
YAWL in the Cloud

D.M.M. Schunselaar?, T.F. van der Avoort, H.M.W. Verbeek?, and W.M.P.
van der Aalst?

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst}@tue.nl

Abstract. In the context of the CoSeLoG project (which involves 10
Dutch municipalities), we realised a proof-of-concept implementation
based on YAWL. The municipalities want to share a common IT infras-
tructure and learn from one another, but also allow for local differences.
Therefore, we extended YAWL to run in a cloud-based environment lever-
aging on existing configuration possibilities. To support “YAWL in the
Cloud” we developed load-balancing capabilities that allow for the dis-
tribution of work over multiple YAWL engines. Moreover, we extended
YAWL with multi-tenancy capabilities: one municipality may effectively
use multiple engines without knowing it and one engine may safely run
the processes of multiple municipalities.

1 Introduction

Within the Netherlands, more and more municipalities seek cooperation to cut
costs. One of the directions to cut costs is to share infrastructures supporting
the processes of municipalities. Every municipality has a server/ business process
management system (BPM system)/ case handling system/ etc. to support them.
However, these systems are not used to their fullest capacity, and also capacity
might change, e.g., decrease, during the year. Municipalities can cut costs by
sharing infrastructure and have an adaptive system to handle the peaks. Within
the CoSeLoG project, we are cooperating with 10 municipalities who want to
cooperate with each other and learn from each other1 [1]. One of the elements of
the project is a shared infrastructure where the municipalities share IT-solutions
and processes.

In recent years, we created many (configurable) YAWL models [2–4] for the
processes of the municipalities. Therefore, we want to use YAWL to create a
proof-of-concept implementation, showing that municipalities can share a com-
mon infrastructure and still allow for the necessary “colour locale”. Unfortu-
nately, YAWL has been designed to be used on a single machine. If we are using
a single machine, this requires the owner of this machine to share (part of) her
infrastructure which might not always be desirable. Furthermore, we are dealing

? This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).

1 http://www.win.tue.nl/coselog/

41



Fig. 1: The positioning of YAWL in the cloud.

with different organisations which do not want to expose some or all of their
information to the other parties involved. Finally, by combining different or-
ganisations onto a single machine, this machine might become overloaded by a
shared peak caused by the organisations.

In order to overcome the mentioned problems, we propose YAWL in the
cloud . The cloud is tailored towards scalable resources to increase the comput-
ing power when necessary and to decrease the computing power when possible.
Since the cloud can be maintained by a third party, there is no need to em-
ploy a person to maintain the systems. However, in order to make YAWL run
in the cloud, we have to extend the standard YAWL architecture to deal with
problems introduced by having multiple YAWL engines running simultaneous
(e.g., non-unique case numbers amongst different engines). Therefore, we first
introduce the general framework built around YAWL. Afterwards, we present
the implementation and show some innovative features of YAWL in the cloud.
Finally, we discuss the limitations and future work.

2 Architecture

An early design decision was to not change the YAWL system itself. By not
changing YAWL itself, we are not bound to a specific (modified) version of
YAWL. Moreover, to avert having to learn a new system, the end-user should
not notice that she is working in the cloud. Finally, there has to be an additional
component to control and observe the current state of YAWL in the cloud. This
resulted in the high level architecture as depicted in Fig. 1, note that A, B, E,
X are the interfaces of a YAWL engine. For each of the constraints, we list part
of the effect it had on the architecture. Please note (as Fig. 1 shows), we are
running multiple YAWL engines on multiple machines.

Instead of running a single YAWL server on a single machine, we assume that
we are running multiple YAWL servers on multiple machines. The combination
of these servers/machines is YAWL in the cloud.

No change to YAWL: By having multiple YAWL engines, it is no longer apparent
to which engine to connect. Therefore, we introduce a router component. This
router component routes the requests to the correct YAWL engine.

2

42



By not changing YAWL, each YAWL engine is unaware of the other YAWL
engines. Therefore, it can no longer be guaranteed that every case identifier is
unique. In order to overcome this, we introduce unique global cloud identifiers
and maintain a mapping between global (cloud assigned) identifiers and local
(engine specific) identifiers. This mapping is stored in a central database, and
the transformations of the global/local identifiers to local/global identifiers (and
vice versa) is done by the router.

We can now receive a request and route it to the correct engine(s). However,
when multiple engines have to be consulted, we also obtain multiple responses.
Therefore, we need to merge these responses in a single response before sending
it back to the requestor. The merging of the responses is handled by the router.

Finally, it might be the case that not all the information in a response is
intended for the requestor. This can be the case when an engine is running
multiple cases for different tenants. Since the YAWL engine does not know the
notion of multiple tenants, it sends information about all the tenants back as a
response. Therefore, we also include filtering functionality in the router.

Invisible cloud infrastructure: YAWL is decomposed into components, e.g., en-
gine, resource service, process designer. This decomposition yields that we only
have to take care that the resource service is directed to YAWL in the cloud
instead of an actual engine. This change is only a configuration of the resource
service. By using the resource service as is, we do not change the front-end view
of the end-user.

Management component: For the management component, we require a number
of views on the cloud. One of these views is a functional view denoting per
tenant which specifications and cases are loaded. Apart from a functional view,
we also want a software view denoting the hierarchy of servers, engines, tenants,
specifications, and cases. Furthermore, this management view should be usable
to create new tenants, and bring new engines into the cloud.

Complete architecture: Taking all the constraints into account, we obtain the
more detailed architecture depicted in Fig. 2. At the back, the communication
with the different engines is situated. At the front we have a single point of
entry for the resource services. Inside of the architecture, we have the routers
for routing, translating, merging and filtering of requests and responses. These
routers use the central database (DB) for the lookups of identifiers. There is a
management component at the centre communicating with the engines and the
central database. Finally, we have included a load balancer for both the incoming
and outgoing requests. This load balancer is cloud-based and offers the option
to enable/disable routers if necessarily. Furthermore, if a router cannot handle
the requests, then the load balancer can initiate an extra router.

Within cloud computing there are different deployment models: public, pri-
vate, community, and hybrid. In our architecture, we do not pose any restrictions
on the used deployment model, i.e., our architecture is applicable to all of these

3

43



Fig. 2: The architecture for YAWL in the cloud

deployment models. Apart from different deployment models, there exist differ-
ent service models, i.e., abstraction levels from the underlying hardware. These
service models come in 4 different flavours (in ascending abstraction level): In-
frastructure as a Service (IaaS), Platform as a Service (PaaS), Software as a
Service (SaaS), and Business Process as a Service (BPaaS). Our architecture
has been designed to be used in a PaaS service model. For a more extensive
discussion on service models and deployment models, see [5].

Having presented our architecture, we now present the YAWL in the cloud
implementation. For each of the newly introduced components, we show some
of the implementation details.

3 Implementation

Using the architecture shown in Fig. 2, we implemented the various components
connecting to standard YAWL. Due to space restriction, not all implementation
details can be covered. See [5], for a complete overview of the implementation of
YAWL in the cloud.

The router: As mentioned, we had to introduce a routing component for routing,
translating, merging and filtering of requests and responses before sending them
to the requestor. In Fig. 3, the communication between the different components
is depicted. First a request is sent to the router, then the router consults the
database for (amongst others) translating global identifiers to engine specific
identifiers. Afterwards, the router contacts the engines of interest for this request.
After the engines have sent their responses, these responses are merged, filtered,
and the database is consulted for translation of engine specific identifiers to
global identifiers. Finally, the created response is forwarded to the client.

4

44



YAWL Engine YAWL Engine YAWL Engine

Router Database

Client

1

2, 6

3, 7

44 5
5

8

Fig. 3: The communication between the different components when a request is
made.

Based on the type of request, different types of merges had to be introduced
and rules for forwarding the request to specific engines. For instance, for the
action getAllRunningCases, which gives all the running cases for a particular
tenant, we have to merge the results per specification (i.e., multiple engines can
have the same specification and we do not want to duplicate the specification to
the user). Furthermore, this request has to be forwarded to all engines running
specifications for this tenant. Finally, the cases for specifications not owned by
the tenant have to be filtered out.

If we consider the action getCasesForSpecification, which gives all the run-
ning cases for a particular specification, we only need to forward this request
to the engines running this specification. The engines return all the cases for
that specification, the cases in the responses have to be merged into a single
response. However, the filtering step is not required as this specification belongs
exclusively to a specific tenant. Other tenants may use the same specification,
but the identifier of this specification is different for different tenants.

The database: In the central database, we store the different local YAWL identi-
fiers and the global cloud identifiers. We have local YAWL identifiers for specifi-
cations, cases, and work-items. Apart from storing the identifiers, we also main-
tain the different tenants and which specification a tenant has at her disposal.
Finally, the database stores the settings for YAWL in the cloud, e.g., which con-
straints are present within YAWL in the cloud. A constraint can be that a tenant
can have at most 5 cases per specification.

The management component: The management component is a view on the
database and on the engines. In Fig. 4a and Fig. 4b two different views are
presented on the systems. The first shows a separation of specifications and cases
per tenant. The second shows a hierarchical view of servers, engines, tenants,
specifications, and cases.

5

45



(a) Functional view, showing which cases
and specifications are loaded per tenant.

(b) Software view, showing the servers,
engines, tenants, specifications, and
cases, and the hierarchy of them.

Fig. 4: Two different views on the cloud in the management component; per
tenant, and hierarchical per server.

Apart from providing a view on the engines and database, the management
component also allows to add/remove engines, and to add/remove tenants. Note
that this functionality is currently semi-automated as the configuration of the
different components still requires human involvement.

The front-end: Figure 4 shows the administrator view on two tenants. The views
the different tenants have are depicted in Fig. 5 and Fig. 6. We have changed the
name and colour of the YAWL admin view in order to stress that both tenants
have indeed different views. Figures 5 and 6 also show the filtering step of the
routers as a tenant only sees her cases, and not the cases of the other tenants.

4 Limitations and Future Work

We have presented our architecture for bringing YAWL in the cloud using the
following design decisions: no changes to YAWL, and the end-user should be
unaware to the cloud back-end. Furthermore, there had to be a management
component to control the cloud. Along with our architecture, we also have shown
some of our implementation details.

The implementation of bringing YAWL in the cloud is not complete. For every
action on every interface, specific transformations had to be made. Therefore,
we have focussed on the main interfaces: interface A inbound, and interface B
in- and outbound. In future implementations, we want to extend the support to
also include interface E and interface X.

YAWL in the cloud now mainly works in a semi-automated fashion, i.e., some
actions require human involvement. In the ideal implementation, we want to have

6

46



Fig. 5: The management view of tenant 4.

full automated support for all the features. Using this full automated support,
it also allows for automated increases and decreases in computing power. In our
current implementation, we have added functionality to optimise the computing
power. Unfortunately, the added overhead of YAWL in the cloud is not compen-
sated by the scalability. In the future, we want to profile our implementation
and solve the bottlenecks currently in the implementation.

With bringing YAWL in the cloud, we mainly focussed on the engine. The
next step would be to also bring the resource service in the cloud. By bringing
the resource service in the cloud, we allow for an extra layer of flexibility and a
clearer separation between organisations. Thanks to the decomposition of YAWL
into different components, one can employ a similar approach to bringing the
resource service in the cloud as we have done for bringing the engine in the cloud.

Finally, this research was started with collaboration and knowledge sharing
amongst municipalities in mind. In the next step, we plan to use configurable
YAWL as the base for the different process models in use by the municipalities.
With configurable YAWL, the best practises are captured in a single model,

7

47



Fig. 6: The management view of tenant 5.

allowing the municipalities to cherry-pick the practises best fit for their organi-
sation.

References

1. van der Aalst, W.M.P.: Business process configuration in the cloud: How to support
and analyze multi-tenant processes? In Zavattaro, G., Schreier, U., Pautasso, C.,
eds.: ECOWS, IEEE (2011) 3–10

2. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N., eds.: Modern
Business Process Automation: YAWL and its Support Environment. Springer (2010)

3. La Rosa, M.: Managing variability in process-aware information systems. PhD
thesis, Queensland University of Technology (2009)

4. Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University of
Technology, The Netherlands (December 2009)

5. Avoort, T.F.v.d.: BPM in the Cloud. Master’s thesis, Eindhoven University of
Technology, The Netherlands (2013)

8

48


