
Simplifying Discovered Process Models
in a Controlled Manner

Dirk Fahland, Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands

Abstract

Process models discovered from a process log using process mining tend to be
complex and have problems balancing between overfitting and underfitting. An
overfitting model allows for too little behavior as it just permits the traces in the
log and no other trace. An underfitting model allows for too much behavior as it
permits traces that are significantly different from the behavior seen in the log.
This paper presents a post-processing approach to simplify discovered process
models while controlling the balance between overfitting and underfitting. The
discovered process model, expressed in terms of a Petri net, is unfolded into a
branching process using the event log. Subsequently, the resulting branching
process is folded into a simpler process model capturing the desired behavior.

Keywords: process mining, model simplification, Petri nets, branching
processes

1. Introduction

Information systems are becoming more and more intertwined with the op-
erational processes they support. While supporting these processes, multitudes
of events are recorded, cf. audit trails, database tables, transaction logs, data
warehouses. The goal of process mining is to use such event data to extract
process-related information. The most prominent problem of process mining
is process discovery, that is, to automatically discover a process model by ob-
serving events recorded by some information system. The discovery of process
models from event logs is a relevant, but also challenging, problem [1–3].

Input for process discovery is a collection of traces. Each trace describes the
life-cycle of a process instance (often referred to as case). Output is a process
model that is able to reproduce these traces. The automated discovery of process
models based on event logs helps to jump-start process improvement efforts and
provides an objective up-to-date process description. There are two other kinds

Email addresses: d.fahland@tue.nl (Dirk Fahland), w.m.p.v.d.aalst@tue.nl (Wil
M.P. van der Aalst)

Preprint submitted to Information Systems April 24, 2012

P_12

P_10

P_40

P_38

P_32

P_34

P_36

P_24

P_22

P_3

P_11

P_37

P_31

P_23

P_6

P_19

P_16

P_2

P_5

P_13

P_18

P_35

P_27

P_15

P_9

P_39

P_14

P_8

P_25

P_26

P_29

P_1

P_4

P_30

P_7

P_17

P_20

P_28

P_21

P_33

P_14

P_10

P_26
P_13

P_6 P_17

P_9

P_25

P_38

Figure 1: Hospital patient treatment process after process discovery (left) and after subsequent
simplification using the approach presented in this paper (right).

P_28

P_27 P_5

P_18

P_10

P_17

P_16

P_7

P_25

P_26

P_22

P_21

P_4

P_8

P_19

P_13

P_23

P_1

P_15

P_14

P_12

P_11

P_20

P_9

P_3

P_29

P_6

P_24 P_2

P_3

P_20

P_4

P_8

P_22

P_12

P_10

P_19

P_25

P_16

P_18

P_21

P_28

Figure 2: Municipality complaint process after process discovery (left) and after subsequent
simplification (right).

of process mining. Process extension extends a given (handmade or discovered)
process model with information from the log, for instance, by projecting a log on
a discovered model to show bottlenecks and deviations. Conformance checking
is the problem of measuring how well a handmade or discovered process model
describes behavior in a given log [1].

The main problem of process discovery from event logs is to balance between
overfitting and underfitting. A model is overfitting if it is too specific, i.e.,
the example behavior in the log is included, but new instances of the same
process are likely to be excluded by the model. For instance, a process with
10 concurrent activities has 10! = 3628800 potential interleavings. However,
event logs typically contain fewer cases. Moreover, even if there are 3628800
cases in the log, it is extremely unlikely that all possible variations are present.
Hence, an overfitting model (describing exactly these cases) will not capture the
underlying process well. A model is underfitting when it over-generalizes the
example behavior in the log, i.e., the model allows for behaviors very different
from what was seen in the log. Process discovery is challenging because (1)
the log typically only contains a fraction of all possible behaviors, (2) due to
concurrency, loops, and choices the search space has a complex structure, and
(3) there are no negative examples (i.e., a log shows what has happened but
does not show what could not happen) [1, 3].

A variety of approaches has been proposed to address these challenges [1, 2].
Technically, all these approaches extract ordering constraints on activities which
are then expressed as control-flow constructs in the resulting process model.
Provided that enough event data are available and variability is low, today’s
approaches are able to discover the underlying process adequately. However,
processes with more variability are more difficult to discover and numerous

2

Figure 3: The hospital process (Fig. 1) discovered by [12] (left) can be simplified (right).

approaches have been proposed to deal with this.
Several approaches try to abstract from infrequent behavior and construct

models that capture only the “highways” in processes. Examples are heuristic
mining1 [4], fuzzy mining [5], and genetic process mining [6]. The resulting
models are relatively simple, but may not able to reproduce all traces seen in
the log. These techniques exploit the fact that for many processes the so-called
“80/20-rule” holds, i.e., 80% of the observed cases can be explained by 20% of
the paths in the process whereas the remaining 20% of cases is responsible for
80% of the variability. Although the techniques proposed in [4–6] can simplify
models, parts of the event log are no longer explained by the model and the
model is often not executable because split-join behavior is either unspecified
(fuzzy mining) or implicit (heuristic mining and genetic process mining) [7].

Other approaches try to deal with variability by constructing an over-general
model. Instead of leaving out infrequent behavior, everything is allowed unless
there is strong evidence that it is not possible. This can easily be understood
in terms of a Petri net. A Petri net with transitions T and without any places
can reproduce any event log over a set of activities T . Adding a place to a
Petri net corresponds to adding a constraint on the behavior. Techniques based
on language-based regions [8, 9] use this property. For example, as shown in
[9] it is possible to solve a system of inequations to add places that do not
inhibit behavior present in the event log. In [10], an approach based on convex
polyhedra is proposed. Here the Parikh vector of each prefix in the log is seen as
a polyhedron. By taking the convex hull of these convex polyhedra one obtains
an over-approximation of the possible behavior. In [11], the authors resort to the
use of OR-splits and OR-joins to create an over-general model that guarantees
that all traces in the log can be reproduced by the model. Surprisingly, these
over-general process models tend to be convoluted as illustrated by Fig. 1 and
2.

In [12] an approach to balance overfitting and underfitting is proposed. First,

1Historically, process discovery and process mining were used synonymously, as discovery
was the first and most prominent process mining problem that was addressed. Thus, various
discovery techniques are called “mining techniques” although they just focus on discovery.
We will use their original name, but use the term “discovery” to refer to the problem.

3

a transition system is constructed from the log; the user may balance general-
ization by influencing how states are generated from the log. Then, a Petri net
is derived from this transition system. The approach requires expert knowledge
to specify the right abstraction that balances overfitting and underfitting. If ap-
plied correctly, this technique yields simpler models (compare Fig. 3 (left) and
Fig. 1 (left)), but even these models are still convoluted and can be simplified
as shown by Fig. 3 (right).

The problem that we address in this paper is to structurally simplify a mined
process model N while preserving that N can replay the entire log L from which
it was generated ; a model is simpler if it shows less interconnectedness between
its nodes, see Figs. 1-3. We propose a set of techniques for re-adjusting the
generalization done by process discovery algorithms, and to cut down involved
process logic to the logic that is necessary to explain the observed behavior.
Note that our approach is not intended as a replacement for existing discovery
techniques. It does not infer causal dependencies between activities. Instead,
it can be used as a post-optimization for any process discovery technique whose
results can be represented as Petri nets. Also, our approach is not limited to
discovered process models: also a hand-made model can be “post-processed”
with respect to a given log.

original

event log discovery

algorithm

process

model
align log

overfitting

model

filtered

overfitting

model

aligned

event log
unfold

filter

refold

process

model

remove

implicit

places

abstract

chains

split flower

places

generalize

and

simplify

final

process

model

Figure 4: Overview of the approach to simplify mined process models.

Figure 4 shows the overall approach proposed in this paper. Starting point
for our approach is an event log L and a discovered process model N =M(L).
M is some conventional process discovery algorithm able to produce a Petri net,
e.g., [8–10, 13–15]. Results by other algorithms such as heuristic mining [4] or
genetic mining [6] can be converted into a Petri net as shown in [7, 16].

Some discovery algorithmsM guarantee a fitting model, i.e., all traces in L
can be replayed on N . However, using the approach described in [17, 18] we
can align log and model when the discovery algorithm itself does not ensure
this. The basic idea is that the non-fitting traces are massaged to fit the model.
The resulting fitting log L′ and the discovered model N are used to generate an
unfolded overfitting model β. Technically speaking, we construct the so-called
branching process of N only allowing for the observed behavior in the aligned

4

event log. The branching process also shows frequencies and can be used to
remove infrequent behavior (if desired). The resulting filtered overfitting model
can be folded into a process model. During folding the observed behavior is gen-
eralized in a controlled manner. After folding, we apply further generalization
and simplification techniques. For example, we reduce superfluous control-flow
structures by removing implicit places from the model and define abstraction
operations to simplify the structure and generalize the described behavior in a
disciplined manner.

Figures 1-3 illustrate the effectiveness of our approach. Interestingly, it can
be combined with any of the existing process discovery techniques. Moreover,
as Fig. 4 already suggests, the user can influence the result. This is important
as only the user can decide on the degree of simplification and generalization
needed. The whole approach is supported by the process mining toolkit ProM
which can be downloaded from www.processmining.org. We validated the
feasibility of our technique in a number of experiments to simplify benchmark
processes as well as process models from industrial case studies.

In the remainder of this paper, we first introduce preliminaries regarding
event logs, Petri nets, partially ordered runs, and branching processes (Sect. 2).
The subsequent sections describe the different steps depicted in Fig. 4. Sect. 3
shows the steps to come to a (filtered)f overfitting model. Basically, the model
is projected onto the behavior actually observed while addressing issues related
to infrequent or non-fitting behavior. In Sect. 4 it is shown how refolding can be
used to generalize behavior in a controlled manner. Sect. 5 defines the operations
for further simplifying the folded model. We report on experimental results in
Sect. 6. Sect. 7 discusses related work and Sect. 8 concludes the paper.

2. Causal Behavior of Process Models w.r.t. an Event Log

This section introduces the notion of an event log and recalls some standard
notions from Petri net theory. In particular the notion of a branching process
will be vital for our approach.

2.1. Event Logs

Process mining aims to discover, monitor and improve real processes by
extracting knowledge from event logs available in today’s information systems.
Starting point for process discovery is an event log. Each event in such a log
refers to an activity (i.e., a well-defined step in some process) and is related
to a particular case (i.e., a process instance). The events belonging to a case
are ordered and can be seen as one “run” of the process. Event logs may
store additional event attributes. In fact, whenever possible, process mining
techniques use attributes such as the resource (i.e., person or device) executing
or initiating the activity, the timestamp of the event, or data elements recorded
with the event (e.g., the size of an order).

In this paper we abstract from these additional attributes and focus on
control-flow discovery. Each case is described by a trace, i.e., a sequence of

5

a

x

c

z u v

b

y

w

d e

f

g h

Figure 5: A net system N .

activity names. Different cases may have the same trace. Therefore, an event
log is a multiset of traces (rather than a set).

Definition 1 (Event log). Let A denotes some universe of activities, i.e., actions
that can be recorded in a log. l ∈ A∗ is a trace, i.e., a sequence of activities.
L ∈ IB(A∗) is an event log, i.e., a multiset of traces. Σ(L) is the set of activities
used in L.

For example, L = [xzy, xzy, yy, yy, yy] is an event log with five cases, two cases
follow trace xzy and three follow trace yy. Σ(L) = {x, y, z}. The fact that multi-
ple cases have the same trace is important for process discovery. Frequencies are
used as a basis for removing outliers and detecting incompleteness. Neverthe-
less, we will often refer to a log L as an ordinary set of traces. From the context,
it will be clear whether L refers to L = [xzy, xzy, yy, yy, yy] or L = {xzy, yy}.

2.2. Petri Nets

A process discovery algorithmM returns for a log L a Petri net N =M(L).
Ideally, N is able to reproduce the event log, i.e., elements of L correspond to
occurrence sequences of N .

Definition 2 (Petri net). A Petri net (P, T, F) consists of a set P of places, a
set T of transitions disjoint from P , and a set of arcs F ⊆ (P × T) ∪ (T × P).
A marking m of N assigns each place p ∈ P a natural number m(p) of tokens;
technically, m ∈ IB(P) is a bag of marked places of P . A net system N =
(P, T, F,m0) is a Petri net (P, T, F) with an initial marking m0.

We write •y := {x | (x, y) ∈ F} and y• := {x | (y, x) ∈ F} for the pre- and the
post-set of y, respectively. Fig. 5 shows a slightly involved net system N with
the initial marking [a, b]. N will serve as our running example as its structural
properties are typical for results of a discovery algorithm.

The semantics of a net system N are typically given by a set of sequential
runs. A transition t of N is enabled at a marking m of N iff m(p) ≥ 1, for

all p ∈ •t. If t is enabled at m, then t may occur in the step m
t−→ mt of N

6

that reaches the successor marking mt with mt(p) = m(p) − 1 if p ∈ •t \ t•,
mt(p) = m(p) + 1 if p ∈ t• \ •t, and mt(p) = m(p) otherwise, for each place

p of N . A sequential run of N is a sequence m0
t1−→ m1

t2−→ m2 . . . of steps

mi
ti+1−−→ mi+1, i = 0, 1, 2, . . . of N beginning in the initial marking m0 of N .

The sequence t1t2 . . . is an occurrence sequence of N . For example, in the net
N of Fig. 5 transitions x and y are enabled at the initial marking [a, b]; the
occurrence of x results in marking [c, f, d, b] where z, u, and y are enabled;
xzyuwyz is a possible occurrence sequence of N .

Occurrence sequences of a net system N correspond to traces in the event
log. Whereas traces in the log have a clear begin and end, this is less clear for
occurrence sequences. Occurrence sequences start in the initial marking, but
in a net system termination is undefined. Therefore, it is sometimes useful to
define a set of final markings. In this case, only occurrence sequences leading
to a final marking correspond to traces in the event log. For example, WF-nets
have a designated source and sink place to model the begin and end of the life-
cycle of a process instance [1]. In this paper, we will not enforce such a structure
and allow models such as the net N of Fig. 5.

2.3. Partially Ordered Runs and Branching Processes

In the following, we study the behavior of N in terms of its partially ordered
runs [19]. We will use so-called branching processes [20] to represent sets of
partially ordered runs, e.g., an event log will be represented as a branching
process. We first illustrate the idea of a partially ordered run of N by an
example and then define the branching processes of N .

Partially ordered runs. A partially ordered run π orders occurrences of tran-
sitions by a partial order — in contrast to a sequential run where occurrences are
totally ordered. A partially ordered run π is again represented as a Petri net.
Such a Petri net is labeled and, since it describes just one run of the process, the
preset (postset) of a place contains at most one element. The net π1 in Fig. 6
describes a partially ordered run of the net N of Fig. 5. A partially ordered run
π of a net system N has the following properties:

• Each place of π is called condition and is labeled with a place of N , each
transition of π is called an event and is labeled with a transition of N .

• A condition b of π with label p describes a token on p, the conditions of π
with an empty pre-set describe the initial marking of N .

• An event e of π with label t describes an occurrence of transition t which
consumes the tokens •e from the places •t and produces the tokens e• on
the places t•.

For example, event e2 of π1 in Fig. 6 describes an occurrence of y consuming
token b2 from place b and producing token b5 on e and a new token b6 on b.
The events of π1 are partially ordered: e5 depends on e2 whereas neither e1
depends on e2 nor e2 on e1. That is, e1 and e2 are concurrent. The partially

7

a b

x y

c d

z

g

u

h

w

c

f

be

y

be

z

g

e1

b1 b2

e2

b3 b4 b5 b6

e3 e4 e5

b7

b8

b9 b10 b11

e6

b12

e7

b13

Figure 6: A partially ordered run π1 of N of
Fig. 5.

a b

x y

c d

z

g

u

h

w

c

f

v

be

y

be

df

u

h

w

c

z

g

z

g

e1

b1 b2

e2

b3 b4 b5 b6

e3 e4 e5

b7

b8

b9 b10 b11

e6 e8

b12 b14 b15

e9

b16

e10

b17

e7

b13

b18

e11

Figure 7: A branching process β the Petri net
N of Fig. 5.

8

ordered run π1 describes the occurrence sequence xzyuwyz— and several other
sequences that order concurrent events differently such as yyxuzwz.

Branching processes. The partial order behavior of a net system N is the set
of its partially ordered runs. A branching process represents a set of partially
ordered runs in a single structure. This notion has been studied extensively in
the last three decades [20–23] and we will use it to reason about the behavior
of N .

A branching process β of N resembles an execution tree: each path of an
execution tree denotes a run, all runs start in the same initial state, and when-
ever two runs diverge they never meet again. In β a “path” denotes a partially
ordered run of N and we can read β as a special union of partially ordered runs
of N : all runs start in the same initial marking, and whenever two runs diverge
(by alternative events), they never meet again (each condition of β has at most
one predecessor). Fig. 7 depicts an example of a branching process representing
two partially ordered runs π1 and π2. π1 is shown in Fig. 6, π2 consists of the
white nodes of Fig. 7. Both runs share b1-b11 and e1-e5, and diverge at the
alternative events e6 and e8 which compete for b9 (i.e., a token in h) and also
for b8 and b5.

A branching process of N is formally a labeled Petri net β = (B,E,G, λ);
each b ∈ B (e ∈ E) is called condition (event), λ ∈ (B ∪ E)→ (P ∪ T) assigns
each node of β to a node of N such that λ(b) ∈ P if b ∈ B and λ(e) ∈ T if
e ∈ E.

Here, we give the constructive definition of the branching processes of N [22].
To begin with, we need some preliminary notions. Two nodes x1, x2 of β are in
causal relation, written x1 ≤ x2, iff there is path from x1 to x2 along the arcs
G of β. x1 and x2 are in conflict, written x1 # x2, iff there exists a condition
b ∈ B with distinct post-events e1, e2 ∈ b•, e1 6= e2 and e1 ≤ x1 and e2 ≤ x2.
x1 and x2 are concurrent, written x1 || x2 iff neither x1 ≤ x2, nor x2 ≤ x1, nor
x1 # x2. For example in Fig. 7 e2 and e9 are in causal relation (e2 ≤ e9), e7
and e9 are in conflict (e7 # e9), and e3 and e9 are concurrent (e3 || e9).

The branching processes of a Petri net N = (P, T, F,m0) are defined induc-
tively:
Base. Let B0 :=

⋃
p∈P {b1p, . . . , bkp | m0(p) = k} be a set of conditions such

that λ(bip) = p for bip ∈ B0. B0 represents the initial marking of N . Then
β := (B0, ∅, ∅, λ) is a branching process of N .
Assumption. Let β = (B,E,G, λ) be a branching process of N . Let t ∈ T
with •t = {p1, . . . , pk}. Let {b1, . . . , bk} ⊆ B be pair-wise concurrent conditions
(i.e., bi || bj , for all 1 ≤ i < j ≤ k) with λ(bi) = pi, for i = 1, . . . , k. The
conditions b1, . . . , bk together represent tokens in the pre-set of t.
Step. If there is no post-event e of b1, . . . , bk that represents an occurrence of t,
then a new occurrence of t can be added to β. Formally, if there is no post-event
e ∈

⋂k
i=1 bi

• with λ(e) = t, then t is enabled at {b1, . . . , bk}. We call {b1, . . . , bk}
enabling location of t in β. Then the Petri net β′ = (B ∪ C,E ∪ {e}, G′, λ′) is

9

obtained from β by adding

• a fresh event e (not in β) with label λ′(e) = t with •e = {b1, . . . , bk}, and

• a fresh post-condition for each of the output places of t, i.e., for t• =
{q1, . . . , qm}, the set of conditions C = {c1, . . . , cm} is added to β′ such
that C ∩B = ∅ and for i = 1, . . . ,m: λ′(ci) = qi,

•ci = {e}.

β′ is a branching process of N . For example, assume the branching process β
of Fig. 7 without e10, b17, e11, b18 to be given. The conditions {b7, b14, b16, b10}
are pair-wise concurrent and represent tokens in •w of N of Fig. 5. Appending
e10 (labeled w) and b17 (labeled c) represents an occurrence of w; event e11 of z
is added in the same way.

The arcs of a branching process β of N form a partial order, and any two
nodes x1 and x2 are either in causal relation, in conflict, or concurrent [22].
Moreover, every Petri net N has a unique, possibly infinite, maximal branching
process β(N) which contains every other branching process of N as a prefix [20].

3. Reconsider Generalization: Create an Overfitting Model

Returning to our original problem setting, we now consider the behavior of
a Petri net N = M(L) that was discovered from an event log L by some con-
ventional discovery algorithmM. In this section, we show how to construct an
overfitting model that can be generalized and simplified in a controlled manner.
Ideally, model N generated by the discovery algorithm is able to reproduce the
log. However, in general, this does not need to be the case because of outliers
(i.e., deliberate abstraction) or imperfections of the discovery technique. There-
fore, we first align event log and model (Sect. 3.1). Then, we show how to create
an overfitting model by restricting the branching process to actually observed
behavior (Sect. 3.2). We can further restrict the branching process by removing
infrequent behavior (Sect. 3.3).

3.1. Aligning Event Log and Model

Let N = M(L) be a net system discovered for an event log L while using
algorithmM. There are dozens of discovery algorithms that directly produce a
net system [8–10, 12–15]. However, it is also possible to first discover a model
using a different representation (e.g., [4–6]) and then convert it to a Petri net
(cf. [7, 16]).

Some approaches, e.g., the techniques based on language-based regions [8, 9],
guarantee that each trace l ∈ L is an occurrence sequence of the discovered net
system N . However, most algorithms will not guarantee that all traces of L
fit perfectly. This implies that there may be a trace l ∈ L that cannot be
reproduced by N . Also N could be hand-made and not fit the log L. This is
a problem for the techniques described in this paper. For example, it is not
possible to unfold a net based on an event log that does not match the model.
There are basically two ways to address this problem.

10

• Remove all non-fitting traces from L, i.e., l is removed from L if it is not
an occurrence sequence of N .

• Massage the non-fitting traces such that all fit, i.e., if l ∈ L is not an
occurrence sequence of N , it is transformed into the “closest” occurrence
sequence l′.

In most cases, the second approach is preferable. For larger processes with
lots of variability there may be just a few cases in the log that fit the model
from begin to end. It does not make sense to remove the majority of cases.
Therefore, we elaborate on aligning model and log. Consider net N of Fig. 5
and l = xywzu ∈ L. l does not fit N . Therefore, we consider alternative
alignments such as:

γ1 =
x y w z u
x y ⊥ z u

and γ2 =
x y ⊥ ⊥ w z u
x y z u w z ⊥

Alignment γ1 aligns trace l = xywzu with occurrence sequence xyzu. Ideally
event log and model make the same “moves”. For example, the first two moves
of trace l can be mimicked by N . However, move w in the log cannot be followed
by the model. Therefore, there is a “move in log only”, denoted (w,⊥), in the
third position of alignment γ1. The next two positions in γ1 show that after this,
event log and model can make identical moves again. Alignment γ2 aligns trace
l with occurrence sequence xyzuwz. Again model and log “agree” on the first
two moves. This is followed by two “moves in model only” ((⊥, z) and (⊥, u)),
i.e., in the model z and u occur without a matching move in the log. Then
model and log “agree” on the next two moves. However, as position seven in
the alignment shows, there is a “move in log only”, denoted (u,⊥), because u is
not enabled. Given a trace like l there are many possible alignments. However,
as shown in [17, 18] it is possible to associate costs to the different “moves” and
select an “optimal” alignment. For example, when assuming unit costs for all
moves where model and log disagree, γ1 (cost 1) is a better alignment than γ2
(cost 3).

By selecting optimal alignments and replacing each trace of L with its “op-
timally aligned” occurrence sequence, we can convert log L into a log L′ such
that any l ∈ L′ is an occurrence sequence of N . This allows us to only con-
sider perfectly fitting logs independent of the discovery algorithm used. In the
remainder, L will always refer to the log after alignment.

3.2. Branching Process Restricted to Observed Behavior

The maximal branching process β(N) of N introduced in Sect. 2.3 describes
all behavior of N , not only the cases recorded in L. This additional behavior
was introduced by the discovery algorithm M which discovered N from L. To
re-adjust the generalization, we restrict the behavior β(N) to L and derive an
overfitting process model N(L) that exhibits exactly L.

The restriction of β(N) to the cases L is the branching process β(L) that we
obtain by restricting the inductive definition of the branching processes of N to

11

the cases in L. Beginning with β = (B0, ∅, ∅, λ0), iterate the following steps for
each case l = t1t2 . . . tn ∈ L. Initially, let M := B0, i := 1.

1. Let {p1, . . . , pk} = •ti.
2. If there exists {b1, . . . , bk} ⊆ M with λ(bj) = pj , j = 1, . . . , k and e ∈⋂k

j=1 bj
• with λ(e) = ti, then M := (M \ •e) ∪ e•.

[The occurrence e of ti is already represented at {b1, . . . , bk}; compute the
successor marking of M by consuming the tokens •e from the pre-places
•ti and producing the tokens e• on ti

•.]
3. Otherwise, choose {b1, . . . , bk} ⊆ M with λ(bj) = pj , j = 1, . . . , k, and

append a new event e, λ(e) = ti to all bj , j = 1, . . . , k, and append a new
condition c to e (with λ(c) = q) for each q ∈ t•. M := (M \ •e) ∪ e•.
[Add a new occurrence e of ti at {b1, . . . , bk} and compute the successor
marking.]

4. i := i+ 1, and return to step 1 if i ≤ n.

This procedure replays each l ∈ L. This is possible because l is also an occur-
rence sequence of N . If not, use the preprocessing step described in Sect. 3.1.
By construction, β(L) is a smallest prefix of β(N) that represents each l ∈ L.
We call β(L) the L-induced unfolding of N . Step 3 is non-deterministic when
marking M puts more than one token on a place. The results in this paper
were obtained by treating M as a queue: the token that is produced first is also
consumed first.

For example, the branching process of Fig. 7 is the branching process β =
β(L) of net N of Fig. 5 for the log L = [xzuywz, xzuyvuywz, xzyuwz, xyzuvuywz,
xuzywz, xuzyywz, yyxuvuzwz, . . .].

β(L) not only succinctly represents L, but also all cases that differ from
L by reordering concurrent actions. The discovery algorithm that returned N
determines whether two actions are concurrent. Further, β(L) already defines a
Petri net that exhibits the log L. By putting a token on each minimal condition
b of β(L) with •b = ∅, we obtain a labeled Petri net N(L) = (B,E,G, λ,m0)
that exhibits exactly β(L), i.e., N(L) restricts the behavior of N to L.

3.3. Removing Infrequent Behavior From the Branching Process

The procedure just described constructs N(L) without considering the fre-
quencies of traces in L. Whether a trace appears once or many times will yield
the same overfitting process model. However, it is easy to assign counters to all
events when constructing the branching process restricted to log L.

Formally, we create a counter κ ∈ E → IN. In Step 2 of the procedure
described in Section 3.2, we increment the counter as follows κ(e) := κ(e)+1. In
Step 3 of the procedure we initialize the counter κ(e) := 1. After constructing
β(L), counter κ indicates how often an event was executed in the branching
process after replaying the entire log. Note that the frequencies of traces matter
for this counter. Therefore, we defined an event log to be a multiset rather than
a set.

To illustrate function κ consider the event log L = [xzuywz20, xzuyvuywz30,
xzyuwz15]. The superscripts indicate how frequent traces appear in the event

12

(a) (b)

1

1

1

1 0

0

1

1 0

0

0

65

65

65

65 30

30

35

35 30

30

30

Figure 8: Counter κ: (a) after processing the first trace xzuywz and (b) after processing the
whole event log L = [xzuywz20, xzuyvuywz30, xzyuwz15].

log. Log L contains 65 cases and trace xzuywz was observed 20 times. Applying
the procedure described in Section 3.2 to this L will result in the branching
process of Fig. 7. Let us first apply the procedure and update κ for only one
trace: xzuywz. This results in the κ shown in Fig. 8(a), e.g., κ(e6) = 1 and
κ(e8) = 0. After processing all 65 cases we get the κ shown in Fig. 8(b). Event
e1 is executed for all cases, therefore, κ(e1) = 65. Event e6 is executed for the
20 cases following xzuywz and the 15 cases following xzyuwz, hence, κ(e6) = 35.

Function κ can be extended to conditions. For a condition b ∈ B0, κ(b) :=
|L|. All other conditions b have precisely one pre-event e and κ(b) := κ(e). This
means that, while replaying the event log, condition b was marked κ(b) times.
κ values tend to decrease towards the leaves of the branching process. If two
nodes x1, x2 are causally related, i.e., x1 ≤ x2, then by definition κ(x1) ≥ κ(x2).

Function κ can be used to prune the overfitting model β(L). We distinguish
two possible reasons for removing an event e from β(L).

• Event e is removed because κ(e) < τ1. Here τ1 is an absolute threshold.

13

For example, for τ1 = 33, events e5, e8, e9, e10, and e11 will be removed
from β(L).

• Event e is removed because e is a post-event of some condition b and
κ(e)/κ(b) < τ2. Here τ2 is an relative threshold. Consider for example
τ2 = 0.50. Based on this threshold, event e8 would be removed because
κ(e8)/κ(b5) = 30/65 = 0.46 < 0.5, i.e., of the 65 tokens produced for b5
only 30 (i.e., 46%) were consumed by e8.

It is also possible to use a mixture of both or to take into account the distance
to the initial conditions. When removing an event e, also all causally dependent
nodes {x ∈ B ∪ E | e ≤ x} need to be removed.

Note that the representation shown in Fig. 8(b) can also be used to manually
prune the overfitting branching process. In fact, a direct inspection of κ can
provide interesting insights that cannot be obtained when looking at the log.
Note, for example, that traces xzuywz and xzyuwz are obviously different when
directly inspecting the event log. However, from the viewpoint of the branching
process β(L) and function κ, these two traces are equivalent (modulo reordering
concurrent activities).

The overfitting model β(L) and corresponding function κ can be used to
remove infrequent behavior also referred to as “noise” or “outliers”. When
removing events from β(L) the non-fitting parts of the event log need to be
removed as they have been classified as being too infrequent.

In the remainder, we will not consider frequencies and assume an L, N ,
β(L), and N(L) such that each trace l ∈ L is an occurrence sequence of both
the original net N and the overfitting process model N(L) (which in turn is
based on β(L)). However, as demonstrated, our overall approach can deal with
non-fitting and infrequent traces.

4. Generalize an Overfitting Model by Folding

The algorithm described in the preceding section yields for a Petri net N
discovered from a log L, an overfitting net N(L) that exhibits exactly the (fil-
tered) branching process β(L), i.e., the cases L (modulo reordering of concur-
rent actions). In the following, we present our main contribution: a number
of operations that generalize N(L) (introduce more behavior) and simplify the
structure compared to N . Each operation addresses generalization and simpli-
fication in a different way and is independent of the other operations. So, a
user may balance between the overfitting model N(L) and the complex model
N by choosing from the available generalization and simplification operations.
We provide three kinds of operations which are typically executed in the given
order.

1. N(L) describes the cases L in an explicit form, i.e., only observed behavior
is captured. We fold N(L) to a more compact Petri net by identifying
loops, and by merging similar behavior after an alternative choice. This

14

partly generalizes behavior of N(L); the folded net is as most as complex
as N (and typically much simpler).

2. Then we further simplify the folded net by removing implicit places. An
implicit place does not constrain the enabling of transitions and hence can
be removed [24]. Repeatedly removing implicit places can significantly
simplify the net.

3. Finally, the net may have specific structures such as chains of actions of the
same kind or places with a large number of incoming and outgoing arcs.
We provide techniques to replace such structures by simpler structures.
This allows us to generalize the behavior of N(L) in a controlled way.

The structural complexity of N is its simple graph complexity c(N) = |F |
|P |+|T |

which correlates with the perceived complexity of the net, e.g., the complexities
in Fig. 1 are 4.01 (left) and 1.46 (right). Each mentioned operation transforms
a net N ′ into a net N ′′ guaranteeing that (1) N ′ exhibits at least each case of
N ′′ (generalization), and (2) c(N ′′) ≤ c(N ′) (simplification).

This section describes the folding of N(L); removing implicit places and
other structural simplifications are explained in Sect. 5.

4.1. Folding an Overfitting Model

Our first step in creating a simplified process model is to fold the overfitting
net N(L) to a Petri net Nf (L). Nf (L) exhibits more behavior than N(L)
(generalization) and has a simpler structure than the original net N .

Technically, we fold the underlying branching process β(L) = (B,E,G, λ)
of N(L) by an equivalence relation ∼ on B ∪ E that preserves labels of nodes,
and the local environments of events. We write 〈x〉∼ := {x′ | x ∼ x′} for the
equivalence class of node x. 〈X〉∼ = {〈x〉∼ | x ∈ X} is a set of equivalence
classes.

Definition 3 (Folding equivalence). Let β be a branching process of N . An
equivalence relation ∼ on the nodes of β is a folding equivalence iff

1. x1 ∼ x2 implies λ(x1) = λ(x2), for all nodes x1, x2 of β, and

2. e1 ∼ e2 implies 〈•e1〉∼ = 〈•e2〉∼ and 〈e1•〉∼ = 〈e2•〉∼, for all events e1, e2
of β.

Trivial folding equivalences are (1) the identity, and (2) the equivalence
induced by the labeling λ: x1 ∼ x2 iff λ(x1) = λ(x2). Sect. 4.2 will present a
folding equivalence tailored towards process discovery. Every folding equivalence
of a branching process β induces a folded Petri net which is in principle the
quotient of β under ∼.

Definition 4 (Folded Petri net). Let β be a branching process of N , let
∼ be a folding equivalence of β. The folded Petri net (w.r.t. ∼) is β∼ :=
(P∼, T∼, F∼,m∼) where P∼ := {〈b〉∼ | b ∈ Bβ}, T∼ := {〈e〉∼ | e ∈ Eβ},
F∼ := {(〈x〉∼, 〈y〉∼) | (x, y) ∈ Fβ}, and m∼(〈b〉∼) := |{b′ ∈ 〈b〉∼ | •b′ = ∅}|, for
all b ∈ Bβ .

15

a

u

b

a c

v

c

z

b

z

b

x

a

e1

b1 b2

b3 b4 b5

b8b7b6

e2

e3 e4 e5

a

c

z

b

x

b

u v

a a

c

zx

b

u v

Figure 9: The branching process β2 (left) can be folded to different nets N2 (middle) and N ′
2

(right) using different folding equivalences.

For example, on β2 of Fig. 9 we can define a folding equivalence b6 ∼ b1, b4 ∼
b5, e4 ∼ e5, , b7 ∼ b8 (and each node equivalent to itself). The corresponding
folded net β2

∼ is N2 of Fig. 9. The coarser folding equivalence defined by the
labeling λ, i.e., x ∼ y iff λ(x) = λ(y), yields the net N ′2 of Fig. 9 (right). This
example indicates that choosing a finer equivalence than the labeling equivalence
yields a more explicit process model. Regardless of its explicitness, each folded
net exhibits at least the original behavior β(L).

Lemma 1. Let N be a Petri net. Let β be a branching process of N with a
folding equivalence ∼. Let N2 := β∼ be the folded Petri net of β w.r.t. ∼. Then
the maximal branching process β(N2) contains β as a prefix.

Proof (Sketch). By Def. 3, all nodes of N2 carry the same label, and the pre-set
(post-set) of each transition t of N2 is isomorphic to the pre-set (post-set) of
each event of β defining t. Thus, β(N2) is built from the same events as β. By
induction follows that N2 can mimic the construction of β: for each event e with
post-set that is added when constructing β, the transition t = 〈e〉∼ of N2 leads
to an isomorphic event e2 that is added when constructing β(N2). Thus, we can
reconstruct β (up to isomorphism) in β(N2). N2 may allow to add more events
to β(N2) than represented in β. These additional events are always appended
to β, so β is a prefix of β(N2). See [25] for the full formal proof.

4.2. The Future Equivalence

The following procedure future(β) constructs a folding equivalence (Def. 3)
that specifically suits the simplification of discovered process models. The prin-
ciple idea is to make all conditions that represent a token on a final place of the
process model N (i.e., with an empty post-set) equivalent, and then to extend
the equivalence as much as possible. To this end, we assume β to be finite which
is the case for β(L) introduced in Sect. 3.2.

1. Begin with the identity x1 ∼ x2 iff x1 = x2, for all nodes x1, x2 of β.

2. While ∼ changes:
for any two conditions b1, b2 of β with λ(b1) = λ(b2) and b1

• = b2
• = ∅,

set b1 ∼ b2.

16

a b

x y

c d

z

g

u

h

w

c

f

v

be

y

b

z

g

e1

b1 b2

e2

b3 b6

e3 e5

b7

b8,
b14

b11

e8

b4,
b15

b5,
b10

e4,
e9

b9,
b16

e6,
e10

b12,
b17

e7,
e11

b13,
b18

a

x

c

z u

v

b

y

w

d e

g
h

c

e b

y

e b

z

g

a

x

c

z u v

b

y

w

d e

g
h

c

z

g

Figure 10: Folding the branching process β of Fig. 7 by future(β) yields the Petri net Nf (β)
(left). Removing places of the implicit conditions b8 and b14 yields the Petri net Ni(β)
(middle). Abstracting the chain of y transitions yields the net Nc(β) (right).

3. While ∼ changes:
for any two events e1, e2 of β with λ(e1) = λ(e2) and e1

• = {y1, . . . , yk},
e2
• = {z1, . . . , zk} with yi ∼ zi, for i = 1, . . . , k, set e1 ∼ e2, and set

u ∼ v, for any two pre-conditions u ∈ •e1, v ∈ •e2 with the same label
λ(u) = λ(v).

4. Return future(β) := ∼.

Folding β along ∼ = future(β) merges the maximal conditions of β, i.e., rebuilds
the final places of the process model of N , and then winds up β backwards as
much as possible. This way, we also identify loops in the process model as
illustrated in Fig. 10.

Taking β of Fig. 7 as input, the algorithm sets b13 ∼ b18 in step 2, b11
remains singleton. In the third step, first e7 ∼ e11 and b12 ∼ b17 are set because
of b13 ∼ b18; then e6 ∼ e10 and b7 ∼ b7, b8 ∼ b14, b9 ∼ b16, b5 ∼ b10. The
equivalence b9 ∼ b16 introduces a loop in the folded model. Step 3 continues
with e4 ∼ e9 and b4 ∼ b15, so that e8 (v) has now b4 (d) in the post-set. Folding
β by this equivalence yields the net Nf (β) of Fig. 10. It differs from N of Fig. 5
primarily in representing action z twice in different contexts. This example
illustrates the main effect of future(β): to make process flow w.r.t. termination
more explicit.

Complexitywise, future(β) has at most |E| steps where events are merged;
merging e1 with another event requires to check at most |E| events e2; whether
e1 and e2 are merged depends on the equivalence classes of their post-sets.
Hence, future(β) runs in O(|E|2 · k) where k is the size of the largest post-set
of an event.

The folded model β∼ exhibits the behavior β and possibly additional be-
havior. Some of this additional behavior may be problematic: if the original
model N reaches an unsafe marking (i.e., a place has more than two tokens), the

17

a

y

b

x

c

d
u v

w

e

z

a

x

c u

a

b

y

a

d

c

u

a

z

e

v

e

w

e

e1

b1

b7

b11

e7

b4

e4

b8

b2

b3

b5

e2

e3

b6

e6

b10

e5

b9

a

x

cb

y

d

u

a

z

va

w

e

e1

b1

b4

e4

b2

e3

e6

b3,
b7

e2,
e7

b11,
b5

b9,b6,b10

e5

b8

Figure 11: The unsafe net N3 (left) has among others the non-deterministic branching process
β3 (middle); a deterministic future equivalence merges transitions and results in a determin-
istic net Nd(β3) = β3

det(future(β3))
(right).

folded model Nf (β) = β∼ may reach a corresponding marking which enables
two transitions t1 6= t2 with the same label a ∈ Σ(L). However, when replaying
l ∈ L one can select the wrong transition, potentially resulting in a deadlock.
Fig. 11 illustrates the situation.

The net N3 of Fig. 11 and the log L3 = {xuzyw, xyvuw, xyuzw} yield the
branching process β3 = β(N3) shown in the middle. The future equivalence
future(β3) would only join b9 ∼ b6 ∼ b10. When replaying the third case xyuzw
in β3, we have to choose whether e7 or e2 shall occur; the choice determines
whether the net can complete the case with z or ends in a deadlock.

We can solve the problem by determinizing the equivalence ∼ using the
following procedure det(∼):

while ∼ changes do, for any two events e1, e2 of β, e1 6∼ e2 with λ(e1) = λ(e2),
if there exist conditions b1 ∼ b2 with b1 ∈ •e1, b2 ∈ •e2, then

1. set e1 ∼ e2,

2. set c1 ∼ c2, for all c1 ∈ •e1, c2 ∈ •e2 with λ(c1) = λ(c2),

3. set c1 ∼ c2, for all c1 ∈ e1•, c2 ∈ e2• with λ(c1) = λ(c2).

The resulting equivalence relation det(future(β)) is a folding equivalence that
is coarser than the trivial equivalence defined by the identity on β and finer
than the equivalence defined by the labeling of β. For example, determinizing
future(β3) of Fig. 11 sets additionally b7 ∼ b3, e7 ∼ e2, b11 ∼ b5. Note that
we can merge the two u labeled events because b2 ∼ b2, b2 ∈ •e7, and b2 ∈ •e2
The resulting folded net Nd(β

3) = β3
det(future(β3)) of Fig. 11 (right) is indeed

deterministic and can replay the entire log L3.
The folded net βdet(future(β)) exhibits β (by Lem. 1) and possibly more be-

havior because the folding infers loops from β and merges nondeterministic
transitions, which merges branches of unobservable choices until an observable
choice. For our running example (β in Fig. 7), Nf (β) is already deterministic
(cf. Fig. 10), i.e., Nd(β) = Nf (β).

18

The preceding operations of unfolding a mined net N to its log-induced
branching process β(L) and refolding β(L) to Nd(L) := β(L)det(future(β(L)))
yields a net that can replay all cases in L (by Lem. 1). The structure of Nd(L)
is at most as complex as the structure of the original net N — when β(L) com-
pletely folds back toN . We observed in experiments that this operation typically
reduces the complexity of N by up to 30%.

5. Controlled Generalization and Simplification

In Section 4 we showed how to fold a (filtered) log-inducted branching process
β(L) back to a Petri net Nd that exhibits β(L) (and possibly more behavior).
Nd may still be structurally complex. We can further simplify Nd with different
techniques that we present in this section: (1) remove implicit places, (2) ab-
stract a complex sub-structures to a more simple sub-structure, and (3) split a
complex sub-structure into several simpler structures. We show in the following
how to remove, abstract, or split the “right” places and sub-structures, so that
the behavior of Nd is preserved or generalized in a controlled way.

5.1. Removing Implicit Places

A standard technique for structurally simplifying a Petri net N while pre-
serving its behavior is to remove places that do not restrict the enabling of a
transition. Such places are called implicit.

Definition 5 (Implicit place). Let N be a Petri net. A pre-place p of a transi-
tion t of N is implicit iff whenever N reaches a marking m with tokens on each
pre-place •t \ {p}, then also p has a token.

In other words, whether t is enabled only depends on •t \ {p}. Removing an
implicit place p from N preserves the behavior of N up to tokens on p [24]. In
the running example of Fig. 5, place f is implicit. Removing an implicit place
p from N reduces its structural complexity because at least two adjacent arcs
are removed as well. This yields an idea for our first simplification operation:
remove as many implicit places from the folded net Nd(β) as possible.

Note however that not all implicit places of a net can be removed, as an im-
plicit place p can cease to be implicit when another implicit place gets removed.
Finding a maximal set of implicit places is a well-known problem that can be
solved by solving a system of linear (in-)equations [24] using an ILP-solver.

5.2. Removing Places Based on Implicit Conditions

We found in initial experiments that Petri nets discovered by process discov-
ery algorithms contain only few implicit places according to Def. 5; the model
simplification is only marginal. For example the model of Fig. 12(top left) con-
tains no implicit place.

Fortunately, Def. 5 requires more than we do in our setting. The refolded
net Nd(β) which we want to simplify generalizes the behavior recorded in the
log L to the occurrence sequences of Nd(β). Removing implicit places of Nd(β)

19

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13
t14

t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t1

t2

t3

t4

t5

t6 t7

t8
t9

t10

t11

t12

t13

t14

Figure 12: The net at the top left has no implicit conditions; it can be simplified by removing
different variants of places based on implicit conditions.

preserves all occurrence sequences of Nd(β) whereas we are only interested in
preserving L, or more precisely, β. In the following, we introduce a family of
techniques to simplify Nd(β) by removing places based on implicit conditions
of the log-induced unfolding β; the results of the different techniques are shown
in Fig. 12.

5.2.1. Implicit conditions

By focusing on the L-induced unfolding β, we can discover which places in
Nd(β) can be removed while preserving the behavior L. The basic idea is to
consider the implicit conditions of the net β. Removing any implicit condition
b of β preserves the behavior of β (up to b), and hence preserves L.

Definition 6 (Implicit conditions). Let β be a branching process. Let imp(β)
be the set of all implicit places of β according to Def. 5. We call a set B′ ⊆
imp(β) a consistent subset of implicit conditions of β iff for each b ∈ B′: b is
implicit in β without B′ \ {b}.

In contrast to implicit places, an implicit condition can easily be detected
on the structure of β: a condition b with pre-event {e} = •b is implicit iff for
each post-event f ∈ b• there exists a path from e to f that does not contain b.
For example in Fig. 7, conditions b8 and b14 are implicit.

Consider two implicit conditions b1, b2 ∈ imp(β). After removing b1 it may
be that b2 is no longer implicit. Therefore, we define the notion of a consistent
subset of implicit conditions in Def. 6. All places in a consistent subset can
be removed without changing the behavior whereas the removal of imp(β) may
enable more behavior.

Recall that the places in a folded Petri net have identifiers corresponding
to equivalence classes of conditions in the branching process (cf. Def 4). Let
p = {b1, . . . , bk} be such a place obtained using folding relation ∼. Removing

20

a

w

x y z

c b

d e

a

w

c b

x

d

y

b

z

e

z

e

e1

b1

b2 b3

e2

b4

e4

b5

e5

b6

e6

b7

a

w

b

x

d

y

b

z

e

z

e

x

d

e1

b1

b3

e2

b4

e4

b5

e5

b6

e6

b7

Figure 13: The net N (left) has no implicit places; the c-labeled condition b2 of its log-induced
unfolding β (middle) is implicit; removing c from N allows for more behavior “after” β (right).

p from Nd(β) corresponds to removing b1, . . . , bk from β, and if all conditions
b1, . . . , bk are implicit, then the behavior of β is preserved. In other words, we
may consider p as implicit w.r.t. β.

Definition 7 (im1-implicit places). Let β be a branching process, ∼ a folding
equivalence, and N = β∼ the folded net. Let B′ ⊆ imp(β) be a consistent
subset of implicit conditions of β. A place p of N is im1-implicit (w.r.t. B′) iff
p ⊆ B′.

By definition, removing all im1-implicit places from N simplifies the net and
preserves the behavior of β (and hence of L). The places highlighted in the net
of Fig. 12(top left) are classified as im1-implicit, but not as classically implicit;
removing these places results in the net shown in Fig. 12(bottom left). We
observed in experiments that this notion of implicit places identifies on average
twice as many implicit places as the classical notion (Def. 5).

Figure 13 illustrates the difference between classically implicit places and
im1-implicit places. Assume the net N and the log L = [wxyz,wz] to be given.
The L-induced unfolding β of N is shown in Fig. 13(middle). Folding β yields
N again. Condition b2 is implicit in β which makes c an im1-implicit place of
N . Removing c corresponds to removing b2: it preserves the behavior of N
w.r.t. β, but it generalizes the behavior “after” β. The net without c has the
occurrence sequence wxyx which cannot occur in N as y consumed the token on
c needed by x. The branching process of N without c shown in Fig. 13(right)
illustrates the situation.

5.2.2. Limit generalization

Removing im1-implicit places usually generalizes the behavior of N beyond
β, i.e., behavior that is not described by the original log L. This generalization

21

can be limited by considering more behavior of N to be preserved, i.e., by
extending β with more events of N to a branching process β+ and then remove
places from N based on implicit conditions of β+. Experiments have shown that
the branching process “after” β tends to grow very quickly for nets discovered
by process discovery algorithms. We found the “single extension by all enabled
events” to be feasible.

Definition 8 (im1+-implicit places). Let β be a branching process, ∼ a folding
equivalence, and N = β∼ the folded net.

1. For each transition t ∈ TN , let en(t, β) be the set of all enabling locations
of t in β (locations in β where t is enabled but did not occur, see Sect. 2.3).
Let β+ be the branching process obtained by extending β, for each t ∈ TN
and each B∗ ∈ en(t, β) with a fresh t-labeled event e∗, •e∗ = B∗.

2. Let B′ ⊆ imp(β+) be a consistent subset of implicit conditions of β.

3. A place p of N is im1+-implicit iff p ⊆ B′.

Each im1+-implicit place is also an im1-implicit place, but not vice versa.
An additional event e in β+ turns an im1-implicit condition b ∈ •e into a non-
implicit condition if b is really needed to enable e, e.g., if •e = {b}. Also, there
are im1+-implicit places that are not classically implicit.

Figure 12(top right) shows the net from top left after removing im1+-implicit
places, the remaining im1-implicit places are highlighted red. We could confirm
that removing im1+-implicit places generalizes the behavior of N less than re-
moving im1-implicit places. Yet, removing im1-implicit or im1+-implicit places
yields almost the same reduction in terms of model complexity.

5.2.3. Stronger simplification

The two previous notions require all conditions that constitute a place to be
implicit. Alternatively, we may classify a place as implicit as soon as some of
its constituting conditions is implicit.

Definition 9 (im2-implicit places). Let β be a branching process, ∼ a folding
equivalence, and N = β∼ the folded net. Let B′ ⊆ imp(β) be a consistent
subset of implicit conditions of β.

1. A place p of N is im2-implicit iff p∩B′ 6= ∅.
2. A place p of N is im2−-implicit iff p∩ imp(β) 6= ∅.

Im2-implicit places are much more liberal than im1-implicit places because
a single implicit condition suffices to characterize the place as implicit. The idea
for this notion is to superimpose the fact that p is implicit in some situations to
all situations of p. Im2−-places are even more general as the implicit condition
does not even have to be from a consistent subset of implicit conditions.

Removing all im2-implicit (im2−-implicit) places from N could yield tran-
sitions without pre-place (which then can occur unboundedly) or transitions
without post-place (which then have no effect on the net). To preserve a mini-
mum of discovered process logic in N , we remove im2-implicit (im2−-implicit)
places from N 1-by-1 as follows.

22

• Let 〈p1, . . . , pk〉 be an enumeration of the im2-implicit places (im2−-implicit)
of N .

• For i = 1, . . . , k, if pi is the only pre-place of its post-transitions or the
only post-place of its pre-transitions, then keep pi in N , otherwise remove
pi from N .

Applying this procedures usually generalizes behavior in β (in contrast to re-
moving im1-implicit places). However, we observed in experiments significant
structural simplifications that outweigh generalization by large. In some cases,
the structure simplified by up to 72%; up to 95% of the places were implicit.
Figure 12(bottom right) shows the net from the top left after removing all im2-
implicit places; also the bottom left net highlights the im2-implicit places that
are not im1-implicit.

5.3. Abstracting substructures: chains of unrestricted transitions

The previously presented two operators, unfolding/refolding and removing
implicit places, generalized and simplified N along the structure of N as it was
defined by the discovery algorithm M that returned N . Next, we present two
operators to generalize N by changing N ’s structure.

Petri nets discovered through process discovery often contain several unre-
stricted transitions which are always enabled such as transition y in Fig. 5. The
branching process then contains a chain of occurrences of these transitions that
often cannot be folded to a more implicit structure as illustrated by e2 and e5
of Fig. 10.

Yet, we can abstract such a chain t1 . . . tn of unrestricted transitions with
the same label a to a loop of length 1: (1) replace t1 . . . tn with a new transition
t∗ labeled a, (2) add a new place p∗ in the pre- and post-set of t∗, and (3) for
each place p which had a ti in its pre-set and no other transition tj 6= ti in its
post-set, add an arc (t∗, p). Fig. 10 illustrates the abstraction: abstracting the
chain of y-labeled transition of Ni(β) (middle) yields the net Nc(β) (right); we
observed significant effects of this abstraction in industrial case studies.

The new transition t∗ can mimic the chain t1 . . . tn: t∗ is always enabled and
an occurrence of t∗ has the combined effect of all t1, . . . , tn. For this reason,
a chain-abstracted net exhibits at least the behavior of the original net and
possibly more. For longer chains this results in a significant reduction in size.

5.4. Splitting flower places

The last operation in this paper deals with a specific kind of places that
are introduced by some discovery algorithms and cannot be abstracted with the
previous techniques. We deal with these places by splitting them into several
places.

A flower place p is place which has many transitions that contain p in their
pre- and their post-set. Mostly, p only sequentializes occurrences of these tran-
sitions as can be seen in Fig. 14 to the left. Here, f can be viewed as a flower

23

w

a

b

c

x

y

d

z

e

f
w

a

b

c

x

y

d

z

e

f

f,z

Figure 14: The flower place f in the net on the left sequentializes occurrences of w and z.
Splitting f and removing self-loops yields the structurally simpler net on the left with more
behavior.

place. For example, z may occur arbitrarily often before or after w, though only
after x and before y occurred. Similarly, w can only occur after x and before y.
However, as w can occur only once, the restrictive effect of flower place f on w
is limited.

Based on this observation we may (1) remove self-loops of transitions that
are still restricted by another pre-place such as w, and (2) split the flower place
for a transition t that has no other pre-place, i.e., to create a new place p in
the pre- and post-set of t. The net in Fig. 14 to the right shows the result of
this abstraction. The resulting net exhibits more behavior than the original
net. Some of this behavior may even be not explained by the log. For example,
w may occur now before x and after y. Yet, the transformation may help to
significantly reduce the number of synchronizing arcs in the discovered process
model. We observed a removal of up to 95% of the arcs leading to structural
simplification of the same amount.

5.5. A Parameterized Process Model Simplification Algorithm

All operations presented in the preceding sections together yield the following
algorithm for simplifying a Petri net N =M(L) that was discovered from a log
L by a process discovery algorithm M (see also Fig. 4).

1. Construct the branching process β(L) of N that represents all cases l ∈ L;
optionally filter infrequent behavior from β(L) (see Sect. 3.3); construct
the folding equivalence ∼ = det(future(β(L))); fold Nd := β(L)∼.

2. Remove implicit places from Nd (using one of the notions presented in
Sect. 5.1 and 5.2).

3. Abstract chains of unrestricted actions from Nd.

4. Split flower-places of Nd.

The technique is modular. By design, the result of each transformation step is a
net that is structurally simpler than the preceding net and can replay the entire
log L, i.e., the resulting model N ′ recalls each case of L. Moreover, starting from
β(L) which is an overfitting model of L, each step also generalizes β(L) towards
an underfitting model of L. The degree to which N ′ allows more behavior than L
is measured by a precision metric [26, 27]. Each of the four steps can be applied

24

Figure 15: The configuration screen of the ProM plugin “Uma” and an example of a simplified
model.

selectively. This way it is possible to balance between precision, generalization,
and complexity reduction.

The algorithm described above assumes a perfectly aligned event log where
all behavior is considered to be relevant. In Sect. 3.1, we showed how to align
log and model by massaging the event log. Alignment is considered to be a
preprocessing step conducted before executing the above algorithm.

6. Experimental Results

This section describes the implementation of the techniques introduced in
the preceding sections and reports on experimental results. All result were
obtained using our implementation in ProM.

6.1. Implementation in ProM

We implemented our approach as a plugin for the process mining toolkit
ProM. ProM as well as the package “Uma” that contains the plugin are available
at http://www.processmining.org/.

To use the plugin called “simplify mined models”, the user picks as input a
log and a Petri net that was discovered from this log. The plugin then shows
a panel (Fig. 15), where the user can configure the simplification of the net by
disabling any of the steps as discussed in Sect. 5.5 and by choosing the amount
of simplification and generalization to be applied when removing implicit places.
By default, all steps are enabled requiring no Petri net knowledge from the user
for model simplification; the default setting for implicit places is “im2” (Def. 9).

25

The plugin then runs fully automatically and returns the simplified Petri net
which can be inspected and analyzed further as shown in Fig. 15.

Our implementation applies a number of optimizations to increase perfor-
mance. The log-induced unfolding is built using data structures similar to the
ones used for constructing classical unfoldings of Petri nets [22]. The unfolding
is only refolded after the entire folding relation has been constructed; this way
we only have to handle equivalent sets of nodes rather than change the structure
of a Petri net. Because the unfolding can become very large, we save memory
by detecting implicitness of a condition by depth-first search on the unfolding’s
structure (see Sect. 5.2); intermediate results are cached to improve search per-
formance. A canonical order of nodes in the unfolding allows to truncate parts of
the search space that contain no predecessor of a node. Our current implemen-
tation does not search for a largest consistent set of implicit conditions (Def. 6)
and picks conditions in a greedy way until no other condition is implicit; future
improvements are possible. We use an extension library of the Vip-Tool [28] to
identify classically implicit places using an ILP solver.

6.2. Effect and Comparison of Simplification Steps

Using this plugin, we validated our approach in a series of experiments on
benchmark logs, and logs obtained in industrial case studies. For each exper-
iment, we generated from a given log L a Petri net N with the ILP Miner [9]
using its default settings; the log was not pre-processed beforehand. We then
applied the simplification algorithm of Sect. 5.5 on N using the original log
L. Figs. 1 and 2 illustrate the effect of our algorithm on industrial processes:
the algorithm balances the control-flow logic of a discovered process model by
removing up to 85% of the places, and up to 92% of the arcs.

6.2.1. Effect of Complete Simplification Procedure

Table 1 gives some more details when applying all reduction steps and remov-
ing im2-implicit places (which we consider the most suitable setting for model
simplification). The logs named aXnY are benchmark logs having X different
activities; the aXn0 are logs of highly structured processes. Y is the percentage
of random noise events introduced into the log aXn0. The remaining logs were
obtained in case studies in the health care domain (HC) and from municipal ad-
ministrations (M). We compared the nets in terms of the numbers |P |, |T |, and

|F | of places, transition and arcs, and their simple graph complexity c = |F |
|P |+|T |

which roughly correlates with the perceived complexity of the net. The effect of
the algorithm is measured as the percentage of places |P | and arcs |F | removed
from (or added to) the original net, and the percentage by which the graph
complexity was reduced.

The numbers show that almost all models could be reduced significantly in
terms of places and arcs (up to 85% and 92% with 53% and 67% in average). We
observed that some models (a32n0, M1) grew slightly in size, i.e., more places
and transitions were introduced. We found unrolled loops of length greater
than 2 that occur only once in the branching process to be responsible for the

26

Table 1: Experimental results using all reduction steps and removing im2-implicit places.

original simplified difference runtime
|P |/ |T |/ |F |/ c |P |/ |T |/ |F |/ c |P |/ |F |/ c in sec

a22n00 21/ 22/ 60/ 1.40 20/ 22/ 54/ 1.29 -5%/ -10%/ -8% 0.819
a22n05 38/ 22/204/ 3.40 19/ 22/ 77/ 1.89 -50%/ -62%/ -45% 2.574
a22n10 52/ 22/428/ 5.78 14/ 22/ 78/ 2.17 -73%/ -82%/ -63% 29.2
a22n20 74/ 22/569/ 5.93 14/ 22/ 58/ 1.61 -81%/ -90%/ -73% 131.9
a22n50 91/ 22/684/ 6.05 15/ 22/ 52/ 1.41 -84%/ -92%/ -77% 163.5

a32n00 32/ 32/75/ 1.17 32/ 32/ 74/ 1.16 0%/ -1%/ -1% 0.243
a32n05 44/ 32/225/ 2.96 34/ 32/ 107/ 1.62 -23%/ -52%/ -45% 5.1
a32n10 68/ 32/543/ 5.43 24/ 32/ 111/ 1.98 -65%/ -80%/ -63% 83.6
a32n20 90/ 32/612/ 5.02 28/ 32/ 98/ 1.63 -69%/ -84%/ -67% 108.8
a32n50 110/ 32/868/ 6.11 27/ 32/ 102/ 1.73 -75%/ -88%/ -72% 173.4

HC1 41/ 15/224/ 4.00 10/ 15/ 44/ 1.76 -76%/ -80%/ -56% 0.029
HC2 20/ 14/139/ 4.09 8/ 14/ 48/ 2.18 -60%/ -65%/ -47% 0.003
HC3 23/ 14/122/ 3.30 11/ 14/ 42/ 1.68 -52%/ -66%/ -49% 0.003
HC4 43/ 17/224/ 3.73 11/ 17/ 47/ 1.69 -74%/ -79%/ -55% 0.028
HC5 89/ 26/959/ 8.34 13/ 26/ 79/ 2.03 -85%/ -92%/ -76% 0.362
M1 58/ 55/358/ 3.17 64/ 81/ 196/ 1.35 10%/ -45%/ -57% 0.163
M2 31/ 23/255/ 4.72 17/ 23/ 64/ 1.60 -45%/ -75%/ -66% 0.038

avg 54/ 26/ 385/ 4.4 21/ 27/ 78/ 1.7 -53%/ -67%/ -54% 41.2
max -85%/ -92%/ -77%

growth in size. Our algorithm cannot fold back these singular loops; though the
algorithm could be extended to handle such patterns. Yet, in all cases where
the logs contained noisy behavior, our technique reduced each Petri net’s graph
complexity c by 45% to 77% (with 54% in average). A modeler is able to inspect
models of this complexity and gain an understanding of the modeled process as
illustrated by Figs. 1 and 2 which show the models of HC1 and M2.

6.2.2. Effect of Individual Simplification Steps

We also investigated the effect of the individual simplification steps and
compared the different notions of implicit places introduced in Section 5.2. Fig-
ure 16 shows how model complexity changed through the different stages of the
algorithm in comparison to the notion of implicit places that was removed in
the corresponding step; the diagrams show minimum, average, and maximum
graph complexity in our data set.

It turned out that unfolding/refolding in most cases only yields a reduction
of up to 5%, with one exception from the industrial logs yielding about 30%
reduction. The different modes of removing implicit places have different effects:

1. Removing classical implicit places (im) reduces complexity by at most 5%.
In average, 3 places were removed from the model.

2. Removing im1- and im1+-implicit places reduces complexity by about 5%.
About 6 places were removed by im1+ and 6.5 places by im1 in average.

3. Removing im2- and im2−-implicit places yields significant reduction for
all logs that contain noise, ranging from 40% up to 60% reduction in
complexity. In average, 50% of the places (23 places) were removed.

Chain reduction removed between 12% and 51% of the transitions in the refolded

27

im
im1+

im1
im2

im2−

or
ig
in
al

fo
ld
ed

im
pl
ie
d

ch
ai
ns

flo
w
er

0
1
2

4

8

co
m
pl
ex
ity

im
im1+

im1
im2

im2−

or
ig
in
al

fo
ld
ed

im
pl
ie
d

ch
ai
ns

flo
w
er

0
1
2

4

8

im
im1+

im1
im2

im2−

or
ig
in
al

fo
ld
ed

im
pl
ie
d

ch
ai
ns

flo
w
er

0
1
2

4

8

(min) (avg) (max)

Figure 16: Accumulated effect of model simplification depending on the kind of implicit places
being reduced.

model of logs with 5% noise and in M1; as this reduction removes transitions,
places, and arcs, it has no measurable effect in the graph complexity.

From models obtained by removing classically/im1/im1+-implicit places,
splitting flower places allows to remove up to 95% of the arcs. In particular,
models with a high level of noise tend to have a large number of arcs connected
to flower places. After removing im2- and im2−-implicit places, splitting flower
places can remove about 10% of the arcs in logs with a noise level of 10% or
more, other arcs already had been removed beforehand by removing their adja-
cent implicit places.

Runtimes correlate with the size of the branching processes constructed by
the algorithm, we observed branching processes of up to 192,000 nodes and
360,000 arcs in the benchmarks and 4,800 nodes and 9,800 arcs in the case
studies. Runtime is dominated by computing the folding equivalence: roughly
2/3 of the runtimes shown in Tab. 1 are used for folding. The runtimes for
unfolding, chain abstractions, and splitting flower are neglible. Runtimes for
removing implicit places depend on the notion:

1. Classically implicit places can be removed in at most 3 sec (1sec in avg.).

2. Removing im1-implicit places succeeds in milliseconds.

3. Removing im1+-implicit places takes significantly more time as the un-
folding needs to be extended first (about 50% of the time is required for
folding, i.e., max. 30 secs, avg. 3 secs).

4. Removing im2-implicit places takes runtimes up to 54 secs, 9 secs in av-
erage. Here we have to first find a consistent set of implicit conditions
before removing places. For im1- and im1+-implicit places this set can
be built much faster by exploiting that implicit conditions of interest are
folding equivalent.

5. im2−-implicit places avoid computing a consistent set and hence compu-
tation finishes in less than a second.

Compared to an earlier version of the paper [29] optimizations in the implemen-
tation (see Sect. 6.1) reduced runtime by about factor 6.

28

(min)

or
ig

in
al

un
fo

ld
in

g

fo
ld

ed

im
pl

ie
d

ch
ai

ns

flo
w

er
−0.2

0

0.2

0.4

0.6

ch
an

ge
 in

 p
re

ci
si

on

im

im1+

im1
im2

im2-

(avg)

or
ig

in
al

un
fo

ld
in

g

fo
ld

ed

im
pl

ie
d

ch
ai

ns

flo
w

er

−0.2

0

0.2

0.4

0.6

im

im1+

im1
im2

im2-

(max)

or
ig

in
al

un
fo

ld
in

g

fo
ld

ed

im
pl

ie
d

ch
ai

ns

flo
w

er

−0.2

0

0.2

0.4

0.6

im

im1+

im1
im2

im2-

Figure 17: Change in precision depending on the kind of implicit places being reduced.

6.2.3. Generalization of Behavior

Finally, we measured the amount of behavioral generalization that is intro-
duced by the different simplification steps. In particular, we compared the effect
of the different notions of implicit places. We measured generalization by com-
paring how much more behavior a model allows compared to its original log,
this measure is known as precision. In our experiment, we applied the measure
proposed in [27, 30]. A precision value of 1.0 means the model allows for exactly
the behavior in the model; the lower the precision, the more behavior does the
model allow.

In the diagram in Fig. 17 the x-axis shows the different stages of the simpli-
fication algorithm (including the log-induced unfolding), the y-axis the different
notions of implicit places, and the z-axis the relative change of precision com-
pared to the precision of the original model, for the worst case, the average case,
and the best case.

As expected, we could observe a significant increase in precision for the log-
induced unfolding (reaching +0.5 in average and up to +0.61 in the best case).
The unfolding presents just the behavior of the log and additional linearizations
of concurrent transitions that are not represented in the log (thus, an unfolding
usually does not have perfect precision of 1.0). Refolding the unfolding increased
precision by up to 0.1 in the best case and just slightly in average, compared
to the original model. When removing implicit places, precision drops. The
amount of generalization (i.e., loss in precision) depends on the notion of implicit
places.

For the classical notion (Def. 5), precision was preserved in all cases. Re-
moving only im1+-implicit places still yielded increased precision in the average
case and a loss of about −0.05 in the worst case. The more liberal the notion of
implied places, the more precision is lost, with −0.15 (−0.19) in the worst case
for im2- (im2−)-implicit places in the worst case.

When applying alls steps, the effect for different notions of implicit places
converge, ranging from −0.14 precision for classically implicit places to −0.21
for im2−-implicit places in the worst case. Most importantly, in average we
observed only a very small loss of precision by −0.02 to −0.07 whereas precision
did increase for some cases between +0.06 and +0.09.

29

Figure 18: Filtering the model of Fig. 2 with thresholds f = 0, 0.05, 0.15, 0.3, and removing
im1+-implicit places.

6.3. Effect of Filtering Infrequent Behavior

We just presented the effects of the simplification algorithm that preserved
all behavior of the log. Our approach also allows to remove infrequent behavior
from the branching process as described in Sect. 3.3 in order to remove behavior
that requires complex model structures. To measure the effect of the filtering,
we implemented the following relative filter: for a filter threshold f , remove from
the branching process every event e (and its successors) where κ(e)/κ(b) < f ,
where b ∈ •e is the pre-condition of e with the smallest κ-value. The rationale
for this filter is that the least-frequent pre-condition of e determines how often
e could have occurred at most.

In the experiment, models were unfolded, filtered, folded, and finally im1+-
implicit places were removed. We measured the effect of this filter for values
f = 0.05, 0.1, 0.15, 0.2, 0.3.

Figure 18 illustrates the effect of the filtering on the model of Fig. 2; we depict
the unfiltered model f = 0 and the models for f = 0.05, 0.15, 0.3. The filtering
of infrequent behavior (noise) immediately results in less complex models. For
f = 0.05 some structured process logic is recognizable in the model; for f = 0.15
the model is rather structured with some complex logic in the middle; f = 0.30
filters all behavior but the most frequent path, the model has no alternative
executions.

Figure 19 shows how model complexity changes in the entire data set through
the different stages of the simplification algorithm. We depict average (left)
and maximal model complexities (right) for filter values f = 0.05 (top) and
f = 0.30 (bottom); the results for the other filter values are linearly distributed
between these two extremes. For models that already were structurally simple,
no difference could be noted between the unfiltered and the filtered cases.

Model complexity falls as more behavior is filtered from the branching pro-
cess (f = 0.05 vs f = 0.30). Filtering is particularly effective on models discov-
ered from logs with much infrequent behavior (e.g., benchmark logs with noise
≥ 10%). The main effect of filtering can be seen before flower places are split.
After flower places are split, the complexities converge in all cases to similar val-
ues. This suggests that all behavior (including the frequent behavior) requires
a structure of certain complexity that cannot be simplified without generalizing
the model’s behavior.

30

im
im1+

im1
im2

im2−

or
ig
in
al

fo
ld
ed

im
pl
ie
d

ch
ai
ns

flo
w
er

0
1
2

4

8

co
m

pl
ex

ity

im
im1+

im1
im2

im2−

or
ig
in
al

fo
ld
ed

im
pl
ie
d

ch
ai
ns

flo
w
er

0
1
2

4

8

co
m

pl
ex

ity

im
im1+

im1
im2

im2−

or
ig
in
al

fo
ld
ed

im
pl
ie
d

ch
ai
ns

flo
w
er

0
1
2

4

8

im
im1+

im1
im2

im2−

or
ig
in
al

fo
ld
ed

im
pl
ie
d

ch
ai
ns

flo
w
er

0
1
2

4

8

(5%,avg) (5%,max)

(30%,avg) (30%,max)

Figure 19: Change in complexity by filtering infrequent behavior.

When comparing simplification by removing implicit places with simplifica-
tion by filtering, the resulting models differ significantly depending on how the
structure is simplified, i.e., compare Fig. 18(filtering) and Fig. 2(right, removing
implicit places and flower places). We observed growing model complexity for
some models when implicit places were removed after filtering, see Fig. 19(right).
This is mostly due to places with few incoming or outgoing arcs that are ob-
tained by filtering (low complexity) and that are then classified as implicit places
afterwards and removed (rising complexity).

Filtering removes infrequent behavior from the branching process. The fil-
tered behavior is (most likely) no longer a behavior of the refolded model, i.e.,
the model cannot replay the complete original log but only its frequent behavior.
To measure the deviation introduced by filtering, we also measured the fitness of
each filtered, simplified model to its original log using the technique of [17, 18].
Figure 20 shows how fitness of the resulting model changed depending on the
filter threshold and the notion of implicit places; the least fitness (left) and the
average fitness (right) of the data set are shown; a model that can replay all
traces has fitness 1.0.

In all models discovered from logs with noise, filtering results in models that
cannot replay the entire log anymore (falling fitness). For low filtering thresholds
(< .1) log and model deviate only in 1 or 2 events per non-fitting cases which
still leads to high fitness values of approx .95. The more behavior is filtered, the
more cases cannot be replayed on the model. We observed a steep decline in
fitness for filter thresholds of f = 0.3 and more. Here also the frequent behavior

31

im
im1+

im1
im2

im2−0% 5% 10
%

15
%

20
%

30
%

0.2

0.4

0.6

0.8

1

im
im1+

im1
im2

im2−0% 5% 10
%

15
%

20
%

30
%

0.2

0.4

0.6

0.8

1

fit
ne
ss

(min) (avg)

Figure 20: Change in fitness depending on thresholds for filtering infrequent behavior.

gets filtered. The notion of implicit places has no significant impact on fitness.
Throughout the experiment, most effective results were achieved for logs

with many cases. In these logs, frequent and infrequent behavior can clearly be
distinguished which leads to effective filtering as demonstrated in Fig. 18. For
logs that consist of only few or many unique cases, we observed that all behavior
was filtered for filter thresholds > 0.05 (as the branching process contained no
frequent behavior). For these logs, filtering is inapplicable.

6.4. Discussion

In sight of these observations, we can conclude that our proposed technique
for simplifying discovered process models succeeds. Typically, the structure
of a discovered model can be simplified dramatically while fitness is preserved
completely.

At the same time, we could confirm that this simplification comes with a
reasonable model generalization w.r.t. the behavior recorded in the log. In
average, model behavior generalizes only slightly, though in some cases the
model can be generalized considerably, depending on the chosen parameters.
The choice in the notion of implicit places allows to trade simplification vs.
generalization (i.e., im1 vs. im2) as well as generalization vs. runtime (i.e.,
im1+ vs. im1 and im2 vs. im2−).

The model can also be simplified by removing infrequent behavior through
filtering. This allows to trade simplification for specialization: the filtered model
is significantly simpler but only replays a subset of the log. We also observed
filtered models to be more structured than unfiltered models (i.e., compare Fig. 2
and Fig. 18).

Altogether, we found a new way to let a user balance between the 4 com-
peting quality criteria of process models: fitness, simplicity, generalization (not
overfitting) and precision (not underfitting) [1]. In particular, our technique
allows to improve one criterion (simplicity) while balancing the other criteria in
a controlled way. However, our approach should not be seen as a black box: a
user still has to choose which criteria she wants to optimize for, e.g., simplicity
vs. precision.

32

7. Related work

In the last decade, process mining emerged as a new research disciple com-
bining techniques from data mining, process modeling, and process analysis.
Process discovery, i.e., constructing a process model based on sample behavior,
is the most challenging process mining task [1, 3] and many algorithms have
been proposed [2]. Examples are the α algorithm [13], variants of the α algo-
rithm [14, 15], heuristic mining [4], genetic process mining [6, 7], fuzzy mining
[5], process mining techniques based on language-based regions [8, 9], mining
based using convex polyhedra [10], and various multi-phase approaches [11, 12].

The approach presented in this paper can be used to simplify the models
generated by all of the approaches mentioned above. However, there are two
relevant characteristics. The first characteristic is whether the discovery algo-
rithm produces a Petri net or a process model in some other notation (e.g.,
heuristic nets, C-nets, EPCs, or plain transition systems). The techniques de-
scribed in [8–10, 13–15] produce directly a Petri net. For the other approaches
some conversion is needed [7, 16]. The second characteristic is whether the dis-
covery algorithm guarantees a fitness of 1. Most techniques do not provide such
a guarantee. Notable exceptions are [8–12]. However, these techniques cannot
deal with noise. Therefore, we showed that it is possible to align log and model
in Sect. 3.1. This way we can also handle process models that are not perfectly
fitting. For aligning traces without an initial model we refer to [31].

The approach of [12] allows to balance between overfitting and underfitting of
mined process models, controlled by the user. However, this approach requires
expert knowledge to find the right balance. Our approach is easier to configure,
and yields significant simplification in the fully automatic setting. Moreover,
our approach even simplifies models produced by [12] as illustrated by Fig. 3.

Our approach can improve results of existing discovery algorithms because
all reasoning on how to improve a model is done on the log-induced unfolding.
This unfolding provides a global view on behavior that is directly related to
the model’s structural features and contains information about frequencies and
redundancies of model elements w.r.t. the given log. Such combined information
is not available to most process discovery algorithms during the discovery.

Conformance checking techniques [17, 18, 26, 27, 30], like the post-processing
approach presented in this paper, use a log and a model as input. In [26], the
log is replayed on the Petri net to see where the model and reality diverge. In
[27, 30], the behavior of the model restricted to the log is computed. The border
between the log’s and model’s behavior highlights the points where the model
deviates from the log. In [17, 18], the problem of aligning model and log is
translated into an optimization problem to find the “closest” path in the model.

The goal of this paper is to simplify and structure discovered process mod-
els. This is related to techniques discovering block structures in graph-based
models [32, 33] and transforming unstructured models into structured ones [34].
These techniques focus on and preserve concurrency in models as in our ap-
proach. In particular the future equivalence used in this paper to fold the log-
based unfolding preserves fully concurrent bisimulation [35] that is also used

33

in [34]. However, these techniques just consider the model as is and not the
behavior that has been observed in reality and recorded in a log. Moreover, [34]
focuses on equivalent transformations whereas we allow to generalize or to filter
behavior to trade competing quality criteria if needed.

The problem coped with in this paper resembles the problem of restricting a
system (here N) to admissible behaviors (here L) by means of a controller, e.g.,
[36]. However, these approaches require N to have a finite state space, which
usually does not hold for discovered process models. Additionally, our aim is
also to structurally simplify N , not only to restrict it to L.

This paper is an extended version of our BPM 2011 paper [29]. Compared to
[29] we extended our approach to be able to deal with an initial model that does
not fit completely. Moreover, we showed that the overfitting branching process
can be extended with frequencies to support the removal of noise and outliers.
We also improved the identification of implicit places using a notion tailored
towards unfoldings. For example, we showed how different notions of implicit
place allow to trade model simplification and generalization. In addition, we
presented various new experimental results that also document an acceptable
generalization by our technique despite significant model simplification. These
results also show that we were able to further improve the approach already
presented in [29].

8. Conclusion

The approach presented in this paper can be combined with any process
discovery technique that produces a Petri net that can reproduce the event
log. Extensive experimentation using real-life event logs show that our post-
processing approach is able to dramatically simplify the resulting models. More-
over, the approach allows users to balance between overfitting and underfitting.
Unnecessary generalization is avoided and the user can guide the simplifica-
tion/generalization process.

Our decisive technical contribution to process mining is the adaptation of
classical branching processes to log-induced unfoldings. The latter provides a
global view on the behavior in the log that is related to the model structure and
contains information about frequencies, redundancies, and equivalences. This
allows to to balance quality criteria for process models in a different way than
before.

Acknowledgements. The research leading to these results has received funding from

the European Community’s Seventh Framework Programme FP7/2007-2013 under

grant agreement no 257593 (ACSI).

References

[1] W. M. P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes, Springer, 2011.

34

[2] B. F. van Dongen, A. K. Alves de Medeiros, L. Wen, Process Mining:
Overview and Outlook of Petri Net Discovery Algorithms, ToPNOC 2
(2009) 225–242.

[3] IEEE Task Force on Process Mining, Process Mining Manifesto, in: BPM
Workshops, Vol. 99 of LNBIP, Springer, 2011.

[4] A. J. M. M. Weijters, W. M. P. van der Aalst, Rediscovering Workflow
Models from Event-Based Data using Little Thumb, Integrated Computer-
Aided Engineering 10 (2) (2003) 151–162.

[5] C. W. Günther, W. M. P. van der Aalst, Fuzzy Mining: Adaptive Process
Simplification Based on Multi-perspective Metrics, in: BPM 2007, Vol.
4714 of LNCS, Springer, 2007, pp. 328–343.

[6] A. K. Alves de Medeiros, A. J. M. M. Weijters, W. M. P. van der Aalst,
Genetic Process Mining: An Experimental Evaluation, Data Mining and
Knowledge Discovery 14 (2) (2007) 245–304.

[7] W. M. P. van der Aalst, A. K. Alves de Medeiros, A. J. M. M. Weijters,
Genetic Process Mining, in: G. Ciardo, P. Darondeau (Eds.), Applications
and Theory of Petri Nets 2005, Vol. 3536 of LNCS, Springer, 2005, pp.
48–69.

[8] R. Bergenthum, J. Desel, R. Lorenz, S. Mauser, Process Mining Based on
Regions of Languages, in: BPM 2007, Vol. 4714 of LNCS, Springer, 2007,
pp. 375–383.

[9] J. M. van der Werf, B. F. van Dongen, C. A. J. Hurkens, A. Serebrenik,
Process Discovery using Integer Linear Programming, Fundamenta Infor-
maticae 94 (2010) 387–412.

[10] J. Carmona, J. Cortadella, Process Mining Meets Abstract Interpretation,
in: J. Balcazar (Ed.), ECML/PKDD 210, Vol. 6321 of Lecture Notes in
Artificial Intelligence, Springer, 2010, pp. 184–199.

[11] B. F. van Dongen, W. M. P. van der Aalst, Multi-Phase Process Mining:
Building Instance Graphs, in: ER 2004, Vol. 3288 of LNCS, Springer, 2004,
pp. 362–376.

[12] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van Dongen,
E. Kindler, C. W. Günther, Process mining: a two-step approach to balance
between underfitting and overfitting, Software and System Modeling 9 (1)
(2010) 87–111.

[13] W. M. P. van der Aalst, A. J. M. M. Weijters, L. Maruster, Workflow
Mining: Discovering Process Models from Event Logs, IEEE Transactions
on Knowledge and Data Engineering 16 (9) (2004) 1128–1142.

35

[14] L. Wen, W. M. P. van der Aalst, J. Wang, J. Sun, Mining Process Models
with Non-Free-Choice Constructs, Data Mining and Knowledge Discovery
15 (2) (2007) 145–180.

[15] L. Wen, J. Wang, W. M. P. van der Aalst, B. Huang, J. Sun, Mining Pro-
cess Models with Prime Invisible Tasks, Data and Knowledge Engineering
69 (10) (2010) 999–1021.

[16] W. M. P. van der Aalst, A. Adriansyah, B. F. van Dongen, Causal Nets:
A Modeling Language Tailored Towards Process Discovery, in: J. Katoen,
B. Koenig (Eds.), 22nd International Conference on Concurrency Theory
(CONCUR 2011), LNCS, Springer, 2011, pp. 28–42.

[17] A. Adriansyah, B. F. van Dongen, W. M. P. van der Aalst, Towards Robust
Conformance Checking, in: M. Muehlen, J. Su (Eds.), BPM 2010 Work-
shops, Proceedings of the Sixth Workshop on Business Process Intelligence
(BPI2010), Vol. 66 of LNBIP, Springer, 2011, pp. 122–133.

[18] A. Adriansyah, B. van Dongen, W. M. P. van der Aalst, Conformance
Checking using Cost-Based Fitness Analysis, in: IEEE International En-
terprise Computing Conference (EDOC 2011), IEEE Computer Society,
2011.

[19] U. Goltz, W. Reisig, Processes of Place/Transition-Nets, in: ICALP’83,
Vol. 154 of Lecture Notes in Computer Science, Springer, 1983, pp. 264–
277.

[20] J. Engelfriet, Branching Processes of Petri Nets, Acta Informatica 28 (6)
(1991) 575–591. doi:http://dx.doi.org/10.1007/BF01463946.

[21] M. Nielsen, G. D. Plotkin, G. Winskel, Petri Nets, Event Structures and
Domains, Part I, Theor. Comput. Sci. 13 (1981) 85–108.

[22] J. Esparza, S. Römer, W. Vogler, An Improvement of McMillan’s Unfolding
Algorithm, Formal Methods in System Design 20 (3) (2002) 285–310.

[23] J. Esparza, K. Heljanko, Unfoldings: A Partial-Order Approach to Model
Checking, Springer, 2008. doi:10.1007/978-3-540-77426-6.

[24] J. Colom, M. Silva, Improving the Linearly Based Characterization of P/T
Nets, in: Advances in Petri Nets 1990, Vol. 483 of LNCS, Springer, 1991,
pp. 113–145.

[25] D. Fahland, From Scenarios To Components, Ph.D. thesis, Humboldt-
Universität zu Berlin and Technische Universiteit Eindhoven (2010).

[26] A. Rozinat, W. M. P. van der Aalst, Conformance Checking of Processes
Based on Monitoring Real Behavior, Information Systems 33 (1) (2008)
64–95.

36

[27] J. Muñoz-Gama, J. Carmona, A Fresh Look at Precision in Process Con-
formance, in: BPM’10, Vol. 6336 of LNCS, Springer, 2010, pp. 211–226.

[28] R. Bergenthum, J. Desel, S. Mauser, Comparison of different algorithms to
synthesize a petri net from a partial language, in: Transactions on Petri
Nets and Other Models of Concurrency III, Vol. 5800 of Lecture Notes
in Computer Science, Springer Berlin / Heidelberg, 2009, pp. 216–243,
10.1007/978-3-642-04856-2 9.

[29] D. Fahland, W. M. P. van der Aalst, Simplifying Mined Process Models:
An Approach Based on Unfoldings, in: S. Rinderle, F. Toumani, K. Wolf
(Eds.), Business Process Management (BPM 2011), Vol. 6896 of LNCS,
Springer, 2011, pp. 362–378.

[30] J. Muñoz-Gama, J. Carmona, Enhancing Precision in Process Confor-
mance: Stability, Confidence and Severity, in: N. Chawla, I. King, A. Sper-
duti (Eds.), IEEE Symposium on Computational Intelligence and Data
Mining (CIDM 2011), IEEE, Paris, France, 2011.

[31] R. P. J. C. Bose, W. M. P. van der Aalst, Trace Alignment in Process
Mining: Opportunities for Process Diagnostics, in: R. Hull, J. Mendling,
S. Tai (Eds.), Business Process Management (BPM 2010), Vol. 6336 of
LNCS, Springer, 2010, pp. 227–242.

[32] J. Vanhatalo, H. Völzer, J. Koehler, The Refined Process Structure Tree,
Data Knowledge Engineering 68 (9) (2009) 793–818.

[33] A. Polyvyanyy, J. Vanhatalo, H. Völzer, Simplified Computation and Gen-
eralization of the Refined Process Structure Tree, in: WS-FM’10, Vol. 6551
of Lecture Notes in Computer Science, 2010, pp. 25–41.

[34] A. Polyvyanyy, L. Garćıa-Bañuelos, M. Dumas, Structuring acyclic process
models, Inf. Syst. 37 (6) (2012) 518–538.

[35] E. Best, R. R. Devillers, A. Kiehn, L. Pomello, Concurrent Bisimulations
in Petri Nets, Acta Inf. 28 (3) (1991) 231–264.

[36] A. Lüder, H.-M. Hanisch, Synthesis of Admissible Behavior of Petri Nets
for Partial Order Specifications, in: WODES’00, Kluwer, 2000, pp. 409 –
431.

37

