
Diagnostic Information for Compliance Checking of
Temporal Compliance Requirements

Elham Ramezani, Dirk Fahland, Boudewijn van Dongen, and Wil van der Aalst

Eindhoven University of Technology, The Netherlands
{e.ramezani,d.fahland,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract. Compliance checking is gaining importance as today’s organizations
need to show that operational processes are executed in a controlled manner while
satisfying predefined (legal) requirements or service level agreements. Deviations
may be costly and expose an organization to severe risks. Compliance checking is
of growing importance for the business process management and auditing com-
munities. This paper presents an approach for checking compliance of observed
process executions recorded in an event log to temporal compliance requirements,
which restrict when particular activities may or may not occur. We show how
temporal compliance requirements discussed in literature can be unified and for-
malized using a generic temporal compliance rule. To check compliance with
respect to a temporal rule, the event log describing the observed behavior is aligned
with the rule. The alignment then shows which events occurred out of order and
which events deviated by which amount of time from the prescribed behavior.
This approach integrates with an existing approach for control-flow compliance
checking, allowing for multi-perspective diagnostic information in case of compli-
ance violations. We show the feasibility of our technique by checking temporal
compliance rules of real life event logs.

Keywords: compliance checking, process mining, data aware conformance check-
ing, Petri nets

1 Introduction

Processes supported by information systems need to comply with regulations, laws and
service level agreements set by both internal and external stakeholders. Failing to comply
may be costly, therefore organizations need to continuously check whether processes are
executed within a given set of boundaries. Deviations of the observed behavior from the
specified compliant behavior may point to fraud, malpractice, risks, and inefficiencies.
Five types of compliance-related activities can be identified [8, 23, 7, 19]: (1) determine
compliance requirements that have to be satisfied by the particular process and system,
(2) formalize compliance requirements in a suitable form, (3) implement and configure
information systems such that they fulfil compliance requirements, (4) check whether
compliance requirements are met, and (5) improve the process and underlying systems
based on diagnostic information to improve compliance.

Compliance checking is gaining importance because of the availability of event data
on one hand and changing legislations on the other hand. The organizations are not only

2 Elham Ramezani et al.

required to obey the laws and regulations but often required to comply with standards
and contractual obligations. In many standards such as clinical guidelines and constraints
governing cooperative business such as service level agreements, time is of utmost
significance. In processes that are subject to such guidelines and agreements, it is often
extremely important to meet deadlines, optimize response time, stay compliant about
durations, adhere to constraints about delay between activities and periodic repetition of
actions. At the same time, new technologies are providing opportunities to systematically
observe processes at a detailed level by recording all process relevant events.

There are two basic types of compliance checking: (1) forward compliance checking
aims to design and implement processes where compliant behavior is enforced and (2)
backward compliance checking aims at detecting and localizing non-compliant behavior.
This paper focuses on backward compliance checking based on event data.

The compliance requirements considered in this paper constrain at which time
activities may, must or must not occur. Compliance violations regarding time cannot be
detected using existing control-flow checking techniques such as [21]; as these techniques
abstract from a concrete notion of time, both when specifying compliance rules and
when checking reality recorded in the event log against specified behavior. Therefore
for temporal compliance checking, it is required to express temporal constraints with an
explicit notion of time, capture notion of time in the event log and compare the specified
time in temporal constraints with time recorded in the event log.

This paper addresses the problem of backward compliance checking for temporal
compliance requirements (i.e., compliance requirements restricting process time). We
propose a technique for temporal compliance checking that seamlessly integrates with
control-flow compliance checking. Most importantly, the technique provides detailed
diagnostic information in case of non-compliant behavior: it shows for each case which
events violated temporal requirements and when the event should have occurred to be
compliant. Our temporal compliance checking technique leverages a recent data-aware
conformance checking technique [13] that allows to check conformance of a log with
respect to a data-aware Petri net. We show that every temporal compliance requirement
discussed in literature (and many more) can be formalized in a simple data-aware Petri
net, by making time a data attribute of the specification. The conformance checker [13]
then compares the observed temporal behavior in the event data to the compliant temporal
behavior specified in the Petri net. In case of deviations, the conformance checker
highlights which events occurred out of order, and by how much time an event deviated
from the compliant behavior. Moreover, we show how this temporal compliance checking
can be combined with control-flow compliance checking to check complex compliance
requirements involving control-flow and temporal aspects. The technique has been
implemented as a ProM plug-in and has been applied in a case study using event data
and compliance requirements for a real-life business process in the public sector.

The remainder of this paper is organized as follows. We recall conformance checking
techniques for control-flow and data-flow in Sect. 2. In Sect. 3 introduces the problem
of temporal compliance checking and our proposed solution. Experimental results are
presented and discussed in Sect. 4. We discuss related work in Sect. 5 and conclude in
Sect. 6.

Diagnostic Information in Temporal Compliance Checking 3

2 Preliminaries

This section recalls basic conformance checking notions for control-flow conformance [1,
3] and data-flow conformance [13] on which we build for temporal compliance checking.

Logs. Conformance checking relates behavior that has happened and was recorded in
an event log L to a formal specification S that describes which behavior should have
happened. In this context, an event log L is a set of traces. Each trace σL ∈ L describes
a particular case (i.e., a process instance) as a sequence of events σL = e1e2 . . . en. An
event e has a number of attributes, typically referring to the activity executed or the time
of its execution. For instance, we write e.activity = a and e.time = t to refer to the
value of the activity and of the time attribute of event e, respectively; as a shorthand, we
may write e = (a, t). An example of a log trace is σL = 〈(A, 1)(C, 3)(C, 7)(D, 12)〉
stating A happened at time 1, C happened at 3, another C happened at 7 and finally D
happened at 12.

Specified behaviors. The specification of behavior that should have happened can be
expressed in various ways, for instance as a Petri net [1] or as declarative constraints [12]
or predicate logic. In essence, each specification describes a set S of admissible behaviors,
again being sequences of events having attributes. Typically, the set S is very large,
varying over all admissible attribute value combinations. The set S is the semantic notion
of all compliant traces. For example, a specification could describe the traces S shown
in Fig. 1(left). The traces state that A happens at time 1, B happens at time 4, C happens
any time between 1.1 and 7, and D always happens 10 time units after C. Note that the
ordering of B and C depends on the times of their occurrences.

In this paper, we use Petri nets to specify the admissible behavior S in a compact
form. Figure 1(right) shows a Petri net variant, called data-aware Petri net [13], that
specifies the above admissible sequences of events including the values of the time
attribute. That is, the firing sequences of the Petri net NS is the set S given in Fig. 1(left).
In NS , transitions have additional annotations that specify attribute values of the event e
that is created by the occurrence of a transition. For instance, the guard [e.time = 1] of
transition A expresses that the event e created by A has the value 1 of its time attribute.
Likewise, an event created by B has value 4 of its time attribute. The guard of C permits
any value between 1.1 and 7 for attribute time of C. The relation between events of C
and D is expressed by the help of variable tC . The time value of the most recent event
produced by C is stored in variable tC , expressed by the write statement {t′C = e.time}
annotated at C. The guard of D then expresses that the time value of D has to be exactly
10 time units after the value stored in tC . Note that the net in Fig. 1 has no explicit notion
of time; the annotations simply constrain numerical values of the event attribute time .

S = { 〈 (A,1)(C,1.1)(B,4)(D,11.1) 〉,
. . . ,
〈 (A,1)(C,3.9)(B,4)(D,13.9) 〉,
. . . ,
〈 (A,1)(B,4)(C,4.1)(D,14.1) 〉,
. . . ,
〈 (A,1)(B,4)(C,7)(D,17) 〉}

B

{tC’ = e.time}

A

C

D

[e.time = 1]

[e.time = 4]

[1.1 ≤ e.time ≤ 7]

[e.time = tC +10]

var: tC

Fig. 1. Data-aware Petri net NS specifying admissible times of occurrences of activities.

4 Elham Ramezani et al.

Aligning observed to specified behaviors. An observed trace in a log may deviate from
specified behaviors. For instance, the non-compliant trace σL = 〈(A, 1)(C, 3)(C, 7)(D, 12)〉
is not specified by NS of Fig. 1. To understand where and how σL deviates from the
behaviors S, we align σL to S, as follows [1, 3, 13].

The idea is to find a specified trace σS ∈ S that is as similar as possible to σL;
the differences between σS and σL then indicate deviations. We relate σL to any trace
σS ∈ S by pairing events. Let AL and AS be the activity names of events in L and S,
respectively. Let ` : AS → 2AL map each specified activity to a set of log activities.
Intuitively, an event f of the specification S pairs with an event e in the log L if
e.activity ∈ `(f.activity).

Let EL and ES be the universe of all possible log events and of all specification
events, respectively. A move of (σL and S) is a pair (x, y) ∈ (EL ∪ {�})× (ES ∪ {�
}) \ {(�,�)}. For x ∈ EL and y ∈ ES , we call

1. (x,�) a move on log,
2. (�, y) a move on specification S,
3. (x, y) a synchronous move iff x.activity ∈ `(y.activity) and x.attr = y.attr for

every other attribute attr of x and y, and
4. (x, y) a synchronous move with data deviation iff x.activity ∈ `(y.activity) and
x.attr 6= y.attr for some other attribute attr of x and y.

An alignment of a trace σL ∈ L to S is a sequence γ = 〈(x1, y1) . . . (xn, yn)〉 of
moves (of σL and S) such that the projection x1 . . . xn to EL is the original trace σL
(i.e., 〈x1 . . . xn〉|EL

= σL), and the projection y1 . . . yn to ES is a specified trace (i.e.,
〈y1 . . . yn〉|ES

∈ S.
For example, the trace σL = 〈(A, 1)(C, 3)(C, 7)(D, 12)〉 has among others the

following three alignments to the traces S of Fig. 1: γ1 = (A, 1) (C, 3) � (C, 7) (D, 12)
(A, 1) (C, 2) (B, 4) � (D, 12)

, γ2 =
(A, 1) � (C, 3) � (C, 7) (D, 12)
(A, 1) (C, 2) � (B, 4) � (D, 12)

, and γ3 = (A, 1) (C, 3) � (C, 7) (D, 12)
(A, 1) � (B, 4) (C, 7) (D, 17)

. Alignments γ1 and

γ2 yield the same specified trace 〈(A, 1)(C, 2)(B, 4)(D, 12)〉; γ3 yields a different trace
〈(A, 1)(B, 4)(C, 7)(D, 17)〉.

Diagnostic information from deviations. All alignments differ in the kind of deviations
they show. A move on log (x,�) indicates that trace σL had an event x that was not
supposed to happen according to specification S whereas a move on specification
S (�, y) indicates that σL was missing an event that was expected according to S.
Synchronous moves with data deviations indicate that the observed event had other
attribute values than specified. As the alignment preserves the position relative to trace
σL, we can locate the exact position where σL had an event too much or missed an event
compared to S.

According to γ1, the time attribute of the first C is wrong (it should have been 2
instead of 3 according to the synchronous move with data deviation), B should have
occurred (according to the move on S), and the second C should not have occurred
(move on log). According to γ2, none of the C events was correct, but there should have
been another C event at time 2. According to γ3, the second C event was correct at time
7, the first C event at time 3 was wrong, and D should instead have occurred at time 17
(synchronous move with data deviation).

Diagnostic Information in Temporal Compliance Checking 5

Computing alignments. The conformance checking problem in this setting is to find for
a given trace σL and specification S a best alignment γ of σL to S s.t. no other alignment
has fewer non-synchronous moves or moves with data deviations. The techniques of [1,
3] and [13] find such a best alignment using a cost-based approach: a cost-function κ
assigns each move (x, y) a cost κ(x, y) s.t. a synchronous move (without data deviations)
has cost 0 and all other types of moves have cost > 0. The choice of costs depends
on the particular domain and can be set for instance based on how likely a particular
deviation is known to happen. By giving frequent deviations fewer costs than infrequent
deviations, the best alignment is the one giving the most probable compliant trace. For
example, assuming cost 10 for all non-synchronous moves (knowing control-flow is
usually followed), cost 3 for data deviations by C (typically happens as specified) and
costs 1 for data deviations by D (typically known to deviate), γ1 has cost 23, γ2 has cost
40, and γ3 has cost 21, making γ3 the best alignment to the most probable trace.

The A?-based search on the space of (all prefixes of) all alignments of σL to S
described in [1, 3] can be used to find a best alignment for σL and S (when attributes
other than activity are ignored). This approach is extended in [13] to find data-aware
alignments; an ILP solver finds among all synchronous moves values for attribute of S
such that the data deviations are minimized. In the following, we apply alignments for
temporal compliance checking.

3 Temporal Compliance Checking

This section presents our main contribution, an approach for checking temporal compli-
ance on past executions recorded in event logs. We first recall different dimensions of
compliance requirements. After that we present our approach that allows to integrate
checking for control-flow and temporal compliance requirements together with a generic
framework for formalizing various temporal requirements.

3.1 Compliance Requirements

Compliance requirements prescribe how internal or cross-organizational business pro-
cesses have to be designed or executed. They originate from legislations and restrict
one or several perspectives of a process (control flow, data flow, process time or or-
ganizational aspects), they can restrict each case individually or a group of cases, or
prescribe properties of process executions or process design [21]. These different aspects
of compliance give rise to the compliance rule framework shown in Fig. 2. A complex
compliance requirement covering several perspectives of a process can be decomposed
into smaller compliance rules, each covering a single aspect along the dimensions of this
framework.

For example, a compliance requirement might state: “The treatment with antibiotics
must be administered with one dose per day for 3 days in a row. After each cycle of 3
treatments, in case of necessity, the treatment can be extended for other cycles; but there
should be delay of at least one week between two subsequent cycles of treatment”.

6 Elham Ramezani et al.

Fig. 2. Compliance Rule Frame-
work [21]

This requirement can be divided into three different
compliance rules: (1) (control flow) “antibiotics must
be administered in cycles of 3 occurrences”, (2) (pro-
cess time) “between two subsequent administration of
antibiotics in a cycle, there should be one day delay”,
and (3) (process time) “between two subsequent cycles,
there should be at least one week delay”, each taking
only one perspective (control flow or process time) into
account. The compliance checking technique of [21] is
able to check control-flow compliance rules, but does not
provides a notion of time and therefore cannot check tem-
poral compliance rules. In the following, we investigate
the relation between the control-flow and time perspec-
tive, then present a new technique that supports time to
check temporal compliance rules, and finally show how
to integrate diagnostic information from both perspectives for comprehensive compliance
diagnostics.

3.2 Separating Temporal- and Control-Flow Compliance Checking

We conducted an extensive literature survey and identified numerous works [11, 18, 10,
24, 14, 2] discussing temporal compliance rules and their formalization. Typically every
compliance requirement restricting the process time implies a control flow compliance
rule in addition to a temporal compliance rule. Even if the ordering of activities is
not restricted in the compliance requirement, at least the existence of some activities
is specified. In the general case, the control-flow rule constrains more than just the
existence of activities, for instance that “antibiotics must be administered in cycles of 3
occurrences”. This leads to a simple assumption for temporal compliance requirements:
a temporal compliance rule constrains the occurrences of events specified in a given
control-flow rule (e.g., “between two subsequent administration of antibiotics in a cycle,
there should be one day delay”); a “larger” temporal rule simply implies a larger control-
flow rule.

A control-flow rule may have to hold multiple times in a trace [16], based on repeated
occurrences of events. For instance, if antibiotics are administered 6 times in total, the
control-flow rule given above has to hold twice; the associated temporal rule has to hold
whenever the control-flow rule occurs. We collected and categorized available temporal
compliance rules (15 temporal compliance rules) in a framework distributed over 7
categories shown in Tab. 1. Some example rules with their category are given next. The
complete collection of compliance rules and their formalization is described in [22].

– Repetition.Rule2: “The delay between execution of two subsequent activities A and
B within all occurrences of a control-flow rule, must be within [α, β] time units”

– Instance Duration.Rule1: “Every occurrence of a control flow rule must be com-
pleted within [α, β] time units since time t.”

– Validity.Rule1: “Every activity A within all occurrence of a control flow rule must
be completed within [α, β] time units since it starts.”

Diagnostic Information in Temporal Compliance Checking 7

Category (Rules) Description
Instance Duration (2) Limits the time length in which a control-flow rule instance

must hold. [24]
Delay Between Instances (1) Limits the delay between two subsequent instances of a

control-flow rule [11, 10, 18, 2]
Validity (3) Limits the time length in which an activity can be exe-

cuted.[11, 10, 18, 24]
Time Restricted Existence (2) Limits the execution time of an activity in calendar.[11, 10,

18]
Repetition (2) Limits the delay between execution of two subsequent activ-

ities.[11, 10, 18, 24, 14, 2]
Time Dependent variability(1) Limits choice of a process path among several ones with

respect to temporal aspects.[11, 10, 18, 24]
Overlap (4) Limits start and completion of an activity with respect to

start and completion of another activity.[11, 10, 18, 24]

Table 1. Categorization of the 15 Temporal Compliance Rules

Event Log

Petri-net
Specification

Alignment

Control Flow
Alignment

Projected Log
Enriched with

Additional
Information

Data-Aware
Petri-net

Specification

Data Flow
Alignment

Alignment

Control Flow
Compliance

Rule

A
A

Temporal
Compliance

Rule

Fig. 3. Temporal Compliance Checking Overview

– Time Restricted Existence.Rule1: “Every activity A within all occurrences of a
control flow rule may only be executed at times t1 , ..., tn”.

– Time Dependent Variability.Rule1: “Within all occurrences of a control flow rule,
activityB must be executed within [α1, β1] time units since time t1 ifA has occurred
within [α2, β2] time units since time t2.”

The dependency between control-flow rules and temporal rules raises a challenge for
temporal compliance checking: we first have to identify the different occurrences of a
control-flow rule, for which then the temporal rule can be checked. This gives rise to our
approach shown in Fig. 3.

We decompose a complex compliance requirement into a control-flow rule and a
temporal rule. The event log is first aligned to the control-flow rule using the technique
of Sect. 2 to identify control-flow violations in terms of missing or inserted events;
this alignment will also distinguish multiple occurrences of the same control-flow rule
within one trace. For each alignment, we enrich the log with information about multiple
occurrences of rules and control-flow violations. The enriched log is then used to check
temporal compliance using the data-aware alignments of Sect. 2.

8 Elham Ramezani et al.

However, there is a small challenge in decomposing control-flow and temporal
compliance checking. In case a control-flow violation can be attributed to different
occurrences of a control-flow rule, there exist more than one alignment of a trace to
the control-flow rule. Picking the wrong control-flow alignment could introduce false
positives on temporal compliance, which we eliminate as follows: we compute for each
trace all its control-flow alignments; each alignment leads to an enriched trace variant
for which we compute temporal compliance; the trace variant with the best temporal
compliance (containing only real violations) is returned and all other variants (containing
false positives) are discarded.

Aligning control-flow and temporal checking has an advantage regarding diagnostic
information. A severe control-flow violation implies a violation of the temporal compli-
ance rule. Checking temporal compliance alone might obscure insights into the nature
of the violation. By integrating control-flow and temporal compliance checking, we
can present more meaningful diagnostic information to a user. For this, the existing
control-flow checking technique has to be extended, as we describe next.

3.3 Extended Control-Flow Compliance Checking

A control-flow compliance checking technique based on alignments was presented
in [21]. In this technique, a compliance rule is formalized as a Petri net that describes
all admissible sequences of activities. A collection of over typical 50 control-flow
compliance rules and their formalization as parameterized Petri net patterns are available
from a comprehensive repository [22]. In this section, we show how to extend the
patterns of [21] to distinguish multiple occurrences of the same rule in a trace. Checking
control-flow compliance of a log to an extended pattern then allows to enrich the log
with information needed for temporal compliance checking.

Icmp

Ω

A

3

Initial

Final

Ω Start

p1
done

3

Ist
todo

End

Fig. 4. Petri net formalizing a control-flow rule.

For example, the Petri net pattern of
Fig. 4 formalizes the compliance rule “ac-
tivity A must be executed in groups of
k occurrences” (shown for k = 3). The
core of the rule is formalized in the grey-
shaded part between transitions Ist and
Icmp. The rule becomes active when Ist
occurs. Then activity A has to occur 3
times before the rule can complete (each time A occurs, one token is taken from todo
and put on done). In between, arbitrary other activities can occur, expressed by transition
Ω. The compliance rule may hold multiple times in a trace; this behavior is captured by
the cycle involving Ist and Icmp. Whenever Ist occurs, it puts 3 tokens in the place todo
which activates a new instance of the rule “activity A occurs in groups of 3”; the instance
completes with transition Icmp which removes all tokens from done and puts a token on
p1 . The entire Petri net of Fig. 4 thus allows for multiple instances of the compliance
rule, each instance is framed by the Ist and Icmp transitions; between two instances
arbitrary other activities are allowed as expressed by the Ω-transition attached to place
p1. The net has a dedicated place Initial and a place Final, a Start and an End transition.
A compliant behavior takes the net from the initial marking to the final marking (just one
token in Final) showing arbitrary many instances of the compliance rule. Every Petri

Diagnostic Information in Temporal Compliance Checking 9

net of [21] formalizing a control-flow rule can be extended in this way to distinguish
multiple instances of the same rule in a trace; see [22] for the complete pattern repository.

The alignments of Sect. 2 can be used to check compliance of a trace to the com-
pliance rule “activity A must be executed in groups of k occurrences”. Assume the
trace σ = 〈(B, 1)(A, 2)(A, 30)(A, 54)(A, 100)(C, 123)(A, 162)(D, 173)〉 to be given.
For control-flow compliance checking, we ignore attributes other than activity and
thus align the trace σ = 〈BAAAACAD〉 to the net of Fig. 4. When aligning σ, A
maps to A and Ω maps to all other events B,C,D which are not relevant for the rule.
Additionally, we assume transitions Start , End , Ist and Icmp to be silent so that moves
on the specification (without corresponding event in σ) have cost 0. The approach of
Sect. 2 yields a best alignment γ1 = � B � A A A � � A C � A � D �

Start Ω Ist A A A Icmp Ist A Ω A A Icmp Ω End
showing 1

instance of the rule with 3 occurrences of A and 1 instance of the rule with 2 occurrences
of A. The alignment also shows a missing event A in the second instance by the move on
specification (�, A). Note that σ has 6 more best alignments to the net of Fig. 4 varying
in where the move (�, A) is placed. The subsequent steps (shown for γ1) would have to
be executed for each of these alignments.

To align temporal compliance checking with control-flow compliance checking, we
enrich the original trace σ with information about rule instances and control-flow devia-
tions, as follows. (1) Translate each move of the alignment γ into a log event, where each
event originating in a non-synchronous move is marked by a special “move” attribute.
(2) Enrich each event of a synchronous move with all attributes of the original event in
trace σ. (3) Provide each event of a move on specification with missing attributes, in
particular an event without a time attribute gets the time value of the directly preceding
event (except Start and Ist which get the time value of the succeeding event).

For example, using alignment γ1 we enrich trace σ given above to the traces σγ,1 =
〈(Start , 1)(B, 1)(Ist, 2)(A, 2)(A, 30)(A, 54)(Icmp, 54)(Ist, 100)(A, 100)(C, 123)(A, 123,
missing)(A, 162)(Icmp, 162)(D, 173)(End , 173). This traces now contains enough in-
formation to check temporal compliance.

3.4 Formalizing and Checking Temporal Compliance Rules

This section introduces a new technique to check temporal compliance. We express
temporal compliance rules using the data-aware Petri nets of Sect. 2, which allow to
describe and constrain time in processes. The corresponding alignments of a data-aware
Petri net to a log [13] will then allow to check for temporal compliance and provide
detailed diagnostic information. For the alignment, we use the enriched log provided by
the technique of Sect. 3.3. This enriched log distinguishes all different instances of the
control-flow rule that underlies the temporal rule to be checked. In addition, it allows
to integrate diagnostic information for violations in the control-flow and the temporal
perspective.

Formalizing temporal constraints. We explain the formalization of temporal compli-
ance rules by the first temporal rule of our running example. The concrete temporal rule
reads “Between two subsequent administration of antibiotics in a cycle, there should be
one day delay,” which we abstract to “the delay between two subsequent executions of

10 Elham Ramezani et al.

Initial

Final

Ist

Ω

Icmp

{tX1’= e.time}

Xn

{tI-st’ = e.time,
tX1’ = undef,

…
tXn’ = undef}

{tI-cmp’ = e.time}

X1

. .
 .

{tXn’ = e.time}

Ω

Start

End

var: tStart, tEnd, tI-st, tI-cmp,
 tX1, …,tXn

{tEnd’ = e.time}

{t’Start = e.time}

Initial

Final

Ist

Ω

Icmp
A

{tA’ = undef}

{tA’ = e.time}

Ω

Start

End

[delay(A,24hrs,24hrs]

var: tA

Fig. 5. Temporal Petri-net Pattern, generic (left) and instantiated (right)

activity A in an instance of a control-flow rule, must be within [α, β] time units.” The
data-aware Petri net of Fig. 5(right) formalizes this rule.

The Petri net has a very simple control-flow structure that just distinguishes begin
and end of a trace (places Initial and Final), and whether the trace is within an instance
of a control-flow rule (after Ist occurred) or outside a control-flow rule (after Icmp
occurred). Transitions labeled Ω allow occurrences of all other activities not constrained
by the temporal rule. The actual temporal aspect is described by the variable tA and
the data annotations at transition A and Ist. Annotation {t′A = e.time} at A ensures
that tA holds the timestamp of the most recent occurrence of activity A. The most
important annotation is the guard [delay(A,α, β)] defined by delay(A,α, β) ≡ t′A ∈
[tA+α, tA+β]∨tA = undef . The guard states that the time t′A of the current occurrence
of A has to be in the interval [tA + α, tA + β], where tA is the timestamp of the most
recent occurrence of A. As the rule only ranges over occurrences of A within the same
instance of the control-flow rule, we have to take special care for the first occurrence
of A in an instance. The annotation at Ist initializes tA = undef so that the guard of
A also holds for the first A. By setting parameters A = antibiotic administration and
α = β = 24 hours, the pattern of Fig. 5 formalizes the given temporal rule.

Checking temporal compliance. We check compliance of a trace to the formalized rule
on the enriched log trace obtained in Sect. 3.3, for instance trace σγ,1. The data-aware
alignment technique explained in Sect. 2 compares the time stamp of events in σγ,1 with
admissible time stamps defined in the guards of the data-aware Petri net and will give a
data-aware alignment γt1, with the least cost, as follows: γt1 = (Start , 1) (B, 1) (Ist, 2) (A, 2) ...

(Start , 1) (Ω, 1) (Ist, 2) (A, 2) ...
... (A,30) (A, 54) (Icmp, 54) (Ist, 100) (A, 100) (C, 123) (A,123,missing) (A,162) (Icmp, 162) (D, 173) (End, 173)
... (A,26) (A, 54) (Icmp, 54) (Ist, 100) (A, 100) (Ω, 123) (A,124,missing) (A,148) (Icmp, 162) (Ω, 173) (End, 173)

.

As is shown in the alignment γt1 the second A in the first instance occurred 28 time
units after the preceding A, which violates the temporal rule. The data-aware alignment
in addition returns the time at which the event should have occurred at the bottom row of
the alignment. In the same way, two deviations in the second iteration are highlighted.
However, the “correct” timestamps 124 and 148 suggested by the alignment have to be
inspected carefully as in the second instance the secondA was missing in the original log
(a control-flow violation indicated by the attribute value missing). Recall from Sect. 3.2
that we may have to check several enriched variants of the same original trace (differing
in control-flow violations); after checking all variants, the one with the least temporal
violations is returned and all other are discarded.

A generic temporal pattern. As said in Sect. 3.2, we identified 15 generic temporal
compliance rules [22]. Each rule can be formalized in a data-aware Petri net similar

Diagnostic Information in Temporal Compliance Checking 11

to Fig. 5(right). The generic pattern is shown in Fig. 5(left). It permits to constrain
occurrences of n generic activities X1, . . . , Xn, as well as the Start and End of a trace
and start and end of each instance (by Ist and Icmp). Each formalization of a compliance
rule assigns a guard to one or more transitions of the pattern, depending on the particular
temporal property. We show some more formalizations next.

The rule “The delay between execution of two subsequent instances of a control-flow
rule, must be within [α, β] time units.” (which expresses the second temporal rule of our
running example of Sect. 3.1.) The formalization of this rule instantiates Fig. 5(left) with
n = 0 (no activity Xi), variables tIst and tIcmp

and the guard delay2 (Icmp, Ist, α, β) ≡
t′Ist ∈ [tIcmp

+ α, tIcmp
+ β] ∨ tIcmp

= undef assigned to transition tIst . This way, Ist
is only allowed to occur between tIcmp

+ α and tIcmp
+ β where tIcmp

is the last time
Icmp occurred (if there was a last occurrence). Checking temporal compliance of σγ,1 of
Sect. 3.3 to this rule for α = 7 days and β =∞ (and mapping all activities to Ω), we
obtain the following data-aware alignment:

γt3 = (Start , 1) (B, 1) (Ist, 2) (A, 2) (A, 30) (A, 54) (Icmp, 54) (Ist,100) (A, 100) (C, 123) ...
(Start , 1) (Ω, 1) (Ist, 2) (Ω, 2) (Ω, 30) (Ω, 54) (Icmp, 54) (Ist,242) (Ω, 100) (Ω, 123) ...

.

The alignment γt3 highlights a deviation for the start of the second instance of “3
administrations of antibiotics.” According to the log, the second administration started
just 46 hours after the preceding treatment where the rule requires a delay of at least 1
week (= 168 hours); the correct time is shown in the bottom row of the alignment.

Also compliance rules requiring the absence of an activity in a particular interval
can be formalized: “No activity A within all instances of a control flow pattern may
be executed within [α, β] time units since time t.” For this temporal rule, the generic
temporal pattern of Fig. 5, has n = 1 transition. The guard for this temporal rule is:
negation activity execution(X1, t, α, β) ≡ t′X1

6∈ [t+ α, t+ β]. Here, the time t can
be a fixed time, or the time of some other activity (e.g., include X2 in the pattern and
define t = tX2).

Many temporal compliance requirements found in literature combine several con-
straints on the relation between the start and completion of two different activities; for in-
stance, “within all instances of a control flow rule, activity B must start within [αst, βst]
time units after activity A starts, and activity B must complete within [αcmp, βcmp]
time units before activity A completes.” For this temporal rule, the generic temporal
pattern of Fig. 5, has n = 4 transitions labeled Ast, Acmp, Bst and Bcmp express-
ing the start and completion of A and B, respectively. The pattern uses the generic
guard after(X,Y, α, β) ≡ t′Y ∈ [tX + α, tX + β] ∨ tX = undef twice: once as
after(Ast, Bst, αst, βst) at transition Bst and once as after(Bcmp, Acmp, αcmp, βcmp)
at transition Acmp. Other combinations of this temporal constraint can be expressed in
the same way varying the parameters of the guards.

Similarly, all other identified temporal compliance constraints identified in literature
can be formalized by instantiating the generic temporal pattern of Fig. 5; see [22] for
details. Each formalization is then eligible for temporal compliance checking using
data-aware alignments. Our temporal compliance checking technique is not limited
to predefined control-flow rules and temporal rules, but is extendible. In Sect. 4 we
show how we can adapt a generic temporal compliance rule for compound and complex
temporal restrictions.

12 Elham Ramezani et al.

4 Experimental Results

Our temporal compliance checking technique is implemented in Process Mining Toolkit
ProM, available from www.promtools.org, and was applied in a case study on
real-life logs. We briefly discuss the implementation in ProM and then provide details
on the case study.

Implementation in ProM. The temporal compliance checker is available in the package
Compliance that provides 2 user-friendly plugins for temporal compliance checking. The
first plugin provides control-flow compliance checking as described in Sect. 3.3: it takes
as input a log and returns compliance diagnostics in form of an alignment, the control-
flow rule to check compliance for is picked by the user from a rule repository[22] using
a wizard. The second plugin takes the control-flow alignment, produces an enriched
log and then checks temporal compliance of the log to a temporal rule that can be
specified by the user through a wizard. The resulting alignment then provides diagnostic
information by showing control-flow compliance violations and temporal violations
projected into the events of the original log.

Case Study. We applied this implementation of the compliance checker in a case study
for checking compliance of the building permit processes of five Dutch municipalities.

The municipalities may carry out the building permit process in different ways, as
long as it is compliant to a number of regulations issued by the Dutch legislative. To
test the feasibility of our temporal compliance checking technique, we selected a rather
involved temporal compliance requirement that combines static and dynamic temporal
aspects.

The compliance requirement was given informally: “Every application must be
processed within at most 8 weeks from the date of a submitted request. If during the
processing of the request, the organization requires additional information from the
applicant, the time interval between asking for additional information and providing the
information by the client must be added to the 8 weeks.” This requirement is decomposed
into two control-flow compliance rules and one temporal compliance rule:
Control-Flow Compliance Rule 1: “Every time activity A is executed, it must be
followed eventually by activity D.”
Control-Flow Compliance Rule 2: “The sequence of activities B and C may only be
executed after the execution of activity A and before the execution of activity D.”
Temporal Compliance Rule: “The delay between execution of two subsequent activities
A and D in all instances of a control-flow pattern, must be [α, β + β2] time units since
time t, where β2 is the time between executing B and C.”

We formalized the two control-flow compliance rules by instantiating a corresponding
Petri net pattern from the compliance rule repository in [22]. Their generic parameters
were mapped as follows: A = submit request, B = request additional information,
C = receive additional information and D = publish result. The formalization of the
temporal compliance rule was derived by instantiating the generic temporal pattern of
Fig. 5(left) as follows. The temporal rule requires 4 activities A, B, C, and D and a
variation of the guard delay2 introduced earlier. The guard delay3 (A,B,C,D, α, β) ≡
t′D ∈ [tA+α, tA+β+(tC − tB)]∨ tA = undef is assigned to transition D with α = 0
and β = 8 weeks. As activities B and C are optional, we have to provide valid time

Diagnostic Information in Temporal Compliance Checking 13

Municip. Cases Violations
delay (months)

avg. max.

M1 257 51 3 8
M2 166 37 4 15
M3 353 54 3 10
M4 269 38 3 11
M5 319 53 4 9

Table 2. Temporal Compliance Violations

0

10

20

30

40

50

60

70

0%

20%

40%

60%

80%

100%

25 30 35 40 45 50 55 60 65 70

% violated # casestrend (% violated)

Fig. 6. Violations vs. handover of work

stamps in variables tB and tC in each iteration. Therefore, the instance start transition Ist
of the temporal pattern (Fig. 5(left)) initializes both variables to 0, i.e., {t′B = 0, t′C = 0},
making their difference 0 if B and C are absent.

In order to check compliance of the building permit process to these requirements,
we obtained five event logs, each coming from a different municipality. Each log was
extracted from the municipality’s case handling system and contained all activities
performed for a case together with time stamps and resource information. In total we
obtained 1408 cases as shown in Table 2 together containing 35352 events. Cases had 37
events in average and 97 events at most, distributed over 178 different event classes.

We first checked for compliance violations of the control-flow rules, followed by
temporal compliance checking. In our analysis of the control-flow violations, we found
4 real violations and 40 false positives out of total number of 1408 cases in all munici-
palities. Most of the false positives occurred due to inaccurate time stamps and mistakes
in data entries by a human user. The remaining real violations were mostly caused by
the publication of the result before the municipality processed the additional information
provided by the applicants. In general, the control-flow violations have not been severe
because the process under analysis is quite standardized in all 5 municipalities. However
the temporal violations in all municipalities seem to be significant. Table 2 shows the
result of temporal compliance checking in different municipalities.

Based on the diagnostic information we got from the temporal compliance checking,
we investigated the cause of the high number of temporal violations. We found that in
compliant cases requests for additional information were issued no later than 2 months
after receiving the application. In all violating cases, requests for additional information
were made only later than 2 months after receiving the application, i.e., when compliance
was violated already. This suggests that the process primarily needs to be improved
in the initial phase when employees gather and assess information about a particular
application.

Another influential factor in increasing the violations, is the number of handovers
among employees working on a case. The diagram of Fig. 6 shows the distribution
of cases and the percentage of violating cases over the number of resource handovers
happening in a case, for M1. The red squares indicate for a particular value x on the
x-axis how many cases of M1 had x handovers of work; the blue diamond at x indicate
the percentage of cases with x handovers of work that had a compliance violation. The
share of violations increases as handovers increase. This observation suggests that less
compliance violations occur when an employee handles several subsequent activities of

14 Elham Ramezani et al.

a case. Though, further analysis on organizational structure and division of work in M 1
is required. A process oriented division of work could decrease the number of handovers.
In addition, a job rotation programme could enrich the skill set of employees to be able
to execute more activities with respect to one case, hence decreasing the number of
handovers and improve compliance.

Applying the technique presented in this paper, we were able to check compliance
of all the traces in the event logs rather than being limited to sample based compliance
checking. The technique is fast and works on large event logs because we can focus
on events relevant to a specific compliance rule and abstract from all other events. The
remaining effort for a human user is in formalizing the compliance requirements and
analyzing results. The effort in formalizing requirements was kept low in our case study.
We could pick available control-flow compliance patterns from an existing repository. A
wizard helped in selecting the right pattern. The main effort was in expressing the tem-
poral compliance requirement as the guard delay3 (A,B,C,D, α, β) presented earlier;
once the guard was identified, the constraint could quickly be formalized by instantiating
the generic pattern through a wizard. Note that this formalization need to be done once.
Checking could then be continued for all cases automatically.

The technique could identify, locate, and determine the extent of deviations. These
diagnostic information can be used by the business analyst to analyze the cause of the
deviations.

5 Related Work

Existing work in temporal compliance checking primarily focuses on verification at
design time or at run time.

It is possible to derive temporal properties of acyclic process models by annotating
tasks with intervals of execution and waiting times; execution times and waiting times of
the entire process can then be derived by interval computations and compared against
predefined constraints of total execution times [5]. In addition, the time-critical paths
of a process model can be computed [20]. In a similar fashion, the approach in [15]
formulates temporal constraints in terms of deadlines for completing an activity (relative
to another activity). Reasoning on time intervals is used to verify whether a constraint is
violated.

For verifying that a process with loops satisfies a general time-related constraint,
typically temporal model checking techniques are applied. The properties of interest are
metric temporal constraints, e.g., deadline on execution of activities in a business process.
Metric temporal logic (MTL), a temporal logic with metric temporal constraints, can
express typical compliance requirements as presented in this paper. Unfortunately, the
model checking problem for MTL is undecidable over models with infinite traces [9]. By
introducing so called observers on atomic propositions, the problem whether a process
model, given as a timed transition system (TTS), satisfies an MTL formula becomes
decidable by a reduction to LTL modelchecking [2]. This approach allows to check
temporal compliance of a real-time extension of Dwyer’s specification patterns [4]. A
similar approach is followed in [6] for checking whether an extended CCSL (Clock

Diagnostic Information in Temporal Compliance Checking 15

Constraint Specification Language) specification holds in a timed Petri net; CCSL is less
expressive than the constraints that can be expressed and checked with our technique.

An alternative approach to describe temporal constraints is timed Declare [24] in
which LTL-like constraints are extended with the notion of time. By a translation to timed
automata, such constraints can be monitored at runtime to evaluate whether a process
instance might or will violate a temporal constraint. A similar approach is proposed
in [17].

In comparison, the technique presented in this paper focuses on backwards checking
of temporal constraints in execution logs. The generic Petri net pattern proposed in
Sect. 3.4 is capable to express all temporal constraints that we encountered in the works
discussed above, and other temporal constraints such as cyclic temporal constraints not
discussed elsewhere; see [22] for a detailed discussion. Our technique detects all temporal
violations in a trace, not just the first temporal violation encountered as it happens in
model checking approaches. In case of violations also the compliant behavior (when a
non-compliant event should have happened) is returned as diagnostic information.

6 Conclusion

In this paper, we provided an approach for temporal compliance checking of behavior
recorded in execution logs. We developed a generic technique for formalizing all kinds
of temporal compliance constraints, including all temporal compliance constraints docu-
mented in literature. In addition, we provide a general temporal compliance checking
technique based on alignments. Our technique separates control-flow and temporal com-
pliance checking to the possible extent, and provides integrated diagnostic information
about both control-flow violations and temporal compliance violations. In particular, our
technique is capable of finding all violations in a trace and highlights what the most
likely compliant behavior should have been.

We provide a repository of compliance rules and an implementation of our compli-
ance checker in the Compliance package of ProM. The software has been tested in a case
study involving real-life logs from five Dutch municipalities. The results are encouraging:
we were able to uncover various violations and no performance issues were encountered.

Future research aims at making the approach more user friendly. Eliciting and
formalizing compliance rules, and mapping compliance diagnostics back to the original
data is still a challenging step. Hence, higher-level compliance languages and more
intuitive diagnostics are needed for end-users.

Acknowledgements. We thank Massimiliano de Leoni, Joos C.A.M.Buijs for their substantial
support in writing this paper.

References

1. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisc. Rew.: Data
Mining and Knowledge Discovery 2(2), 182–192 (2012)

2. Abid, N., Dal-Zilio, S., Botlan, D.L.: Real-time specification patterns and tools. In: FMICS.
LNCS, vol. 7437, pp. 1–15. Springer (2012)

16 Elham Ramezani et al.

3. Adriansyah, A., van Dongen, B., van der Aalst, W.M.: Conformance Checking Using Cost-
Based Fitness Analysis. EDOC’11 0, 55–64 (2011)

4. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state
verification. In: ICSE. pp. 411–420 (1999)

5. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: CAiSE.
LNCS, vol. 1626, pp. 286–300. Springer (1999)

6. Ge, N., Pantel, M., Crégut, X.: Formal specification and verification of task time constraints
for real-time systems. In: ISoLA (2). LNCS, vol. 7610, pp. 143–157. Springer (2012)

7. Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations expressed as logical
models (realm). In: JURIX 2005. Frontiers in Artificial Intelligence and Applications, vol.
134, pp. 37–48. IOS Press (2005)

8. Kharbili, M.: Business process regulatory compliance management solution frameworks: A
comparative evaluation. In: APCCM 2012. CRPIT, vol. 130, pp. 23–32. ACS (2012)

9. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-Time Systems
2(4), 255–299 (1990)

10. Lanz, A., Weber, B., Reichert, M.: Time patterns in process-aware information system - a
pattern based analysis - revised version. Tech. Rep. UIB-2009, University of Ulm, Germany
(2009)

11. Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information
systems. In: BMMDS/EMMSAD. LNBIP, vol. 50, pp. 94–107. Springer (2010)

12. de Leoni, M., Maggi, F.M., van der Aalst, W.M.P.: Aligning Event Logs and Declarative
Process Models for Conformance Checking. In: BPM’12. LNCS, vol. 7481, pp. 82–97.
Springer (2012)

13. Leoni, M., Aalst, W.: Aligning event logs and process models for multi-perspective confor-
mance checking: An approach based on integer linear programming. Tech. Rep. BPM Center
Report BPM-13-05, BPMcenter.org (2013)

14. Li, H., Yang, Y.: Verification of temporal constraints for concurrent workflows. In: APWeb.
LNCS, vol. 3007, pp. 804–813. Springer (2004)

15. Li, H., Yang, Y.: Dynamic checking of temporal constraints for concurrent workflows. Elec-
tronic Commerce Research and Applications 4(2), 124–142 (2005)

16. Ly, L.T., Rinderle-Ma, S., Knuplesch, D., Dadam, P.: Monitoring business process compliance
using compliance rule graphs. In: OTM’11. LNCS, vol. 7044, pp. 82–99. Springer (2011)

17. Montali, M.: Specification and Verification of Declarative Open Interaction Models - A
Logic-Based Approach, LNBIP, vol. 56. Springer (2010)

18. Niculae, C.C.: Time patterns in workflow management systems. Tech. Rep. BPM-11-04,,
BPM Center Report, BPMcenter.org (2011)

19. Pitzmann, B., Powers, C., Waidner, M.: Ibm’s unified governance framework (ugf). Tech. rep.,
IBM Research Division, Zurich (2007)

20. Pozewaunig, H., Eder, J., Liebhart, W.: epert: Extending pert for workflow management
system. In: ADBIS. pp. 217–224. Nevsky Dialect (1997)

21. Ramezani, E., Fahland, D., Aalst, W.: Where did i misbehave? diagnostic information in
compliance checking. In: Business Process Management. LNCS, vol. 7481, pp. 262–278.
Springer (2012)

22. Ramezani, E., Fahland, D., van Dongen, B., van der Aalst, W.: Diagnostic information in
temporal compliance checking. Tech. rep., BPM Center Report BPM-12-17, BPMcenter.org
(2012)

23. Ramezani, E., Fahland, D., Werf, J.M.E.M.v.d., Mattheis, P.: Separating compliance man-
agement and business process management. In: BPM Workshops 2011. LNBIP, vol. 100, pp.
459–464. Springer (2012)

24. Westergaard, M., Maggi, F.M.: Looking into the future: Using timed automata to provide a
priori advice about timed declarative process models. In: CoopIS 2012. Springer (2012)

