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Abstract. Existing process mining techniques are able to discover a specific pro-
cess model for a given event log. In this paper, we aim to discover a configurable
process model from a collection of event logs, i.e., the model should describe a
family of process variants rather than one specific process. Consider for example
the handling of building permits in different municipalities. Instead of discovering
a process model per municipality, we want to discover one configurable process
model showing commonalities and differences among the different variants. Al-
though there are various techniques that merge individual process models into a
configurable process model, there are no techniques that construct a configurable
process model based on a collection of event logs. By extending our ETM genetic
algorithm, we propose and compare four novel approaches to learn configurable
process models from collections of event logs. We evaluate these four approaches
using both a running example and a collection of real event logs.

1 Introduction

Different organizations or units within a larger organization may need to execute similar
business processes. Municipalities for instance all provide similar services while being
bound by government regulations [6]. Large car rental companies like Hertz, Avis and
Sixt have offices in different cities and airports all over the globe. Often there are sub-
tle (but sometimes also striking) differences between the processes handled by these
offices, even though they belong to the same car rental company. To be able to share de-
velopment efforts, analyze differences, and learn best practices across organizations, we
need configurable process models that are able to describe families of process variants
rather than one specific process [8, 16].

Given a collection of event logs that describe similar processes we can discover a
process model using existing process mining techniques [1]. However, existing tech-
niques are not tailored towards the discovery of a configurable process model based on
a collection of event logs. In this paper, we compare four approaches to mine config-
urable models. The first two approaches use a combination of existing process discovery
and process merging techniques. The third approach uses a two-phase approach where
the fourth approach uses a new, integrated approach. All four approaches have been
implemented in the ProM framework [18].

The remainder of the paper is organized as follows. In Section 2, we discuss related
work on process discovery, configurable process models and current model merging
techniques. In Section 3 we describe the four different approaches to mine configurable



process models in more detail. There we also describe how our genetic process dis-
covery algorithm (ETM) has been extended to perform each of the four different ap-
proaches. Then we apply each of the approaches on a running example in Section 4.
In Section 5 we apply the four approaches on a real-life event log collection to demon-
strate the applicability of each of the approaches in practice. Section 6 concludes the
paper and suggests directions for future work.

2 Related Work

The goal of process discovery in the area of process mining is to automatically discover
process models that accurately describe processes by considering only an organization’s
records of its operational processes [1]. Such records are typically captured in the form
of event logs, consisting of cases and events related to these cases. Over the last decade,
many such process discovery techniques have been developed. For a complete overview
we refer to [1]. However, until now, no process mining technique exists that is able to
discover a single, configurable, process model that is able to describe the behavior of a
collection of event logs.

A configurable process model describes a family of process models, i.e., variants of
the same process. A configuration of a configurable process model restricts its behav-
ior, for example by hiding or blocking activities. Hiding means that an activity can be
skipped. Blocking means that a path cannot be taken anymore. Most formalisms allow
operators to be made more restrictive (e.g., an OR-split is changed into an XOR-split).
By configuring the configurable process model a (regular) process model is obtained.
A configurable process model aims to show commonalities and differences among dif-
ferent variants. This facilitates reuse and comparison. Moreover, development efforts
can be shared without enforcing a very particular process. Different notations and ap-
proaches for process configuration have been suggested in literature [4,8,11,15–17]. In
this paper we use a representation based on [17].

Configurable process models can be constructed in different ways. They can be de-
signed from scratch, but if a collection of existing process models already exist, a con-
figurable process model can be derived by merging the different variants. The original
models used as input correspond to configurations of the configurable process model.

Different approaches exist to merge a collection of existing process models into a
configurable process model. A collection of EPCs can be merged using the technique
presented in [9]. The resulting configurable EPC may allow for additional behavior,
not possible in the original EPCs. La Rosa et al. [12] describe an alternative approach
that allows merging process models into a configurable process model, even if the input
process models are in different formalisms. In such merging approaches, some configu-
rations may correspond to an unsound process model. Li et al. [13] discuss an approach
where an existing reference process model is improved by analyzing the different vari-
ants derived from it. However, the result is not a configurable process model but an
improved reference process model, i.e., variants are obtained by modifying the refer-
ence model rather than by process configuration. The CoSeNet [17] approach has been
designed for merging a collection of block structured process models. This approach
always results in sound and reversible configurable process models.
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Fig. 1: Creating a configurable process model from a collection of event logs.

Another way of obtaining a configurable process model is not by merging process
models but by applying process mining techniques on a collection of event logs. This
idea was first proposed in [10], where two different approaches were discussed, but
these were not supported by concrete discovery algorithms. The first approach merges
process models discovered for each event log using existing process model merge tech-
niques. In the second approach the event logs are first merged and then a combined
process model is discovered and individualized for each event log.

3 Mining a Configurable Process Model

In this section we present different approaches to mine a configurable process model
from a collection of event logs. We also present the algorithm used for the discovery of
process models.

3.1 Approaches

As mentioned in Section 1, we consider four approaches to discover a configurable
process model from a collection of event logs.

The first approach, as is shown in Figure 1a, applies process discovery on each input
event log to obtain the corresponding process model. Then these processes models are
merged using model merge techniques. This approach was first proposed in [10].



Since the process models of the first approach are discovered independently of each
other, they might differ significantly hence merging them correctly becomes more dif-
ficult. Therefore we propose a second approach as an improvement of the previous
approach. The overall idea is shown in Figure 1b. From the input event logs first one
process model is discovered that describes the behavior recorded in all event logs. Then
the single process model is taken and individualized for each event log. For this we use
the work presented in [7] to improve a process model within a certain edit distance.
In the next step these individual process models are merged into a configurable pro-
cess model using the approach of [17]. By making the individual process models more
similar, merging them into a configurable process model should be easier.

The third approach, as shown in Figure 1c, is an extension of the second approach
presented by Gottschalk et al. in [10]. A single process model is discovered that de-
scribes the behavior of all event logs. Then, using each individual event log, configura-
tions are discovered for this single process model. In this approach the common process
model should be less precise than other process models since we can only restrict the
behavior using configurations, but not extend it. Therefore the process discovery algo-
rithm applied needs to put less emphasis on precision.

The fourth approach is a new approach where the discovery of the process model
and the configuration is combined, see Figure 1d. This approach is added to overcome
the disadvantages of the other three approaches. By providing an integrated approach,
where both the process model and the configuration options are discovered simultane-
ously, better trade-offs can be made.

The third and fourth approaches require an algorithm that is able to balance trade-
offs in control flow, and optionally in configuration options. In previous work we pre-
sented the ETM-algorithm [5] that is able to seamlessly balance different quality dimen-
sions. Therefore, in this paper the ETM-algorithm is extended such that it can discover
a single process tree using a collection of event logs. Together with the process tree a
configuration for each of the event logs is also discovered. In order to be able to com-
pare the results of the different approaches, the ETM-algorithm is used as the process
discovery algorithm in all four approaches.

3.2 The ETM Algorithm

In this section we briefly introduce our evolutionary algorithm first presented in [5]. The
ETM (Evolutionary Tree Miner) algorithm is able to discover tree-like process models
that are sound and block-structured. The fitness function used by this genetic algorithm
can be used to seamlessly balance different quality dimensions. In the remainder of this
section we only discuss the ETM-algorithm on a high-level together with the extensions
made, to prevent repetition. All details of the ETM-algorithm can be found in [5].

Overall the ETM algorithm follows the genetic process shown in Figure 2. The
input of the algorithm is one or more event logs describing the observed behavior and,
optionally, one or more reference process models. First, different quality dimensions for
each candidate currently in the population are calculated, and using the weight given
to each quality dimension, the overall fitness of the process tree is calculated. In the
next step certain stop criteria are tested such as finding a tree with the desired overall
fitness, or exceeding a time limit. If none of the stop criteria are satisfied, the candidates



in the population are changed and the fitness is again calculated. This is continued until
at least one stop criterion is satisfied and the best candidate (highest overall fitness) is
then returned.

The ETM-algorithm works on process trees, which are a tree-like representation of
a process model. The leafs are activities and the other nodes represent one of several
predefined control-flow constructs.

To measure the quality of a process tree, we consider one metric for each of the four
main quality dimensions described in literature [1–3] (see Fig. 3). We have shown in [5]
that the replay fitness dimension is the most important of the four in process discovery.
The replay fitness dimension expresses how much of the observed behavior in the event
log can be replayed in the process model. The precision dimension indicates how much
additional behavior is possible in the process model but is not observed in the event
log. The simplicity dimension assesses how simple the process model description of the
behavior is. The generalization dimension is added to penalize “overfitting”, i.e., the
model should allow for unseen but very likely behaviors.

For the simplicity dimension we use a slightly different metric than in previous
work. Simplicity is based on Occam’s razor, i.e., the principle that says that when all
other things are equal the simplest answer is to be preferred. Size is one of the simplest
measures of complexity [14] since bigger process models are in general more com-
plex to understand. Unfortunately, the ideal size of the process tree cannot directly be
calculated, as control flow nodes can have multiple children. Furthermore, it might be
beneficial for other quality dimensions, such as replay fitness or precision, to duplicate
certain parts. Therefore, in the genetic algorithm, we use the fraction of the process tree
that consists of ‘useless’ nodes as a simplicity metric since it does not influence the
other quality dimensions. A node is useless if it can be removed without changing the
behavior of the tree. Useless nodes are operators with only one child, τ leafs in a→ or
∧ construct, non-first τ ’s in an ∨ construct and 	’s consisting of one 	 as a child and
two τ ’s as other children.

Each of the four metrics is computed on a scale from 0 to 1, where 1 is optimal.
Replay fitness, simplicity and precision can reach 1 as optimal value. Generalization
can only reach 1 in the limit, i.e., the more frequent nodes are visited, the closer the
value gets to 1.
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Fig. 2: The phases of the genetic algorithm.
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3.3 Configuring Process Trees

In this paper, we extend process trees [5] with configuration options. A node in a pro-
cess tree can be not configured, blocked, hidden or ‘downgraded’ for each of the input
event logs. The blocking and hiding operations are as specified in existing configura-
tion languages [8, 16, 17] (see Section 2) and either block a path of execution or hide
a part of the process. However, we add the configuration option that operators can be
downgraded. By downgrading an operator, the behavior of the operator is restricted to a
subset of the initially possible behavior. The 	 operator for instance can be downgraded
to a→. This is done by removing the ‘redo’ part of the 	 operator and putting the ‘do’
and ‘exit’ children of the loop in a sequence.

Another operator that can be downgraded is the ∨ operator which can be down-
graded to an ∧ (forcing all children to be executed), × (only allowing for one child
to be executed), and a → (executing all its children in a particular order). However,
since in one configuration the order of the children might be different than in another,
we also added the ← operator, representing a reversed sequence, which simply exe-
cutes the children in the reversed order, i.e. from right to left. Finally, also the ∧ can be
downgraded to an→ or← operator.

The quality of the configuration perspective should also be incorporated in the fit-
ness function of the ETM-algorithm. This is partly done by applying the configuration
options on the overall (i.e. configurable) process tree before evaluating the main four
quality dimensions. For instance, when an activity that is not present in an event log
is hidden from the process tree, this is reflected by replay fitness. The four quality di-
mensions are calculated for each individual event log and then a weighted average is
calculated using the size of each event log. However, as part of the quality of the config-
uration, the number of nodes that have a configuration option set should be considered
(otherwise all nodes can be made configurable without any penalty). Therefore, we add
a new quality dimension for configuration that simply measures the fraction of nodes in
the process tree for which no configuration option exist. The other four quality dimen-
sions are more important than the configuration fitness, but if a configurable process tree
exists with fewer configuration options and the same quality in the other dimensions,
then the latter process tree is preferred.

4 Running Example

Our running example [7] is based on four variants of the same process describing a
simple loan application process of a financial institute, providing small consumer credit
through a webpage. The four BPMN process models describing the variants are shown
in Figure 4. The event logs that were obtained through simulation are shown in 1.

In the first variant the process works as follows: when a potential customer fills in a
form and submits the request on the website, the process is started by activity A which
is sending an e-mail to the applicant to confirm the receipt of the request. Next, three
activities are executed in parallel. Activity B is a check of the customer’s credit history
with a registration agency. Activity C is a computation of the customer’s loan capacity
and activity D is a check whether the customer is already in the system. This check is



Table 1: Four event logs for the four different variants of the loan application process
of Figure 4.

Trace # Trace #
A B C D E G 6 A D C B F G 4
A B C D F G 38 A C D B F G 2
A B D C E G 12 A D B C F G 1
A B D C F G 26 A D B C E G 1
A B C F G 8 A C B F G 1
A C B E G 1

(a) Event log for variant 1

Trace #
A B1 B2 C D2 E G 20
A B1 B2 C D2 F G 50

(b) Event log for
variant 2

Trace #
A C B E 120
A C B F 80

(c) Event
log for
variant 3

Trace #
A B1 D B2 C E 45
A B1 D2 B2 C F 60

(d) Event log for
variant 4

skipped if the customer filled in the application while being logged in to the personal
page, since then it is obsolete. After performing some computations, a decision is made
and communicated to the client. The loan is accepted (activity E, covering about 20%
of the cases) or rejected (activity F, covering about 80% of the cases). Finally, activity
G (archiving the request) is performed.

The second loan application variant is simpler than the first process. Most notable
is the absence of parallelism. Furthermore, activity B has been split into the activities
B1 (send credit history request to registration agency) and B2 (process response of
registration agency). Activity D of the original process has been replaced by D2 which
is checking the paper archive.

The third variant of the loan application process is even simpler where after send-
ing the confirmation of receipt (activity A) the capacity is calculated (activity C) and
the credit is checked (activity B). Then the decision is made to accept (activity E) or
reject (activity F) the application. The application is not archived; hence no activity G
is performed.

(a) Variant 1 (b) Variant 2

(c) Variant 3 (d) Variant 4

Fig. 4: Four variants of a loan application process. (A = send e-mail, B = check credit, B1
= send check credit request, B2 = process check credit request response, C = calculate
capacity, D = check system, D2 = check paper archive, E = accept, F = reject, G = send
e-mail).



In the fourth and final variant of this process, after sending the confirmation of
receipt (activity A), the request for the credit history is sent to the agency (activity B1).
Then either the system archive (activity D) or paper archive (activity D2) is checked.
Next the response of the credit history check is processed (activity B2) and next the
capacity is calculated (activity C). Then the decision is made to accept (activity E) or
reject (activity F) the application. The application is not archived (i.e., no activity G in
model).

Although the four variations of the loan application process seem similar, automat-
ically discovering a configurable process model is far from trivial.

4.1 Experimental Setup

In the remainder of this section we use the ETM algorithm as our discovery technique
to construct a process model, in the form of a process tree, from an event log. We ran the
experiments for 20, 000 generations on each individual event log for approaches 1 and
2. Because in approaches 3 and 4 we consider all four event logs at once, we increased
the number of generations to 80, 000 to get a stable result. Each generation contained a
population of 20 trees out of which the best six were kept unchanged between genera-
tions, i.e. the elite. The quality dimensions of replay fitness and simplicity were given
a weight of ten, since we want a small process model with a good relation to the event
log. A weight of five for precision makes sure the model does not allow for too much
additional behavior and a weight of one-tenth for generalization makes the models more
general.

4.2 Approach 1: Merge Individually Discovered Process Models

The results of applying the first approach on the running example are shown in Figure 5.
Each of the individual process models (see Figures 5a through 5d) clearly resemble
each of the individual event logs. The combined configurable process model however
is nothing more than a choice between each of the individual input process models. In
this configurable process model those nodes that are configured have a grey ‘callout’
added, indicating for each configuration whether that node is not configured (‘-’), hid-
den (‘H’) or blocked (‘B’). The table shown in Figure 5f shows the different quality
scores for both the configurable process models as well as for each of the configura-
tions. Moreover, the simplicity statistics of size, number of configuration points (#C.P.)
and similarity of the configured process model w.r.t. the configurable process model is
shown. The fact that the four configuration options block a big part of the process model
is reflected in the low similarity of the configured process models with the configurable
process model. This is also shown by the relatively large size of the process tree.

4.3 Approach 2: Merge Similar Discovered Process Models

In the second approach we try to increase similarity by discovering a common process
model from all event logs combined, of which the result is shown in Figure 6a. This
process model has difficulties to describe the combined behavior of the four variants.



The four individual process models derived from this common process model are shown
in Figures 6b through 6e. Each individual process model has a high similarity with the
common process model, while some changes are made to improve the overall fitness for
that particular event log. For the first three variants the discovered process models are
identical to the one of approach 1. The process of the fourth variant however differs too
much from the common model, hence the similar process model is not as good as the
one found in approach 1. The combined process tree is shown in Figure 6f. Despite the
similarity of the individual process models, the combined configurable process model
is still a choice of the four input process models. The overall fitness of this model is
slightly worse than that of approach 1, mainly due to the process model of variant 4.
Similar to the previous approach, the number of configuration points is low. Unfortu-
nately, also the similarity between the configured process model and the configurable
process model is low.

(a) Process model mined on event log 1 (b) Process model mined on event log 2

(c) Process model mined on event log 3 (d) Process model mined on event log 4
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(e) Configurable process model obtained after merging models (a) through (d)

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.989 0.999 0.999 0.981 0.220 53 4 -
Variant 0 0.986 0.995 0.995 0.981 0.235 14 3 0.418
Variant 1 0.989 1.000 1.000 0.981 0.263 16 3 0.464
Variant 2 0.989 1.000 1.000 0.981 0.174 10 3 0.317
Variant 3 0.989 1.000 1.000 0.981 0.264 16 3 0.464

(f) Quality statistics of the configurable process model of (e)

Fig. 5: Results of merging seperate discovered process models on the running example



(a) Process model discovered from combined event log

(b) Process model individualized for event log 1 (c) Process model individualized for event log 2

(d) Process model individualized for event log 3 (e) Process model individualized for event log 4
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(f) Configurable process model obtained after merging models (b) through (e)

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.958 0.974 0.921 0.968 0.212 46 4 -
Variant 0 0.981 0.995 0.995 0.968 0.232 12 3 0.414
Variant 1 0.984 1.000 1.000 0.968 0.246 13 3 0.441
Variant 2 0.984 1.000 1.000 0.968 0.180 10 3 0.357
Variant 3 0.869 0.886 0.649 0.968 0.232 14 3 0.467

(g) Quality statistics of the configurable process model of (f)

Fig. 6: Results of merging the similar process models on the running example

4.4 Approach 3: First Discover a Single Process Model then Discover
Configurations

The resulting configurable process model is shown in Figure 7. From this model it can
be seen that we relaxed the precision weight, in order to discover an ‘overly fitting’ pro-
cess model. Then, by applying configurations, the behavior is restricted in such a way
that the model precisely describes each of the variants, as is indicated by the perfect
replay fitness. This process model also scores relatively high for precision and simplic-
ity. The process tree however has a similar large size as the two previous approaches.
Nonetheless, the similarity of each of the individual process models to the configurable
process model is higher than in the previous two approaches since only small parts are
configured.



4.5 Approach 4: Discover Process Model and Configurations at the Same Time

The result of applying the fourth, integrated approach is shown in Figure 8. This process
model is smaller and therefore simpler than previous models, a result of the weight of
ten for the simplicity dimension. Moreover, it clearly includes the common parts of
all variants only once, e.g. always start with A and end with a choice between E and F,
sometimes followed by G. This process model correctly hides activities that do not occur
in certain variants, for instance G for variants 3 and 4 and the B, B1 and B2 activities.
Moreover, it correctly discovered the parallelism present in variant one, where the other
variants are configured to be sequential. As a trade-off, it did not include activity D2,
which is the least occurring activity in the event logs, and occurs in different locations
in the process.

The discovered configurable process model can be further improved by increasing
the replay fitness, making sure that all behavior can be replayed. This results in the con-
figurable process model as shown in 9. This process model is able to replay all behavior,
something that only was achieved in the two-phase mining approach. However, this re-
sults in a process model with a lot of 	 and ∨ constructs, which are then blocked for
particular configurations. Moreover, the resulting process model is rather large, contains
many configuration points and has mediocre similarity scores. This is a clear trade-off
of aiming for a higher replay fitness value. However, the two-phase approach produced
a better model with perfect replay fitness.

4.6 Comparison of the four Approaches

The results of applying the four different approaches on the running example are very
different. All discovered models have similar scores for replay fitness and precision and
there are (almost) no useless nodes. However, there are noticeable differences in gener-
alization, size and similarity between the configurable and the configured models. The
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(a) Configurable process model discovered using the two-phase approach

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.988 1.000 0.981 0.986 0.374 42 11 -
Variant 0 0.990 1.000 0.990 0.986 0.400 20 6 0.645
Variant 1 0.992 1.000 1.000 0.986 0.408 20 7 0.645
Variant 2 0.992 1.000 1.000 0.986 0.285 13 8 0.473
Variant 3 0.977 1.000 0.922 0.986 0.496 24 6 0.727

(b) Quality statistics of the configurable process model of (a)

Fig. 7: Results of the two-phase mining approach on the running example
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Fig. 8: Results of the integrated mining approach on the running example
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(a) Configurable process model discovered with more weight on replay fitness

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.980 1.000 0.767 0.993 0.345 82 31 -
Variant 0 0.985 1.000 0.826 0.993 0.534 54 20 0.794
Variant 1 0.974 1.000 0.696 0.993 0.306 30 21 0.527
Variant 2 0.986 1.000 0.850 0.993 0.349 31 20 0.549
Variant 3 0.973 1.000 0.680 0.993 0.261 24 21 0.453

(b) Quality statistics of the configurable process model of (a)

Fig. 9: Result of the integrated mining approach when improving replay fitness

first two approaches score relatively poor on generalization, because the merge operator
used introduces specific submodels for each log, which limits the number of visits per
node during replay. Also, due to duplication, the models are significantly larger, and
because in the configuration large parts are blocked, the configured models are dissim-
ilar to the configurable one. Mining a process model and then mining configurations
improves the similarity, but still the configurable model remains larger than necessary.
Furthermore, the number of configuration points is very high. However, it is easier to
aim for higher replay fitness values The final approach, where the configurations are
discovered simultaneously with the configurable model reduces the size significantly,



Table 2: Case study event log statistics

#traces #events #activities
Combined 1214 2142 28
L1 54 131 15
L2 302 586 13
L3 37 73 9
L4 340 507 9
L5 481 845 23

Table 3: Statistics of merging the separate process models on the case study event logs

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.979 0.973 0.962 0.997 0.560 1555 5 -
Variant 0 0.977 0.977 0.949 0.996 0.362 581 4 0.544
Variant 1 0.973 0.967 0.944 0.998 0.617 201 4 0.229
Variant 2 0.991 1.000 0.993 0.988 0.234 72 4 0.089
Variant 3 0.984 0.978 0.974 0.998 0.690 455 4 0.453
Variant 4 0.978 0.971 0.964 0.997 0.480 250 4 0.277

thus improving the similarity score. However, this comes at a minor cost of replay fit-
ness.

The first two approaches seem to struggle with merging process models based on
their behavior. Because they only focus on the structure of the model, the frequencies of
parts of the process model being visited are not considered during the merge. The third
and fourth approach both directly consider the behavior and frequencies as recorded
in the event log. This seems to be beneficial for building a configurable process model
since these latter two approaches outperform the first two. In the next section we apply
all four approaches on a collection of real-life event logs to validate these findings.

5 Case Study

To validate our findings we use a collection of five event logs from the CoSeLoG
project1, each describing a different process variant. The main statistics of the event
logs are shown in Table 2. The event logs were extracted from the IT systems of five
different municipalities. The process considered deals with objections related to build-
ing permits.

The result of both the first (individually discovered process models that are then
merged) and the second approach (making sure the models are similar) result in process
trees with more than 200 or even 1, 500 nodes. Both process models however again
consist of an × operator as the root with each of the five original models as its children
that are then blocked, similar to the running example results. We therefore only show
the statistics in Table 3 and 4 since the process models are unreadable.

The third approach, where the ETM-algorithm first discovers a common process
model that is not very precise, and then applies configuration options, results in the
process tree as shown in Fig. 10a. The statistics for this process model are shown in

1 More information can be found at http://www.win.tue.nl/coselog/wiki/start

http://www.win.tue.nl/coselog/wiki/start


Table 4: Statistics of merging the similar process models on the case study event logs

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.980 0.989 0.936 0.998 0.540 236 5 -
Variant 0 0.973 0.992 0.894 0.999 0.337 65 4 0.432
Variant 1 0.977 0.969 0.958 0.998 0.598 34 4 0.252
Variant 2 0.966 0.991 0.863 0.998 0.533 24 4 0.185
Variant 3 0.991 0.999 0.968 0.999 0.461 48 4 0.338
Variant 4 0.977 0.994 0.909 0.998 0.582 69 4 0.452
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(a) Results of the two-phase mining approach

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.973 0.965 0.951 0.999 0.451 46 17 -
Variant 0 0.947 0.943 0.862 0.999 0.319 31 10 0.792
Variant 1 0.979 0.968 0.971 0.999 0.452 36 8 0.878
Variant 2 0.961 0.932 0.958 0.999 0.267 25 12 0.690
Variant 3 0.980 0.990 0.934 0.999 0.390 30 13 0.763
Variant 4 0.970 0.950 0.961 0.999 0.522 34 8 0.850

(b) Statistics of the two-phase mining result

Fig. 10: Results of the two-phase mining approach on the real-life event logs

Table 10b. This process tree is rather compact and has reasonable scores for replay
fitness, precision and simplicity.

The fourth approach, where the control flow and configuration points are discovered
simultaneously, results in the process tree as shown in Fig. 11a. The statistics are shown
in Table 11b. With only 4 configuration points, and similar quality scores as the previous
result, this process tree is even smaller and hence simpler.

The application of the different approaches on the real-life event logs show similar
results as on the running example. The first two approaches seem to have difficulties in
merging the process models based on the behavior of the process model.

6 Conclusion

In this paper we presented and compared four approaches to construct a configurable
process model from a collection of event logs. We applied all four approaches on both
a running example and a real-life collection of event logs. Our results show that the
naive approach of first discovering a process model for each event log separately and
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(a) Result of the integrated mining approach

Overall Fitness Precision Simplicity Generalization Size #C.P. Similarity
Combined 0.966 0.952 0.929 1.000 0.839 11 4 -
Variant 0 0.945 0.866 1.000 1.000 0.622 9 4 0.900
Variant 1 0.970 0.958 0.935 1.000 0.861 11 0 1.000
Variant 2 0.955 0.920 0.942 1.000 0.651 10 3 0.952
Variant 3 0.974 0.975 0.923 1.000 0.845 11 1 1.000
Variant 4 0.962 0.945 0.921 1.000 0.860 11 1 1.000

(b) Statistics result

Fig. 11: Results of the integrated mining approach on the real-life event logs

then merging the discovered models yields large configurable models to which the indi-
vidual configurations are not very similar. It is slightly better to first discover a process
model on the combination of the event logs and then configure this model for each log.
However, both of these approaches struggle with merging the modeled behavior of the
input process models into a configurable process model. The other two approaches that
directly discover a configurable process model from the event log seem to be able to
use the recorded behavior to better generalize the behavior into a configurable process
model. The approach where both the control flow and the configuration options are
changed together seems to have more flexibility than the approach where first a control
flow is discovered which is then configured.

Using the results presented in this paper we can improve model merging techniques
by considering the actual intended behavior instead of the process model structure. We
also plan to develop more sophisticated techniques for the ETM-algorithm to directly
mine configurable models from collections of event logs. For example, we plan to add
configuration-specific mutation operators and learn good parameter settings (using large
collections of real-life event logs from the CoSeLoG project). Moreover, we plan to
consider other perspectives (e.g., data-, resource- and time-related aspects) and further
develop the new area of cross-organizational mining [6]. The ultimate goal is to support
organizations in selecting a suitable configuration based on their recorded behavior.
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