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Abstract. Process mining aims to discover, monitor and improve real
processes by extracting knowledge from event logs abundantly available
in today’s information systems. Although process mining has been ap-
plied in hundreds of organizations and process mining techniques have
been embedded in a variety of commercial tools, to date these techniques
have rarely been used for analyzing web services. One of the obvious
reasons is that cross-organizational event data cannot be shared easily.
However, (1) messages exchanged between services tend to be structured,
(2) service-orientation continues to be the predominant implementation
paradigm, and (3) the most substantial efficiency gains can often only be
achieved across different organizations. Hence, there are many possible
applications for service mining, i.e., applying process mining techniques
to services. If messages are recorded, then one can discover a process
describing interactions between services. If, in addition, descriptive or
normative models are available, one can use process mining to check con-
formance and highlight performance problems. This extended abstract
aims to provide pointers to ongoing work on service mining and lists
some of the main challenges in this emerging field.

1 From Process Mining to Service Mining

Process mining is an enabling technology for service mining. Process mining can
be used to discover processes from raw event data, check the conformance of ob-
served and modeled behavior, enhance models by improving or extending them
with knowledge extracted from event logs [2]. The uptake of process mining is
not only illustrated by the growing number of papers, but also by commercial
analysis tools providing process mining capabilities, cf. Disco (Fluxicon), Percep-
tive Process Mining (Perceptive Software, before Futura Reflect and BPMone
by Pallas Athena), ARIS Process Performance Manager (Software AG), Pro-
cessAnalyzer (QPR), Interstage Process Discovery (Fujitsu), Discovery Analyst
(StereoLOGIC), and XMAnalyzer (XMPro).

Web services have become one of the main paradigms for architecting and im-
plementing business collaborations within and across organizational boundaries
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[10, 20]. The functionality provided by many of today’s business applications is
encapsulated within web services, i.e., software components described at a se-
mantic level, which can be invoked by application programs or by other services
through a stack of Internet standards including HTTP, XML, SOAP, WSDL and
UDDI [10, 20]. Once deployed, web services provided by various organizations
can be inter-connected in order to implement business collaborations, leading to
composite web services.

In the context of web services, typically all kinds of events are being recorded.
It is possible to record events related to activities inside services or interactions
between services (e.g., messages) [6, 8, 9]. The autonomous nature of services and
the fact that they are loosely coupled makes it important to monitor and analyze
their behavior. In this paper, we will refer to this as service mining.

Starting point for process mining is an event log. Each event in such a log
refers to an activity (i.e., a well-defined step in some process) and is related to
a particular case (i.e., a process instance). The events belonging to a case are
ordered and describe one “run” of the process. Event logs may store additional
information about events. In fact, whenever possible, process mining techniques
use supplementary information such as the resource (i.e., person, device, or soft-
ware component) executing or initiating the activity, the timestamp of the event,
and other data attributes (e.g., the size of an order). As mentioned before, three
types of process mining can be distinguished: (1) process discovery, (2) confor-
mance checking, and (3) model enhancement. See [2] for an introduction to the
corresponding techniques.

The correlation of messages is a particular challenge for service mining [3].
Process models always describe the behavior of cases, also referred to as process
instances. Without correlating messages, it is impossible to discover causalities.
Another challenge is to use additional information provided by such messages.
In case of asynchronous messages with sender and receiver information we can
exploit knowledge about distributed processes, e.g., choices need to be communi-
cated. For example, service x cannot expect the service y to take action because
x did not send a message to y. Thus far, these insights are not used in process
discovery [16].

2 Related Work on Service Mining

In this section, we provide some pointers to papers on services mining and related
topics. Given space restrictions, we do not aim to be complete. For additional
references we refer the interested reader to [3].

In [9] a concrete application of process mining to web services is described.
IBM’s WebSphere product is used as a reference system and its CEI (Common
Event Infrastructure) logs are analyzed using ProM.

An approach to check the conformance of web services was described in [6].
The paper includes a description of various experiments using Oracle BPEL.
The token-based replay techniques presented in [18] were used to measure con-
formance.
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In [8] an LTL-based approach to check conformance was proposed. This ap-
proach uses a graphical declarative language to describe the normative behavior
of services. Rather than modeling a detailed process, this approach allows for
checking graphically specified constraints such as “a payment should always be
confirmed”.

The topic of event correlation has been investigated in the context of system
specification, system development, and services analysis. In [7] and [11] various
interaction and correlation patterns are described. In [17] a technique is presented
for correlating messages with the goal to visualize the execution of web services.
In [16] so-called operating guidelines are exploited for conformance checking.

Dustdar et al. [12, 14] proposed techniques for services interaction mining,
i.e., applying process mining techniques to the analysis of service interactions.

Nezhad et al. [15] developed techniques for event correlation and process
discovery from web service interaction logs. The authors introduce the notion of
a “process view” which is the result of a particular event correlation. However,
they argue that correlation is subjective and that multiple views are possible. A
collection of process views is called the “process space”.

In [19], Simmonds et al. propose a technique for the run-time monitoring of
web service conversations. The authors monitor conversations between partners
at runtime as a means of checking behavioral correctness of the entire web service
system. This is related to the earlier work on conformance checking [4, 6, 18]
mentioned before.

Within the ACSI project the focus is on many-to-many relationships between
instances. So-called “proclets” [5] are used to model artifact centric models. A
conformance checking approach for such models is presented in [13] and imple-
mented in ProM.

In [1] the topic of “cross-organizational mining” was introduced. Here the goal
is not to analyze interacting services but to compare services that are variants
of one another. Cross-organizational mining can be used for benchmarking and
reference modeling.
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