e′|. From the definition of

partition V , we know that
∑

e′∈Vi,out
|eNi• ∩ Ni• e′| = |Vi|. Furthermore, t

N
• ∩ N

•t′ =

{p ∈ P | βi(Vi,in) ⊆N
•p ∧ βi(Vi,out) ⊆ p

N
•}. Therefore we know that there are at

least enough colors available for each partition Vi. The same way of reasoning
can be used to show that there are at least enough colors available for each set
of partitions υ ⊆ {V1, . . . , Vn}. (The latter requires the use of Item 8 instead of
7 of Definition 4.9). Therefore, there exists at least one condition coloring for
the entire subgraph δin(Ni). Similarly, this can be shown for δout(Ni).

At this point, we have shown that we can construct condition colorings for
two subgraphs of δ(Ni), namely δin(Ni) and δout(Ni). The final part of the
proof use Item 9 of Definition 4.9, since we now have to show that the same
condition coloring can be constructed for both subgraphs. For this purpose, we
consider a segment (C ′, Ein, Eout) in Ni. Since segments correspond to connected
components of δ(Ni), it is sufficient to show that the same condition coloring
can be constructed for δin(Ni) and δout(Ni), restricted to C ′, which we call
δ′in(Ni) and δ′out(Ni). From the definition of a segment, it is clear that this
restriction does not disturb the structure of δin(Ni) and δout(Ni), i.e. in both
graphs, each connected component is still a complete subgraph. Now consider
a possible condition coloring on δ′in(Ni). Each color given to a condition in
that graph refers to a place in the causal net. However, multiple conditions
can be mapped onto each place, namely one condition for each token that was
produced in that place by an element of Ein. The same holds for δ′out(Ni), i.e.
multiple condition can be mapped onto each place, namely one condition for
each token that was consumed by a succeeding element of Eout. Since Item 9 of
Definition 4.9 states that the tokens produced by Ein are the tokens consumed
by Eout, it must be possible to construct the same condition coloring αi for both
δ′in(Ni) and δ′out(Ni). Using Lemma 3.5, we then know that this coloring αi is a
condition coloring on δ(Ni)

′, i.e. the restriction of δ(Ni) to C ′.

Since we can now provide a condition coloring on each connected component
of δ(Ni), we have shown that we can construct a condition coloring on the entire
graph δ(Ni). ⊓⊔

To clarify the rather complex proof of Lemma 5.8 we use an example. Con-
sider a causal net containing the fragment of a WF-net presented in Figure 14.
We numbered the conditions 1 through 8 to be able to distinguish them. Now,



assume that the two Petri nets presented in Figure 15 are parts of two alternative
system nets appearing in the aggregation class of that causal net.

a

b

a

b

c

d

d

e

f

g

c2

c3

c1

c5

c4

c6

c7

c8

Fig. 14. A part of a run containing two
segments.
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Dp1

p2

p3

p4

(a)

A

B

C

G

E

F

Dp1

p2

p3

(b)

Fig. 15. Two parts of system nets in the
aggregation class of Figure 14.

The proof of Lemma 5.8 depends on the condition graph of a run. Therefore,
in Figure 16 we present the condition graph of the run presented in Figure 14.
Note that we labeled the edges to show from which event the edge was derived.

c1

c2 c5c4c3

c6c7

ea

f

fc

f

c8

a

Fig. 16. Part of the condition graph of the run of Figure 14.

In Lemma 5.8, the condition graph of Figure 16 (i.e. δ(Ni) in the lemma) is
split up into two subgraphs, namely one for the input side of events (i.e. δin(Ni),
see Figure 17) and one for the output sides of events (i.e. δout(Ni), see Figure 18).

Then the proof continues, by showing that for each of these two subgraphs
it is possible to provide a condition coloring. Figure 19 shows the possible labels
for each subgraph and both Petri nets from Figure 15. It is easy to see that this
indeed leads to several possible colorings in each graph.



c1

c2 c5c4c3

c6c7

a

cc8

a

Fig. 17. Input subgraph of Figure 16.

c1

c2 c5c4c3

c6c7

e

f

f

f

c8

Fig. 18. Output subgraph of Figure 16.

At this point it is proven that it is always possible to construct two coloring
functions on the input and output subgraph that give the same label to each
condition in both graphs. If we look at Figure 19 and we take the input subgraph
shown in Figure 15(a) (i.e. the left-top figure) then it is easy to see that it is
possible to label c4 with p2 and c5 with p1. This however is not possible in the
output subgraph, since neighbor c6 has to be mapped onto p1. Instead, there
is only one mapping that is the same for both subgraphs. The last part of the
proof uses the fact that for each segment the input enables the output. This
implies that the token that is placed in p1 has to be consumed from there again.
Therefore, if we would label c5 with p1 then this would be the same as saying
that transition A produces a token in p1 which is consumed by transition F
again. However, transition F also consumes another token from p1, namely the
one corresponding to c6, i.e. coming from transition B. This violates the fact
that only one edge can exist between a place and a transition.

Figure 20 shows the only possible condition coloring of the condition graph
of Figure 16, using the labels provided by the system net of Figure 15(a) and
Figure 21 shows the only possible condition coloring of the condition graph of
Figure 16, using the labels provided by the system net 15(b). Note that in general
additional condition colorings may be possible.

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p3p4p1

input subgraph

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p3p4p1

output subgraph
Labels according to Figure 15(a).

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p2,p3p2p1

input subgraph

c1

c2 c5c4c3

c6c7c8

p1 p1,p2 p1,p2 p1,p2

p1p2,p3p2p1

output subgraph
Labels according to Figure 15(b).

Fig. 19. Possible condition colorings for the subgraphs of figures 17 and 18.



c1

c2 c5c4c3

c6c7c8

p1 p2 p1 p2

p1p3p4p1

Fig. 20. The condition coloring of Fig-
ure 16 according to Figure 15(a).

c1

c2 c5c4c3

c6c7c8

p1 p2 p1 p2

p1p3p2p1

Fig. 21. The condition coloring of Fig-
ure 16 according to Figure 15(b).

From Figures 20 and 21, we can conclude that both system nets depicted in
Figure 15 are indeed capable of producing the causal net of Figure 14, since we
can construct a condition coloring on the condition graphs.

What remains to be shown is that the condition coloring also fulfills the last
part of the definition of a run, namely the demand with respect to the initial
marking. Furthermore, we conclude that at least three places are needed in the
system net and that, for example, the place between C and G could also be p1.

Lemma 5.9. (Initial marking can be mapped)
Let Φ be a causal set, let AΦ be the aggregation class of Φ and let (N,B) ∈ AΦ

with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net and
∆Ni = (Ci, A) be the condition graph of Ni. Let αi : Ci → P , such that αi is a
condition coloring of ∆Ni . We show that αi(Si) = M0.

Proof. From Definition 4.9, we know that M0 = [pini]. Furthermore, from Def-
inition 4.3, we know that there is exactly one c ∈ Ci with S(c) = 1. Moreover,
using Lemma 5.8, we conclude that αi(c) = pini and thus αi(Si) = [pini] = M0.

⊓⊔

Finally, we can combine everything and state that each WF-net in an aggre-
gation class is indeed a system net of a causal set.

Property 5.10. (Aggregation class only contains system nets)
Let Φ be a causal set, let AΦ be the aggregation class of Φ and let (N,B) ∈ AΦ

with N = (P, T, F,M0). Let Ni = (Ci, Ei,Ki, Si) ∈ Φ be a causal net with event
labeling function βi ∈ B, condition graph ∆Ni = (Ci, A) and αi : Ci → P a
condition coloring of ∆Ni . Then (Ni, αi, βi) is a run of N .

Proof. This result combines Lemma 5.7, which shows that for all e ∈ Ei, αi

induces a bijection from
Ni• e to

N
•βi(e) and from e

Ni• to βi(e)
N
• and Lemma 5.9

which shows that αi(Si) = M0. ⊓⊔

We have shown that it is possible to take a set of causal nets and construct
a system net such that each causal net is a run of that system net, as long as
the causal nets have one initially marked condition. What we did not show are
the conditions under which the aggregation class is not empty. These conditions
however, cannot be given based on a set of causal nets. Even if these causal nets
belong to one causal set, this is still not enough. What we can show however,



is that if we start from a sound WF-net as a system net, generate a set of runs
and remove the labels of places, the original WF-net is in the aggregation class.
For the full definition of soundness, we refer to [1, 4].

Property 5.11. (A system net is in the aggregation class of its runs)
Let N = (P, T, F,M0) be a sound WF-net. We consider N to be a system net.
Let B = {(Ni, αi, βi) | 0 ≤ i < n} be the causal behavior of that system net,
such that each (Ni, αi, βi) is a run of that system net, with Ni = (Ci, Ei,Ki, Si).
Let B = {βi | 0 ≤ i < n} and Φ = {Ni | 0 ≤ i < n} be a causal set. We show
that (N,B) ∈ AΦ.

Proof. We show that all conditions of Definition 4.9 are satisfied.

1. T =
∪

0≤i<n rng(βi) is the set of transitions. Since the WF-net is sound, there
are no dead transitions thus implying that in its causal set each transition
appears as an event at least once.

2. For all p ∈ P holds that
N
•p∪p

N
• ̸= ∅. Since every sound WF-net is connected,

this condition is satisfied,

3. M0 = [pini] and
N
•pini = ∅. Since N is a WF-net, there is exactly one place

pini ∈ P , such that
N
•pini = ∅ and M0 = [pini],

4. B is the set of all labeling functions, i.e. B = {βi | 0 ≤ i < n}.
5. For each causal net Ni, with e ∈ Ei and βi(e) = t and

Ni• e = {c}, holds that
if Si(c) = 1 then pini ∈N

• t. Since Si(c) = 1, we know that
Ni• c = ∅. Now

assume αi(c) = p. The fact that for all e′ ∈ Ei, αi induces local bijections

from e′
Ni• to βi(e

′)
N
• implies that

N
• p = ∅ and since N is a workflow net,

this implies that p = pini. Moreover, the fact that for all αi induces local

bijections from
Ni• e to

N
•t implies that pini ∈N

•t,

6. For each causal net Ni, with e ∈ Ei and βi(e) = t holds that |tN• | = |eNi• |
and | N

•t| = | Ni• e|. Since αi induces bijections from e
Ni• to t

N
• and from

Ni• e to
N
•t, this condition is satisfied,

7. For each causal net Ni, with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds that

|tN• ∩
∪

t′∈T ′(
N
• t′)| ≥

∑
e′∈Ei,βi(e′)∈T ′ |e

Ni• ∩ Ni• e′|. Let e ∈ Ei with βi(e) = t

and let T ′ ⊆ T . Assume that there |tN• ∩
∪

t′∈T ′(
N
• t′)| = m, i.e. there are m

places between t and T ′. Furthermore, assume that
∑

e′∈Ei,βi(e′)∈T ′ |e
Ni• ∩ Ni•

e′| < m. Since for all e′ ∈ Ei with betai(ei) = ti, αi induces local bijections

from
Ni• ei to

N
• ti, we know that there are at least two c1, c2 ∈ e

Ni• that are
mapped onto the same p ∈ P . However, since p ∈ t

N
• this violates the local

bijection property of αi,

8. For each causal net Ni, with e ∈ Ei, βi(e) = t and T ′ ⊆ T holds that

|
∪

t′∈T ′(t′
N
•)∩ N

•t| ≥
∑

e′∈Ei,βi(e′)∈T ′ |e′
Ni• ∩ Ni• e|. The proof for this property

is similar to the previous one.

9. For each causal net Ni and any segment (C ′
i, Ein, Eout) of Ni holds that⊎

e∈Ein

(
βi(e)

N
•
)
=

⊎
e∈Eout

(
N
•βi(e)

)
. This property relates to soundness. If



one set of transitions produces tokens then these tokens will be consumed by
another set of transitions (i.e. no tokens are “left behind” in the execution
of a sound WF-net). The only exception is the transition that produces a
token in the output place, but that transition cannot produce any tokens in
any other place. Therefore, in each run, the input events of a segment will
enable the output events of that segment.

⊓⊔

The NLC algorithm takes a set of causal nets without condition labels as a
starting point. From these nets, an aggregation class of WF-nets is defined. In
this section, we have formally proven that every element of the aggregation class
indeed is capable of constructing the causal nets used as input. Furthermore, if
the runs were generated from some sound WF-net, then the WF-net itself is in
that aggregation class.

6 Conclusion

In this paper, we looked at process mining from a new perspective. Instead
of starting with a set of traces, we started with runs which constitute partial
orders on events. We presented three algorithms to generate a Petri net from
these runs. The first algorithm assumes that, for each run, all labels of both
conditions and events are known. The second algorithm relaxes this by assuming
that some transitions can have the same label (i.e. duplicate labels are allowed in
the system net). This algorithm can also be used if only condition/place-labels
were recorded. Finally, we provided an algorithm that does not require condition
labels, i.e. the event/transition labels are known, the condition/place labels are
unknown and duplicate transition labels are not allowed.

The results presented in this paper hold for a subclass of Petri nets, the
so-called WF-nets. However, the first two algorithms presented here can easily
be generalized to be applicable to any Petri net. For the third algorithm this
can also be done, however, explicit knowledge about how the initial markings of
various runs relate is needed. When taking a set of runs as a starting point, this
knowledge is not present in the general case.
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