
Designing workflows based on
product structures
W.M.P. van der Aalst
Department of Mathematics and Computing Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands, telephone: -31 40 2474295,
e-mail: wsinwa@win.tue.nl

Workflow management promises a new solution to an age-old problem: controlling, monitoring,
optimizing and supporting business processes. What is new about workflow management is the
explicit representation of the business process logic which allows for computerized support. Busi-
ness processes supported by a workflow management system are case-driven in the sense that tasks
are executed for specific cases. A case corresponds to a service to the environment. Approving a
loan, processing an insurance claim and handling a traffic violation are examples of case-driven
processes. A case corresponds to a product that needs to be produced. Although the product is
not a physical object, it has an internal structure, i.e., it is an informational object assembled from
components. Therefore, the well-known bill-of-materials can be used to describe the product that
is manufactured using a workflow management system. This paper describes a technique to auto-
matically generate a workflow process based on a bill-of-materials. It allows workflow designers
to think in terms of the end-product instead of the internal process and constitutes a basis for the
automatic configuration of a workflow management system on the basis of a bill-of-materials.

Keywords: workflow management; bill-of-materials; product structures; Petri nets.

1 Introduction

From a logistical point of view, there are many similarities between administrative pro-
cesses and production processes (cf. Platier [19]). Both kinds of processes, focus on the
routing of work (workflow) and the allocation of work to resources. In a production sys-
tem, the products are physical objects and the principal resources are machines, robots,
humans, conveyor belts and trucks. In an administrative process the products are often
informational (e.g. documents) and most of the resources are human. Although there are
many similarities, there are also some logistical aspects in which an administrative process
differs from a typical manufacturing process:

1. Making a copy is easy and cheap.
In contrast to making a copy of a product like a car, it is relatively easy to copy a
piece of information (especially if it is in electronic form).

2. There are no real limitations with respect to the in-process inventory.
Informational products do not require much space and are easy to access (especially



if they are stored in a database).

3. There are less requirements with respect to the order in which tasks are executed.
Human resources are flexible and there are few technical constraints.

4. Quality is difficult to measure.
What is the quality of the decision to accept an insurance claim?

5. Quality of end-products may vary.
A manufacturer of cars has a minimal quality level that any product should satisfy.
However, in an administrative process it might be attractive to skip certain checks to
reduce the workload.

6. Transportation of electronic data is timeless.
In a network information travels at the speed of light.

7. Production to stock is seldom possible.
Every product is unique, therefore it is difficult to produce in advance. It is not pos-
sible to process an insurance claim before it arrives.

Nevertheless, the two types of processes have a lot in common. Consider for example per-
formance indicators such as throughput time, waiting time, service level and utilization.
These performance indicators play a prominent part in both domains.

Many methods, techniques and tools have been developed to support the logistic control
of manufacturing processes. MRP-I, MRP-II, BOM, OPT, JIT, TQM, EOQ, SIC, EPQ
en DRP are some of the buzzwords used to identify the logistical principles successfully
applied in this context (Buffa and Sarin [9]). Until now, the workflow-community (cf.
WFMC [20]), involved in automating administrative processes, has neglected to properly
use these logistical principles. Despite the differences between the two application do-
mains, it is clear that the workflow-community could benefit from these logistical prin-
ciples (cf. Platier [19]). Unfortunately, most vendors of workflow management systems
focus on the separation of processes and applications (i.e. pushing the control flow out of
the applications), instead of the logistic control of the workflow. In this paper we try to uti-
lize a specific logistic concept in the context of workflow modeling: the bill-of-materials.
We will show that the bill-of-materials can be used to generate a workflow process defini-
tion. In this paper we specify workflow processes in terms of a Petri net. Petri nets are a
well-known technique to model and analyze workflow processes (Ellis and Nutt [11], Van
der Aalst [2, 4, 7]). Petri nets have a strong theoretical basis and are close to the process
modeling techniques used in today’s workflow management systems. Therefore, this pa-
per constitutes a basis for the automatic configuration of a workflow management system
on the basis of a bill-of-materials.

This paper is organized as follows. First, we discuss the relevance of workflow manage-
ment (systems) and motivate the use of product structures in the context workflow manage-
ment. In Section 3 we introduce the bill-of-materials in a workflow context. In Section 4



we discuss the use of Petri nets for the modeling of workflow processes. The relation be-
tween these two models is investigated in Section 5. Moreover, an algorithm is given to
map a bill-of-materials onto a Petri net. This paper is an expanded version of an earlier
paper [5].

2 Workflow management

In former times, information systems were designed to support the execution of individ-
ual tasks. Today’s information systems need to support the business processes at hand. It
no longer suffices to focus on just the tasks. The information system also needs to con-
trol, monitor and support the logistical aspects of a business process. In other words, the
information system also has to manage the flow of work through the organization. Many
organizations with complex business processes have identified the need for concepts, tech-
niques, and tools to support the management of workflows. Based on this need the term
workflow management was born.
Until recently there were no generic tools to support workflow management. As a result,
parts of the business process were hard-coded in the applications. For example, an appli-
cation to support task X triggers another application to support task Y. This means that one
application knows about the existence of another application. This is undesirable, because
every time the underlying business process is changed, applications need no be modified.
Moreover, similar constructs need to be implemented in several applications and it is not
possible to monitor and control the entire workflow. Therefore, several software vendors
recognized the need for workflow management systems. A workflow management system
(WFMS) is a generic software tool which allows for the definition, execution, registration
and control of workflows. At the moment many vendors are offering a workflow manage-
ment system. This shows that the software industry recognizes the potential of workflow
management tools.

60-ties 70-ties

OS

D
B

M
S

UIMS

80-ties 90-ties

W
FM

S

A
PPL

OS

APPL

OS

APPL

D
B

M
S

OS

D
B

M
SAPPL

UIMS

Figure 1: Workflow management systems in a historical perspective.

In order to become aware of the impact of workflow management in the near future, it is
useful to consider the evolution of information systems over the last four decades. Figure 1
shows the phenomenon workflow management in a historical perspective. In the sixties an
information system was composed of a number of stand-alone applications. For each of
these applications an application-specific user interface and database system had to be de-
veloped, i.e. each application had its own routines for user interaction and data storage



and retrieval. In the seventies data was pushed out of the applications. For this purpose
database management systems (DBMSs) were developed. By using a database manage-
ment system, applications were freed from the burden of data management. In the eighties
a similar thing happened for user interfaces. The emergence of user interface management
systems (UIMSs) enabled application developers to push the user interaction out of the
applications. In our opinion workflow management systems are the next step in pushing
generic functionality out of the applications. The nineties will be marked by the emergence
of workflow software, allowing application developers to push the business procedures out
of the applications.
Figure 1 clearly shows that, in essence, the workflow management system is a generic
building block to support business processes. Many information systems could benefit
from such a building block, because many organizations are starting to see the need for ad-
vanced tools to support the design and execution of business processes. There are several
reasons for the increased interest in business processes. First of all, management philoso-
phies such as Business Process Reengineering (BPR) and Continuous Process Improve-
ment (CPI) stimulated organizations to become more aware of the business processes. Sec-
ondly, today’s organizations need to deliver a broad range of products and services. As a
result the number of processes inside organizations has increased. Consider for example
mortgages. A decade ago there were just a few types of mortgages, at the moment numer-
ous types are available. Not only the number of products and services has increased, also
the lifetime of products and services has decreased in the last three decades. As a result,
today’s businesses processes are also subject to frequent change! Moreover, the complex-
ity of these processes increased considerably. All these changes in the environment of the
information system in an average organization, have made business processes an impor-
tant issue in the development of information systems. Therefore, there is a clear need for
a building block named “workflow management system”.

Clearly, today’s workflow management systems focus on the support of workflow pro-
cesses. However, the process is not a goal by itself! The output of the process is of the
utmost importance. Therefore, it is important to define the output of the workflow pro-
cess. One way to define the output is a specification of the end-product produced by the
workflow process in terms of its components. In this paper we will show that it is possible
to apply the bill-of-materials to the domain of workflow management. Moreover, we will
show that it is possible to derive the workflow process on the basis of a bill-of-materials.

3 Modeling product structures using the bill-of-materials

The Bill-Of-Materials (BOM) is often used in manufacturing to capture the structure of the
products to be produced (Orlicky [17], Buffa and Sarin [9]). A bill-of-materials specifies
which materials are needed to manufacture a product. Consider for example the bill-of-
materials shown in Figure 2. This bill-of-materials specifies that a car is assembled from an
engine and a subassembly. The subassembly is assembled from a chassis and four wheels.
Many production control systems are centered around the bill-of-materials. Material Re-



subassebly_B

car_A

engine_C

wheel_D chassis_E

4

Figure 2: The bill-of-materials for a car.

quirements Planning (MRP-I) and Material Resources Planning (MRP-II) use the bill-of-
materials as a starting point for the scheduling of the production process and the control
of the inventory.

Administrative processes encountered in banking, insurance and government also produce
products. The production of these workflow products corresponds to the processing of so-
called cases. Examples of cases are tax declarations, traffic violations, insurance claims,
purchase orders, licenses and loans. For these workflow products it is also possible to con-
struct a bill-of-materials. Figure 3 shows the bill-of-materials of an insurance policy. An
insurance policy consists of customer data (cd), insurance data (id) and possibly a medi-
cal report (depending on the type of insurance). The black dots indicate that the customer
data and the insurance data are mandatory components. The customer data of an insurance
policy consist of historical data (hd) and personal data (pd). The insurance data consist of
risk data (rd) and information on either standard rates (sr) or customized rates (cr). The
circle indicates that a choice is made between several components. Note that we extend
the classical bill-of-materials with options and choices. In literature the term ‘variant bill-
of-materials’ is used to denote such a product specification.

ip

cd

rdhd pd sr cr

idmr

ip = insurance policy
cd = customer data

id = insurance data
hd = historical data
pd = personal data
sr = standard rates
cr = custom rates
rd = risk data

mr = medical report

Figure 3: The bill-of-materials of an insurance policy.

In contrast to the traditional bill-of-materials used in manufacturing, we assume that the



quantity of each component used to assemble a product is equal to one. Moreover, each
component appears only once in the bill-of-materials. The tree-like representation shown
in Figure 3 can be formalized as follows.

Definition 1 (Bill-of-materials) ABOM is a tuple (C, r ,mandatory ,optional , choice):

- C is a finite set of components,

- r ∈ C is the root component,

- mandatory ∈ C → IP(C),

- optional ∈ C → IP(C),

- choice ∈ C → IP(IP(C)),

and satisfies the following properties:

- ∀c∈C |{c′ ∈ C | c ∈ mandatory(c′)}| + |{c′ ∈ C | c ∈ optional (c′)}| + |{(c′, cs) ∈
C × C | cs ∈ choice(c′) ∧ c ∈ cs}| ≤ 1

- R ⊆ C × C such that (c1, c2) ∈ R iff c1 ∈ mandatory(c2) ∪ optional (c2) ∪⋃
(choice(c2)),

- R represents a tree with root r , i.e., R is functional, acyclic and connected.

The connections between the components C form a tree. The end-product (i.e. the pro-
cessed case) is the root component r . Each component c has a number of mandatory com-
ponents mandatory(c) and optional components optional (c). Moreover, for each cs ∈
choice(c) precisely one component in cs is required to produce c. Each component ap-
pears only once in the bill-of-materials. Consider for example Figure 3: mandatory(ip) =
{cd, id}, optional (ip) = {mr} and choice(id) = {{sr, cr}}. A bill-of-materials specifies
a relation R between components; (c1, c2) ∈ R if there is an arrow from c1 to c2. To navi-
gate through the bill-of-materials we introduce some additional notations.

Definition 2 Given a BOM which specifies a relation R and a component c ∈ C, we
define: ĉ = {x ∈ C | (c, x) ∈ R}, č = {x ∈ C | (x , c) ∈ R}, c̆ = mandatory(c) ∪
optional (c) ∪ choice(c). For x ∈ č and y ∈ c̆: x̃ = y iff x = y or x ∈ y.

A bill-of-materials specifies a product structure. However, a WFMS requires a process def-
inition to enact the workflow process. In this paper we use Petri nets for the specification
of workflow processes.



4 Modeling workflow processes using Petri nets

The main purpose of a workflow management system is the support of the definition, ex-
ecution, registration and control of processes. Because processes are a dominant factor in
workflow management, it is important to use an established framework for modeling and
analyzing workflow processes [12, 14, 15]. In this paper we use a framework based on
Petri nets. Petri nets are a well-founded process modeling technique. The classical Petri
net was invented by Carl Adam Petri in the sixties ([18]). Since then Petri nets have been
used to model and analyze all kinds of processes with applications ranging from protocols,
hardware and embedded systems to flexible manufacturing systems, user interaction and
business processes. In the last two decades the classical Petri net has been extended with
color, time and hierarchy ([1, 13]). These extensions facilitate the modeling of complex
processes where data and time are important factors. There are several reasons for using
Petri nets for workflow modeling:

• formal semantics
A workflow process specified in terms of a Petri net has a clear and precise def-
inition, because the semantics of the classical Petri net and several enhancements
(color, time, hierarchy) have been defined formally.

• graphical nature
Petri nets are a graphical language. As a result Petri nets are intuitive and easy to
learn. The graphical nature also supports the communication with end-users.

• expressiveness
Petri nets support all the primitives needed to model a workflow process. All the
routing constructs present in today’s workflow management systems can be mod-
eled. Moreover, the fact that states are represented explicitly, allows for the model-
ing of milestones and implicit choices.

• properties
In the last three decades many people have investigated the basic properties of Petri
nets. The firm mathematical foundation allows for the reasoning about these prop-
erties. As a result, there is a lot of common knowledge, in the form of books and
articles, about this modeling technique.

• analysis
Petri nets are marked by the availability of many analysis techniques. Clearly, this
is a great asset in favor of the use of Petri nets for workflow modeling. These tech-
niques can be used to prove properties (safety properties, invariance properties, dead-
lock, etc.) and to calculate performance measures (response times, waiting times,
occupation rates, etc.). In this way it is possible to evaluate alternative workflows
using standard Petri-net-based analysis tools.

• vendor independent
Petri nets provide a tool-independent framework for modeling and analyzing pro-
cesses. Petri nets are not based on a software package of a specific vendor and do



not cease to exist if a new version is released or when one vendor takes over another
vendor.

The classical Petri net (Murata [16]) is a directed bipartite graph with two node types called
places and transitions. The nodes are connected via directed arcs. Connections between
two nodes of the same type are not allowed. Places are represented by circles and transi-
tions by squares.

Definition 3 (Petri net) A Petri net is a triple (P, T , F):

- P is a finite set of places,

- T is a finite set of transitions (P ∩ T = ∅),

- F ⊆ (P × T ) ∪ (T × P) is a set of arcs (flow relation)

A place p is called an input place of a transition t iff there exists a directed arc from p to
t . Place p is called an output place of transition t iff there exists a directed arc from t to
p. At any time a place contains zero of more tokens, drawn as black dots. The state, often
referred to as marking, is the distribution of tokens over places. The number of tokens may
change during the execution of the net. Transitions are the active components in a Petri net:
they change the state of the net according to the following firing rule:

(1) A transition t is said to be enabled iff each input place p of t contains at least one
token.

(2) An enabled transition may fire. If transition t fires, then t consumes one token from
each input place p of t and produces one token for each output place p of t .

A workflow process specifies which tasks need to be executed and in what order (Koulopou-
los [14]). Such a process can be modeled by using building blocks such as the AND-split,
AND-join, OR-split and OR-join. These building blocks are used to model sequential,
conditional, parallel and iterative routing (WFMC [20]). Clearly, a Petri net can be used
to specify the routing of cases. Tasks are modeled by transitions and causal dependencies
are modeled by places. In fact, a place corresponds to a condition which can be used as
pre- and/or post-conditions for tasks. An AND-split corresponds to a transition with two
or more output places, and an AND-join corresponds to a transition with two or more in-
put places. OR-splits/OR-joins correspond to places with multiple outgoing/ingoing arcs.
Moreover, in [2, 4, 7] it is shown that the Petri net approach also allows for useful routing
constructs absent in many WFMS’s.

Figure 4 shows a Petri net which models the processing of complaints. First the complaint
is registered (task register), then in parallel a questionnaire is sent to the complainant (task
send questionnaire) and the complaint is evaluated (task evaluate). If the complainant re-
turns the questionnaire within two weeks, the task process questionnaire is executed. If
the questionnaire is not returned within two weeks, the result of the questionnaire is dis-
carded (task time out). Based on the result of the evaluation, the complaint is processed or



i o

c1 c3

c4 c6

c7 c9

register

archive

evaluate no_processing

check_processing
processing_OK

processing_NOK

processing_required

c5

process_complaint

c2

c8

time_out

send_questionnaire process_questionnaire

Figure 4: A Petri net for the processing of complaints.

not. The actual processing of the complaint (task process complaint) is delayed until con-
dition c5 is satisfied, i.e., the questionnaire is processed or a time-out has occurred. The
processing of the complaint is checked via task check processing. Finally, task archive is
executed. Note that sequential, conditional, parallel and iterative routing are present in this
example.

5 Mapping the bill-of-materials onto Petri nets

5.1 Introduction

Figure 3 shows the bill-of-materials of an insurance policy. Figure 4 shows a Petri net
which specifies the process of handling complaints. Clearly, these are two ways to view a
workflow. The bill-of-materials provides a product-centric view and the Petri-net provides
a process-centric view. Therefore, it is interesting to establish a relation between these
two views. On the one hand it is useful to think in terms of the products that need to be
’manufactured’, on the other hand it is important to focus on the process that needs to be
controlled. Today’s WFMS’s are process centric, i.e., a process definition is needed to
enact a workflow. Therefore, it is useful to be able to construct a Petri net based on the
bill-of-materials.

In this section we present an algorithm to construct a Petri net based on a product specifi-
cation in terms of a bill-of-materials. For the algorithm it is assumed that there is a one-to-
one relation between tasks and components, i.e., each component is produced by executing
one task and each task corresponds to the production of one component. Figure 5 shows a
bill-of-materials with a component a which is composed of a component b, a component c
(optional) and either a d or an e. If we construct a Petri net for the bill-of-materials shown



b c d e

a optional
choice

mandatory

Figure 5: Some small piece of a bill-of-materials.

in Figure 5, then component a corresponds to a subnet responsible for the production of
a and the components needed to produce a. The subnet starts with a transition preparea.
This transition triggers the activities needed to produce a. Transition preparea starts the
production of b, c (optional) and either d or e. The choice between d and e is modeled by
the place in{d,e}, and the possibility to refrain from c is modeled by the by-pass via transi-
tion skipc. The actual production of a is modeled by transition producea . Figure 6 shows
the subnet which corresponds to the production of a.

Figure 6: The part of the constructed Petri net which corresponds to the production of com-
ponent a in Figure 5.

Component d in Figure 5 has no incoming arcs, i.e., no other components are needed to
produce this product. Therefore, transition d corresponds to the production of d . The other
components needed to produce a are b, c and e. These components require other compo-
nents. This means that b, c and d need to be refined, i.e., each of these components cor-
responds to a network similar to the network constructed for a. The construction of the
overall Petri net is an iterative procedure which starts with the root of the bill-of-materials
and continues until all components have been considered.

Consider the bill-of-materials shown in Figure 3. By applying the iterative procedure we
have just sketched, we obtain the Petri net shown in Figure 7.

Figure 7: A Petri net which corresponds to the bill-of-materials shown in Figure 3.

5.2 Formalization

In Section 3 and 4 we have formally defined a bill-of-materials and a Petri net. Therefore,
we can give an algorithm to construct a Petri net given a bill-of-materials. In this algorithm



we use the navigation primitives defined in Definition 2.

Algorithm 1 Let BOM = (C, r ,mandatory ,optional , choice) be a bill-of-materials.

Step 1
Construct the netPN = (P, T , F) with P = {inr , outr }, T = {r} and F = {(inr , r), (r , outr )},
and goto step (2).

Step 2
Use PN = (P, T , F).

If T ∩ C = ∅ then goto step (4) else select a component c ∈ T ∩ C.

If č = ∅ then relabel transition c to producec and goto step (2) else goto step (3).

Step 3
Replace transition c by a subnet which uses the following places and transitions:
Pout := {outx | x ∈ c̆}, Pin := {inx | x ∈ c̆}, and Tskip := {skip x | x ∈ optional (c)}.

The modified net is defined as follows:
P ′ := P ∪ Pout ∪ Pin

T ′ := (T \ {c}) ∪ {preparec,producec} ∪ č ∪ Tskip

F ′ := (F \ {(inc̃, c), (c, outc̃)}) ∪ {(inc̃,preparec), (producec, outc̃)} ∪
{(outx ,producec) | x ∈ c̆} ∪ {(x , outx̃) | x ∈ č} ∪ {(inx̃ , x) | x ∈ č} ∪
{(preparec, inx ) | x ∈ c̆} ∪ {(skipx , outx) | x ∈ optional(c)} ∪
{(inx , skip x) | x ∈ optional(c)}

PN := (P ′, T ′, F ′) and goto step (2).

Step 4
For each preparation transition (i.e. transitions of form preparex ) with just one input place
and one output place; remove the transition and fuse the input and the output place to-
gether.

To illustrate this algorithm we use the bill-of-materials shown in Figure 8. By applying
the algorithm we obtain the Petri-net shown in Figure 9.

5.3 Analysis of properties

The complexity of the workflowsencountered in modern organizations is increasing. There-
fore, we need methods and techniques to support both the modeling and analysis of these
workflows. Petri nets often allow for a representation which is close to the intuition of the
workflow designer. Moreover, the Petri net representation can be used as a starting point



a

b c

e

Figure 8: A bill-of-materials.

Figure 9: The construction of a workflow process definition based on Figure 8.

for various kinds of analysis. For an overview of the many analysis methods developed for
Petri nets the reader is referred to Murata [16] and Desel and Esparza [10]. These methods
can be used to prove properties (e.g. safety properties, invariance properties, deadlocks)
and to calculate performance measures (response times, waiting times, occupation rates,
etc.). In this way it is possible to evaluate alternative workflows.

The rich theory of Petri nets allows us reason about the correctness of a workflow pro-
cess. Therefore, it is interesting to summarize some of properties that hold for any Petri
net constructed by the algorithm presented in this section.
Let BOM = (C, r ,mandatory ,optional , choice) be a bill-of-materials and let P N =
(P, T , F) be the Petri net constructed using the algorithm.

• P N is safe (1-bounded), i.e., for each case the maximal number of tokens in a place
is equal to one. This means that the places correspond to conditions which are either
true (place contains one token) or false (place is empty).

• P N is (extended) free-choice ([10]), i.e., if two transitions share an input place, then
the sets of input places are identical. Free-choice nets have some very elegant prop-
erties and correspond to workflows where parallelism and choice are separated.

• If inr is fused with outr , then the resulting net is strongly connected. As a result,
each task (transition) or condition (place) is on a path from inr and outr .

• If inr is fused with outr and this fused place is the only place containing a token,
then the resulting net is live. This means that given a reachable state it is possible to
fire any transition, i.e. all tasks can be executed.

• P N is sound ([3, 6]), i.e., if we start in the state where inr is the only place with a
token (the initial state) then the following three properties hold:

– For any reachable state it is possible to reach a state with a token in outr .



– The state which consists of just one token in outr is the only reachable state
with a token in outr .

– It is possible to fire each of the transitions at least once.

The soundness property is a very important property in the context of workflow manage-
ment. A workflow process is sound if, for any case, the process terminates properly, i.e.,
termination is guaranteed, there are no dangling references, and deadlock and livelock are
absent. In [6] several techniques are discussed to verify soundness. For free-choice Petri
nets the soundness property can be verified in polynomial time. For arbitrary workflows
represented in terms of a Petri net, soundness is decidable but also EXPSPACE-hard. For-
tunately, for a Petri net constructed from the bill-of-materials, it is not necessary to use
these techniques because soundness is guaranteed by the construction process itself.

6 Extensions

The Petri net shown in Figure 4 describes a workflow that cannot be constructed by us-
ing the algorithm introduced in the previous section. The workflow allows for iteration
and testing of milestones. For example, the task process complaint may be executed sev-
eral times (iteration) and condition c5 is a requirement for the execution this task (testing
of milestones). Clearly, such a workflow process cannot be derived directly from a bill-
of-materials because the resulting process will support advanced routing constructs suc
as iteration. In practise we need workflow processes such as the process specified by the
Petri net shown in Figure 4. There are two approaches to deal with these more advanced
workflow processes and still use a bill-of-materials. First of all, it is possible to generate
a default process based on the bill-of-materials by applying the algorithm. This default
process is modified to incorporate additional routing constraints and tasks. Secondly, it
is possible to furnish the bill-of-materials with additional information. To add this infor-
mation, we need to extend the definition of a bill-of-materials. In this section, we briefly
discuss some straightforward extensions.

6.1 Precedence constraints

One of the striking differences between administrative processes (office logistics) and man-
ufacturing (production logistics), is the difference in the effort that is needed to produce
an identical copy. Copying a physical component requires considerable effort. Therefore,
the classical bill-of-materials forms a tree; every component is only used once. However,
the effort to make a copy of a piece of information is negligible. Therefore, there is no
reason why the same piece of information (component) should not be used twice. Using
the same component multiple times, results in the introduction of (additional) precedence
constraints. Consider for example the bill-of-materials shown in Figure 10. The personal
data (pd) are used to produce the customer data. However, the personal data (pd) are also
needed to produce the insurance data (id). This means that the production of the insurance



data cannot start before the personal data are present. Therefore, we add a precedence con-
straint between the two components. Note that the precedence constraint is represented by
a dashed arrow.

ip

cd

rdhd pd sr cr

idmr

precedence constraint

Figure 10: The bill-of-materials of an insurance policy with a precedence constraint.

Precedence constraints may introduce conflicts. Consider for example two components c1

and c2. If component c1 is needed to produce component c2 and c2 is needed for c1, then
there is a conflict because of a cyclic dependency. Such a conflict corresponds to cycle in
the bill-of-materials and causes deadlocks in the process definition. Therefore, we will not
allow cycles. Moreover, it does not make sense to allow precedence constraints between
two components if one of the components is needed and the other is not. Consider for
example the bill-of-materials shown in Figure 10. A precedence constraint between mr
and rd does not make any sense, because the medical report (mr) is optional. Based on
these requirements we can formally define a precedence relation pre.

Definition 4 (Precedences) Given a BOM = (C, r ,mandatory ,optional , choice) the
precedence constraints are modeled by a relation pre ⊆ C × C such that: (1) R ∪ pre is
acyclic (R is the relation defined in Definition 1), and (2) if (c1, c2) ∈ pre, then there is a
common ancestor reachable from both c1 and c2 via mandatory subset relations.

Based on a bill-of-materials extended with precedence constraints, we can generate a Petri
net. For this purpose we can use an algorithm similar to the algorithm introduced in the
previous section. Every precedence constraint corresponds to a place pre(x,y) connecting
two transitions producex and producey . Figure 7 shows the Petri net which corresponds to
the bill-of-materials shown in Figure 10.

Figure 11: The Petri net which corresponds to the bill-of-materials shown in Figure 10.

6.2 Grouping

Thus far, we have assumed that there is a one-to-one correspondence between components
in the bill-of-materials and tasks in the workflow process. In general this is not true. The
execution of one task may lead to the production of several products. This phenomenon
can be modeled by grouping related components. In Figure 10 we can group hd, pd and cd



by drawing a circle around this part of the bill-of-materials. This information can be used
to replace the top four transitions in Figure 11 by a single transition which represents the
production of hd, pd and cd. To avoid deadlocks the resulting workflow should not have
any cycles.

It is also possible that the production of one component is spread over a number of sequen-
tial tasks. It is also possible to extend the bill-of-materials with this information.

6.3 Iteration

The workflow process constructed on the basis of a bill-of-materials does not allow for
iteration, i.e. each task is executed only once. In general, iterations are undesirable. How-
ever, they are unavoidable if the result of production step may be unsatisfactory. If a task
producex can fail (i.e. the result is unsatisfactory), then the result of producex is checked
in another task check x and, depending on the result, producex is executed again. This in-
formation can be added to the bill-of-materials by indicating that certain components may
require multiple production steps. During the translation, the additional information can
be used to introduce iteration in the workflow process by adding extra ”check tasks”.

Many other extensions of the bill-of-materials can be added. For example, it is possible
to reuse a bill-of-materials in another bill-of-materials (modular bill-of-materials). Con-
cepts such as inheritance (generic bill-of-materials) and overriding (comparative bill-of-
materials) can also be introduced.

7 Conclusion

In this paper we have presented an approach to (semi-)automatically generate a workflow
process based on the product to be produced by the workflow system and its environment.
Processes are represented in terms of Petri nets and workflow products are represented in
terms of (extended) bills-of-materials. We have assumed that the process is generated on
the basis of a bill-of-materials. This means that all the process requirements can be de-
duced from some kind of product-oriented description. In many situations this is not very
realistic; both the product-centric view and the process-centric view are useful. Consider
for example the distribution of work over the people involved in the processing of cases.
This aspect is not addressed in the bill-of-materials, but is very important for the logisti-
cal control of the workflow process. Therefore, the process definition is often constructed
from scratch without directly using the bill-of-materials. In this case it is also possible to
relate the bill-of-materials and the process definition. For each task in the workflow pro-
cess we can specify the components that are created and/or used. Based on this information
and the bill-of-materials it is possible to verify whether there are any conflicts between the
causal order in the process and the bill-of-materials. Consider for example the Petri net
shown in Figure 7. If we put producecd and produce pd in parallel, then there is a conflict
with the bill-of-materials in Figure 3 because the personal date (pd) are needed to produce



the customer data (cd). In our opinion, the validation of the workflow process by com-
paring it with the bill-of-materials is an important topic for further research. Preliminary
results show that the theory of the so-called implicit places (cf. Berthelot [8]) can be used
to verify the consistency between the two complementary views on workflow management
presented in this paper.

References

[1] W.M.P. van der Aalst. Putting Petri nets to work in industry. Computers in Industry,
25(1):45–54, 1994.

[2] W.M.P. van der Aalst. Petri-net-based Workflow Management Software. In A. Sheth,
editor, Proceedings of the NFS Workshop on Workflow and Process Automation in
Information Systems, pages 114–118, Athens, Georgia, May 1996.

[3] W.M.P. van der Aalst. Structural Characterizations of Sound Workflow Nets. Com-
puting Science Reports 96/23, Eindhoven University of Technology, Eindhoven,
1996.

[4] W.M.P. van der Aalst. Three Good reasons for Using a Petri-net-based Workflow
Management System. In S. Navathe and T. Wakayama, editors, Proceedings of the
International Working Conference on Information and Process Integration in Enter-
prises (IPIC’96), pages 179–201, Camebridge, Massachusetts, Nov 1996.

[5] W.M.P. van der Aalst. Designing workflows based on product structures. In K. Li,
editor, Proceedings of the ninth IASTED International Conference on Parallel and
Distributed Computing Systems, 1997 (to appear).

[6] W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azema and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes in
Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

[7] W.M.P. van der Aalst and K.M. van Hee. Workflow Management: Models, Methods
and Systems (in Dutch). Academic Service, Schoonhoven, 1997.

[8] G. Berthelot. Transformations and decompositions of nets. In W. Brauer, W. Reisig,
and G. Rozenberg, editors, Advances in Petri Nets 1986 Part I: Petri Nets, central
models and their properties, volume 254 of Lecture Notes in Computer Science,
pages 360–376. Springer-Verlag, Berlin, 1987.

[9] E.S. Buffa and R.K. Sarin. Modern production/operations management. Series in
production/operations management. Wiley, 1987.

[10] J. Desel and J. Esparza. Free choice Petri nets, volume 40 of Cambridge tracts in
theoretical computer science. Cambridge University Press, Cambridge, 1995.



[11] C.A. Ellis and G.J. Nutt. Modelling and Enactment of Workflow Systems. In M. Aj-
mone Marsan, editor, Application and Theory of Petri Nets 1993, volume 691 of Lec-
ture Notes in Computer Science, pages 1–16. Springer-Verlag, Berlin, 1993.

[12] K. Hayes and K. Lavery. Workflow management software: the business opportunity.
Ovum, 1991.

[13] K. Jensen. Coloured Petri Nets. Basic concepts, analysis methods and practical
use. EATCS monographs on Theoretical Computer Science. Springer-Verlag, Berlin,
1992.

[14] T.M. Koulopoulos. The Workflow Imperative. Van Nostrand Reinhold, New York,
1995.

[15] P. Lawrence, editor. Workflow Handbook 1997, Workflow Management Coalition.
John Wiley and Sons, New York, 1997.

[16] T. Murata. Petri Nets: Properties, Analysis and Applications. Proceedings of the
IEEE, 77(4):541–580, April 1989.

[17] J.A. Orlicky. Structuring the bill of materials for mrp. Production and Inventory
Management, pages 19–42, Dec 1972.

[18] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Institut für instrumentelle
Mathematik, Bonn, 1962.

[19] E.A.H. Platier. A logistical view on business processes: BPR and WFM concepts (in
Dutch). PhD thesis, Eindhoven University of Technology, Eindhoven, 1996.

[20] WFMC. Workflow Management Coalition Terminology and Glossary (WFMC-TC-
1011). Technical report, Workflow Management Coalition, Brussels, 1996.


