
Data-Aware Process Mining: Discovering Decisions in
Processes Using Alignments

Massimiliano de Leoni and Wil M.P. van der Aalst
Eindhoven University of Technology Eindhoven, The Netherlands

m.d.leoni@tue.nl, w.m.p.v.d.aalst@tue.nl

ABSTRACT
Process discovery, i.e., learning process models from event
logs, has attracted the attention of researchers and practi-
tioners. Today, there exists a wide variety of process mining
techniques that are able to discover the control-flow of a
process based on event data. These techniques are able to
identify decision points, but do not analyze data flow to
find rules explaining why individual cases take a particular
path. Fortunately, recent advances in conformance checking
can be used to align an event log with data and a process
model with decision points. These alignments can be used
to generate a well-defined classification problem per decision
point. This way data flow and guards can be discovered and
added to the process model.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND
APPLICATION-BASED SYSTEMS]: Process control
systems

Keywords
Process Discovery, Machine-Learning Techniques, Business
Process Data-flow Pespective

1. INTRODUCTION
Despite the focus in process-orientation in most organi-

zations, few processes are fully controlled by software (e.g.,
a WFM or BPM system). IT systems are still data-centric
and people have a lot freedom when executing tasks. This
allows for flexibility, but also creates the need to analyze the
processes as they are actually executed. Thanks to advances
in process mining [9, 11] and the incredible growth of event
data (cf. “Big Data” [5]), this is now possible. Process min-
ing aims to discover, monitor and improve real processes by
extracting knowledge from event logs readily available in to-
day’s information systems [9]. The two main types of process
mining are Process discovery and Conformance Checking.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’13 March 18-22, 2013, Coimbra, Portugal.
Copyright 2013 ACM 978-1-4503-1656-9/13/03 ...$10.00.

Given an event log consisting of a collection of traces (i.e.,
sequences of events), process discovery constructs a process
model that “adequately” describes the observed behavior.

Given an event log and a process model, conformance
checking diagnosed the differences between the observed
behavior (i.e., traces in the event log) and the modeled
behavior (i.e., execution sequences possible according to the
model).

Lion’s share of process mining research focuses on control-
flow, i.e., the ordering of activities. In this paper we focus on
data flow, e.g., we want to discover why particular cases take
a particular path. In order to illustrate the importance of
discovering the so-called data-flow perspective, let us consider
the following example.

Example 1. A credit institute created a standardized pro-
cess to deal with loans requested by clients. These loans can
be used to buy small home appliances (e.g., fridges, TVs,
high-quality digital sound systems). A customer can apply
for a loan through a shop clerk. The clerk prepares the re-
quest by filling out the form and attaching documents that
prove the capability to pay off the loan. Upon receiving a new
request, the credit institute opens a new case. The initial
step is to open the credit request by providing the informa-
tion about the requester, i.e. the loan applicant, and the
amount. Afterwards, the credit institute verifies the validity
of the information provided. If the provided information is
not valid, then the application is immediately rejected and
stored in system along with informing the applicant. If the
information is valid, a loan opening is made. Requests for
small amounts are assessed differently than requests for large
amounts (Simple Assessment versus Advanced Assessment),
since, for large amounts, the loan assessment uses stricter
constraints. If the decision is positive, then the application is
accepted, stored in the system, and the applicant is informed.
Moreover, the loan is opened. If the decision is negative, the
applicant is informed about the decision. In the latter case,
the decision is preliminary, because the applicant is allowed
to renegotiate the loan and ask for a smaller loan. If no
request for renegotiation is received, the decision becomes
definitive: the applicant is informed and the negative result
is stored in the system.

Contemporary process mining techniques are able to discover
models such as the Petri net in Figure 1 using only event
data. Such models only describe the control-flow perspective
and ignore data associated with the cases which are handled.
However, the different decisions in the model highly depend
on characteristics of the loan request (e.g., the size of the
loan). Therefore, one also needs to analyze the data-flow

Start

End

Credit Request
(CrR)

Simple
Assessment (SA)

Advanced
Assessment (AA)

Inv1

Renegotiate
(R)

Inv2

Open Credit Loan
(OCL)

Verify (V)

Inv3

Notify Preliminary
Decision

(N)

Close
Request

(ClR)

Close
Request

(ClR)

Register Decision
and Inform

Customer M-Z
(MZ)

Register Decision
and Inform

Customer A-L (AL)

Figure 1: Petri net representation of the control-flow of the running example. The grey boxes represent the
transitions that are associated with process tasks. The black boxes identify invisible transitions, i.e. transitions
that do not correspond to actual pieces of work but necessary for routing purposes, whose executions are
never recorded in event logs. In brackets, there are the acronyms that are used to shorten the transition’s names.
Circles are the so-called places, which may contain tokens. In order for a transition t to be executed, each
input place (i.e., each place having outgoing arcs that enter t) needs to contain a token. When a transition
fires, one token is removed from each input place and one token is put into each output place. Each Petri net
used to model processes is characterized by two special places, the start and the end place (named Start and
End in figure). In the initial state, there exists only one token in start place. A process instance is considered
as concluded when a token is produced in the end place.

to discover the rules governing the choices in the process.
To the best of our knowledge, the only approach that deals
with the discovery of the data-flow is [7]. This approach was
developed about 7 years ago and has several limitations.

Firstly, the decision mining approach in [7] can only partly
deal with process models having invisible transitions. Invisi-
ble transitions do not correspond to actual pieces of work but
are often necessary to model XOR-splits/joins and certain
types of loops. As a consequence, the technique cannot dis-
cover conditions associated with XOR-splits and many loops.
Secondly, the event log needs to fully conform to the mod-
eled control-flow, i.e., the order according to which activities
are executed can never differ from the idealized model. In
fact, most control-flow discovery techniques treat the least
frequent observed behaviors as noise and discard them. As
result, even the discovered control-flow model does not fully
conform to the event log. Also hand-made models rarely
fully explain all observed behavior: It is not uncommon to
encounter event logs where a number of cases cannot be fully
replayed by the model from begin to end.

The approach in this paper addresses these problems. To
do this, we use recent advances in conformance checking using
alignments [1]. First, we discover the process control-flow,
using one of the many process discovery techniques available
today [9]. Then, we align the event log and control-flow, thus
mitigating the effects of non-conformance, i.e., the observed
behavior is squeezed into the Petri net without data. Once
the alignment is computed, the data-flow perspective can
be discovered, i.e., the read and write operations as well as
the transitions guards. When mining mine the data-flow

perspective, the most challenging task is to discover the
guards. In this paper, we leverage on standard machine
learning techniques to discover the guards. Each decision
point can be seen as a classification problem: according
to the values assigned to variables, a particular path (i.e.,
transition) is selected.

The proposed solution has been implemented as a plug-
in for ProM that can be downloaded [10]. Moreover, we
conducted experiments using synthetic process models and
event logs, as well as real-life event logs. The experiments
show that the discovered data-flows are surprisingly accurate,
even in presence of event logs with non-conforming traces.
Experiences using real-life logs show that this kind of data-
aware process mining provides new and valuable insights.

Our data-aware process discovery technique is independent
from the specific formalism used to describe the control-
flow and data-flow perspectives. Therefore, BPMN, EPC
or any other formalism can be employed to represent these
perspectives. However, we use simple modeling language
with clear semantics to explain our technique. In particular,
we use a revisited version of Petri nets with data introduced
in [8].

Section 2 discusses the syntax and the operational seman-
tics of Petri nets with data. Section 3 introduces the notion
of control-flow alignment. Our data-aware process discovery
technique heavily relies on such alignments. Section 4 details
the technique, whereas Section 5 reports the experimental
results. Finally, Section 6 concludes the paper, delineating
future research directions.

2. PETRI NETS WITH DATA
Before discussing syntax and semantics of Petri nets with

data, we introduce classical Petri nets:

Definition 1 (Petri Net). A Petri net is a triple
(P, T, F) where

• P is a set of places;

• T is a set of transitions;

• F ⊆ (P × T) ∪ (T × P) is the flow relation describing
the “arcs” between places and transitions (and between
transitions and places).

The preset of a transition t is the set of its input places:
•t = {s ∈ P | (s, t) ∈ F}. The postset of t is the set of its
output places: t• = {p ∈ P | (t, p) ∈ F}. Definitions of pre-
and postsets of places are analogous. A marking of a Petri
net is a multiset of its places, i.e., a mapping M : P → N.
We say the marking assigns to each place a number of tokens.
Firing a transition t in a marking M consumes a token from
each of its input places •t, and produces a token for each of
its output places t•. A transition t is enabled (it may fire)
in M if there are enough tokens in its input places, i.e. iff
M ≥ •t.

A Petri net with data (DPN-net) is a Petri net in which
transitions (modeling activities) can read and write variables.
A DPN-net may use a finite set of process variables V and a
function U that determines the domain of each variable. A
transition modeling an activity is allowed to write (or update)
a predefined subset of the process variables. A transition can
have a data-dependent guard that blocks when it evaluates
to false. Only if the guard evaluates to true and all input
places are marked, a transition can fire. A guard can be any
Boolean expression over V using logical operators such as
conjunction (∧), disjunction (∨), and negation (¬).

Definition 2 (DPN-net). A Petri net with data (DPN-
net) N = (P, T, F, V, U,R,W,G) consists of:

• a Petri net (P, T, F);

• a set V of variables;

• a function U that defines the values admissible for each
variable v ∈ V , i.e. if U(v) = Dv, Dv is the domain of
variable v;

• a read function R ∈ T → 2V that labels each transition
with the set of variables that it must read;

• a write function W ∈ T → 2V that labels each transition
with the set of variables that it must write;

• a guard function G ∈ T → GV that associates a guard
with each transition.1

Example 1 (cont.). Figure 2 illustrates the data-flow per-
spective of the working example. When defining guards, we
assume that string values can be lexicographically ordered
and, hence it is possible to also use inequality operators (i.e.,
< and >) for strings.

In order to provide an operational semantics, we introduce
the concept of the state of a DPN-net:

1The guard is defined over (a sub set of) variables in V . If a
transition t has no guard, we set G(t) = true.

Variable Type
Amount Non-negative Number
Decision Boolean
Requester String
Verification Boolean

(a) definition of variables

Transition Variables Written
Advanced Assessment Decision
Credit Request Requester , Amount
Simple Assessment Decision
Renegotiate Amount
Verify Verification

(b) write/update operations

Transition Guard
Inv1 Verification = false
Inv2 Decision = true
Notify Preliminary
Decision

Decision = false

Simple Assessment Verification = true ∧ Amount > 10000
Advanced
Assessment

Verification = true ∧ Amount ≤ 10000

Register Deci-
sion and Inform
Customer M-Z

Requester ≥ “M”

Register Deci-
sion and Inform
Customer A-L

Requester ≤ “L”

(c) transition guards

Figure 2: The data-flow perspective for the running
example. For clarity, here we omit to list the read
operations, assuming that transitions only read the
variables on which the respective guards are defined.

Definition 3 (State of a Petri Net With Data).
Given a DPN-net N = (P, T, F, V, U,R,W,G) and let D =⋃
v∈V U(v), the state of N is a pair (M,A) consisting of

• A marking M for Petri net (P, T, F)

• A function A that associates a value with each variable,
i.e. A : V → D ∪ {⊥}, with A(v) ∈ U(v) ∪ {⊥}. If
a variable v is not given a value, we use the special
symbol ⊥, i.e. A(v) = ⊥.

In the initial state, there is only one token in a so-called start
place p0 ∈ P . A process instance is considered as concluded
when a token is produced in a so-called end place pe ∈ P .
The initial state is (M0, A0) where M0(p0) = 1, M0(p) = 0
for any other place p, and for all v ∈ V : A0(v) = ⊥.

In the remainder, dom(f) denotes the domain of some
function f . The operational semantics can be introduced in
term of valid transition firing and state transition:

Definition 4 (Valid Firing and State Transition).
Given a DPN-net N = (P, T, F, V, U,R,W,G), a firing of a
transition is denoted by a pair (t, r, w) where t ∈ T , r ⊆ V
is the set of variables that are read and w : V 6→ U is the
set of variables that are written with the respective values.
A transition firing (t, r, w) is valid in state (M,A) if the
following conditions hold:

1. each place in the preset of t contains at least one token,
i.e. iff ∀p ∈ •t : M(p) > 0;

2. the transition reads and writes all and only the variables
that it is prescribed to, i.e. r = R(t) and dom(w) =
W (t);

3. the value assigned to each variable is valid, i.e. ∀v ∈
dom(w). w(v) ∈ U(v);

4. the guard G(t) evaluates true with respect to the assign-
ment A of values to process’ variables.

A valid firing (t, r, w) in state (M,A) leads to state (M ′, A′),
where:

M ′(p) =

 M(p)− 1 if p ∈ •t \ t•;
M(p) + 1 if p ∈ t• \ •t;
M(p) otherwise

and

A′(v) =

{
A(v) if v ∈ V \W (t);
w(v) if v ∈W (t).

3. ALIGNING EVENT LOGS AND PROCESS
MODELS

Before discovering the data-flow, we need to align the
event log and control-flow process model, i.e., events in the
log need to be related to transition executions. Please note
that, before discovering the data-flow, the alignment can only
consider the control-flow. Adriansyah et al. have developed
powerful techniques to align models and logs and showed
how to use these alignments for conformance checking [1].
Nevertheless, these techniques only focus on the name of
process activity to which the event log refers, ignoring other
attributes. However, data attributes are of the utmost im-
portance for discovering data flow. Here, we discuss how the
concept of alignment can be extended to incorporate data.
First, we introduce the basic alignment concept.

A Petri net P = (T, P, F) that describes a process relies
on constructs such as parallel split nodes, synchronization
nodes, decision/choice nodes, conditions, merge nodes, etc.
Although we did not formalize this, we assume Petri nets with
a defined initial and final state and consider all traces D ⊆ T ∗
(i.e., firing sequences) that start in the initial marking and
end in the final marking. D ⊆ T ∗ fully describes the behavior
of the process model, i.e., σM ∈ D is a complete trace.

An event log contains events associated with cases, i.e.,
process instances. Hence, a case can be described in terms of
a trace σL, i.e., a sequence of events. Each event describes
a log execution step and can be represented by a pair (a, φ)
consisting of an activity a and a value assignment φ. Here we
assume that activities directly correspond to transitions, i.e.,
a ∈ T . However, this can be relaxed if needed, e.g., multiple
transitions referring to the same activity or activities that
are described by multiple transitions, e.g., to denote the start
and completion of the activity. φ ∈ V 6→ U is a function that
assigns a value to some of the variables in V . Φ = V 6→ U is
the set of all such functions. An event log L is a multiset of
traces where each trace consists of events of the form (a, φ).
In other words, L ∈ B((T × Φ)∗).2

An alignment relates moves in log and to moves in model
as explained in the following definition. Here, we explicitly
indicate no move with �.
2B(X) the set of all multisets over X.

Definition 5 (Control-flow Alignment). Let us de-
note SL = (T × Φ) ∪ {�} and SM = T ∪ {�}. A pair
(sL, sM) ∈ (SL × SM) \ {(�,�)} is

• a move in log if sL ∈ (T × Φ) and sM =�,

• a move in model if sL =� and sM ∈ T ,

• a move in both if sL = (aL, φ) ∈ (T ×Φ), sM ∈ T , and
aL = aM .

Σ = (SL × SM) \ {(�,�)} is the set of the legal moves.
The alignment of a log trace σL ∈ (T × Φ)∗ and a model

trace σM ∈ T ∗ is a sequence γ ∈ Σ∗ such that the projection
on the first element (ignoring�) yields σL and the projection
on the second element yields σM (ignoring �).

If γ is an alignment of log trace σL and model trace σM , and
if σM ∈ D, it is called a complete control-flow alignment
of σL and D. An alignment of the event log L and the process
model D is a multiset A ∈ B(Σ∗) of alignments such that,
for each log trace σL, there exists an alignment γ ∈ A of σL
and D. A is a multi-set because an event log may contain
the same log trace σL multiple times, potentially resulting
in multiple identical alignments.

In order to quantify the severity of a deviation, end users
need to configure a cost function on the legal moves κ ∈
Σ → R+

0 . It may be defined differently for individual pro-
cesses, since, generally speaking, the costs depend on the
specific characteristics of the process. In most of scenar-
ios, a standard cost function is applicable: ∀(sL, sM) ∈
Σ. κstd(sL, sM) = 1 if sL = � or sM = �; otherwise,
κstd(sL, sM) = 0. The cost of an alignment γ is defined as
the sum of the costs of the individual moves in the alignment,
i.e., K(γ) =

∑
(sL,sM)∈γ κ(sL, sM).

Given a log trace σL ∈ L, the techniques of Adriansyah
et al. [1] aim at finding a complete alignment of σL and a
corresponding model trace σM ∈ D such that the alignment
costs are minimal with respect to all σ′M ∈ D. In other words:
there is no complete alignment of σL and D that has lower
costs. A chosen alignment with the lowest cost is referred to
as an optimal alignment.

Definition 6 (Optimal Control-flow Alignment).
Let σL ∈ L be a log trace and D a process model. Let Γ(σL,D)

be the set of the complete alignments of σL and D. A complete
alignment γ ∈ Γ(σL,D) is an optimal alignment of σL ∈ L
and D iff for all γ′ ∈ Γ(σL,D): K(γ′) ≥ K(γ).

Example 1 (cont.). Suppose we have a log trace:

σL = 〈CrR{A = 1000}, V {V = true}, SA{D = true},
AA{D = true}, OCL,ClR〉

where activity and attribute names are shortened with the
acronyms in brackets in Figure 1. If we use the standard cost
function, an optimal control-flow alignment of σL is:

L: CrR{A = 1000} V {V = true} SA{D = true}
P: CrR V SA

L: AA{D = true} � OCL � ClR
P: � Inv2 OCL MZ ClR

In order to find the optimal alignments as defined above,
we first apply the technique described in [1] and already
implemented in ProM. Then, we iterate over all log traces
and enrich the log execution steps with the value assignments
to attributes, as recorded in the attributes associated with
events.

(a) (b)

Figure 3: Two decision trees describing estimators
for (a) function f1 : N × String → {T1, T2} and (b)
function f2 : N× String→ {T2, T3}.

4. DISCOVERY OF THE DATA-FLOW PRO-
CESS PERSPECTIVE

The data-flow discovery technique presented in this paper
takes a Petri net (P, T, F) without data and an event log
L as input, along with the multi-set of optimal control-flow
alignments Σ of (P, T, F) and L. The outcome is a Petri net
with data N = (P, T, F, V, U,R,W,G), where our technique
mines V,U,R,W and G. In the remainder, we say an event
(t, φ) ∈ L, if there exists a trace σ ∈ L such that (t, φ) ∈ σ.

We reasonably assume the set of variables of N are the set
of variables defined in the event logs, i.e. V = {v | ∃(t, φ) ∈
L s.t. v ∈ dom(φ)}. Given a variable v ∈ V , the values
admissible for v are all those which have been observed in
the log, i.e. U(v) = {u | ∃(t, φ) ∈ L : φ(v) = u}. Regarding
the write operations, we assume that a transition t writes
a variable v if, according to the log, at least X% of times,
events for t contain a value assignment to attribute v, where
X can be customized by the users.

The most challenging task is to discover the guards of the
transitions. Generally speaking, given a transition t, the
respective guard G(t) specifies the data-variables conditions
that need to hold in order for t to be enabled to fire. In order
to discover the guard for each transition, we first need to
find the decision points. In our setting, each place p that has
multiple outgoing transitions t1, . . . , tn forms a decision point.
Indeed, these transitions are in “conflict”: only one out of
t1, . . . , tn is allowed to fire. Therefore, for each state (M,A)
reachable from the initial state, G(t1)∧ . . .∧G(tn) evaluates
to false using the value’s assignment A, and G(t1)∨. . .∨G(tn)
evaluates to true.

In this paper, we assume that a transition t reads all the
variables needed to evaluate G(t). Obviously, if the event
log contains additional information, we can use different
approaches that allow for a more accurate discovery of the
read operations. However, that is outside the scope of this
paper.

4.1 Function Estimators
The discovery of the guards of the transitions associated

with a decision point can be translated into the problem of
finding the best estimator of a function.

Figure 4: A fragment of a Petri net where a tran-
sition, i.e. T2, consumes tokens from two decision-
point places.

Definition 7 (Function estimator). Let f : X1 ×
X2 × . . . × Xn → Y be a function having a finite domain
Y . An estimator of function f is a function ψf : Y →
2X1×X2×...×Xn , such that, for each y ∈ Y , ψf (y) returns all
input domain tuples for which the expected output is y.

The function estimator is trained through a set of ob-
servations. An observation instance is a pair (−→x , y) where
−→x ∈ X1 ×X2 × . . .×Xn is the observed input and y ∈ Y is
the observed output. Given a set I of observation instances,
for a practical use, the construction of a function estimator
is abstracted as a function buildFunctionEstimator(I), which
returns a function ψf such that, for each observed output
y ∈ Y , ψf (y) = expr where expr is a expression that char-
acterizes the input tuples −→x that are expected to lead y as
output, i.e. f(−→x) = y.

The function estimator can be easily built using many ma-
chine learning techniques. In this paper, we employ decision-
tree building algorithms, specifically the C4.5 algorithm [6].
There are many reasons why to use decision-tree building
algorithms to build a function estimator: the training data
may contain missing attribute values and errors. Moreover,
an expression can potentially contain disjunctions. Last but
not least, the input domains are potentially defined over
continuous domains.

Decision trees classify instances by sorting them down in
a tree from the root to some leaf node. Each non-leaf node
specifies a test of some attribute x1, . . . , xn and each branch
descending from that node corresponds to a range of possible
values for this attribute. In general, a decision tree represents
a disjunction of conjunctions of expressions: each path from
the tree root to a leaf corresponds to an expression that is,
in fact, a conjunction of attribute tests. Each leaf node is
associated one of the possible output values: if an expression
e is associated with a path to a leaf node y, every input
tuple for which e evaluates to true is expected to return y as
output. Let us clarify through an example:

Example 2. Let us suppose to have two functions: f1(x, s)
= y1 and f2(x, s) = y2, where x ∈ N, s is a string, y1 ∈
{T1, T2} and y2 ∈ {T2, T3}. Let us suppose that we want to
build the most accurate estimators ψf1 and ψf2 of f1 and f2,
respectively. To build such estimators, we construct decision
trees for f1 and f2. The two decision trees shown in Fig-
ure 3 were built using training sets for both f1 and f2. The
decision tree on the left-hand side describes estimator ψf1 :
ψf1(T1) = {(x, s) | x < 50} and ψf1(T2) = {(x, s) | x ≥ 50}.
The decision tree on the right-hand side specifies ψf2 with
ψf2(T3) = {(x, s) | s ≥ “L” ∧ x < 10} and ψf2(T2) =
{(x, s) | s < “L” ∨ (s ≥ “L” ∧ x ≥ 10)}.

Algorithm 1: generateTransitionGuards

Data: N = (P, T, F) – A Petri net without data, A – A
multi-set of optimal control-flow alignments of N and an
event log

Result: A Guard Function G : T → G
1 Let I be a function whose domain is the set of places p s.t.
| p• |> 1 and ∀p ∈ P s.t. | p• |> 1. I(p) = ∅.

2 foreach alignment 〈(s1L, s
1
M), . . . , (snL, s

n
M)〉 ∈ A do

3 Set function A such that dom(A) = ∅
4 for i← 1 to n do
5 if siM 6=� then
6 foreach p ∈ •siM s.t. | p• |> 1 do
7 I(p)← I(p) ∪ (A, siM)
8 end

9 end

10 if siL 6=� ∧s
i
M 6=� then

11 Let siL = (aiL, φ
i
L)

12 foreach variable v ∈ dom(φi
L) do

13 A(v)← φi
L(v)

14 end

15 end

16 end

17 end
18 foreach place p ∈ P s.t. | p• |> 1 do
19 ψp ← buildFunctionEstimator

(
I(p)

)
20 end
21 foreach transition t ∈ T do
22 G(t)← true
23 foreach place p ∈ •t s.t. | p• |> 1 do
24 G(t)← G(t) ∧ ψp(t)
25 end

26 end

27 return G

4.2 Discovery of Guards
Algorithm 1 illustrates the steps to discover the guards of

transitions. The input parameters are a Petri net without
data (e.g. obtained by control-flow discovery algorithms) and
a multi-set of optimal control-flow alignments. The output
is the guard function G that is mined. Initially, in line 1, we
initialize function I which is going to associate each decision-
point place p with the set of observation instances that refer
to execution of transitions in the postset of p. From line 2
to line 17, we replay all control-flow alignments to build the
observation instances. While replaying, a function A keeps
the current value’s assignment to variables (line 3). In lines
5-9, for each move in the alignment that is in model or both,
i.e. such that siM 6=�, we create an observation instance
where A and siM are the input and output, respectively. This
instance is also added to the set of instances I(p) for place p.
In fact, each move in log is a deviation and, thus, needs to
be ignored. In lines 10-15, for each move in both, we update
the current value’s assignment, i.e. we rewrite function A.

Once all observation instances I(p) have been built for
each decision-point place p, we build the function estimator
ψp (lines 18-20). Now the guards can be mined (see lines
21-26). For each transition t, the algorithm considers the
function estimators ψp1 , . . . , ψpn associated with all decision-
point places p1, . . . , pn ∈ •t. The guards of transition t is
G(t) = ψp1(t) ∧ . . . ∧ ψpn(t).

Example 2 (cont.). Let us suppose to have a fragment of
Petri net as in Figure 4. In fact, f1 and f2 are the functions
that, given the current value’s assignment as input, suppos-
edly return the transition that consumes a token from p1
and p2, respectively. Let us suppose that, after replaying the
control-flow alignments, we discover that ψf1 and ψf2 are the

Removed Data-flow Number of Guards
Events Conformance Discovered

10% 1 7
20% 0.9999 - 1 7
25% 0.90 - 0.95 6
30% 0.80 - 0.90 6
35% 1 4
40% 1 2
50% 1 2

Table 1: Outcomes of the experiments to verify the
level of robustness of the solution approach against
event logs with deviations. The first column shows
different values of percentages of events that have
been removed. The second column illustrates the av-
erage data-flow conformance that has been observed
during the experiments. The third column shows
the number of guards that are discovered: the re-
moval of more events cause the approach to discover
a smaller number of guards.

most accurate function estimators. Therefore, the guards for
T1 and T3 are ψf1(T1) and ψf1(T3), respectively. Since T2

consumes tokens from both places, the corresponding guard
is ψf1(T2) ∧ ψf2(T2).

5. IMPLEMENTATION AND EXPERIMEN-
TAL EVALUATION

The Data-flow Discovery plug-in implements the approach
just described. The plug-in is part of ProM, a generic open-
source framework for process mining [10], and takes three
objects as input: a Petri net, a log and the multi-set of align-
ments computed by the Control-flow Conformance Checker
plug-in [1]. It returns a Petri net with data where the guards
and the read and write operations are discovered by employ-
ing the techniques described in Section 4.

To evaluate the approach, we performed experiments to
answer three questions: (i) the accuracy of discovered data-
flows; (ii) how the accuracy is influenced by the number
of control-flow deviations present in the event log; and (iii)
whether the approach is applicable in real settings and which
kind of insights can be gained.

To answer to the first two questions, we have employed
Example 1; for the third question, we have used a real-life
event log, taken from a Dutch Financial Institute, which is
publicly available.

5.1 Experiments with a Synthetic Model and
Event Log

In order to measure the accuracy of a discovered data-
flow, we used Example 1 and generated an event log with
3000 traces by modeling the process in CPN Tools (http:
//cpntools.org) and subsequently simulating the model.
The event log complies the control-flow in Figure 1 and
the data-flow in Figure 2. With a synthetic event log, the
evaluation lends itself to verify the accuracy of a discovered
process data-flow, since the discovered data-flow can be
compared with the target data-flow according to which the
event log has been generated. In ProM, we employed the
Data-flow Discovery plug-in, using the generated log and the
same Petri net as in Figure 1. In less than 1 second, the
plug-in discovered a DPN-net a with the same data-flow as
Figure 2. Figure 5 shows how ProM visualizes the Petri net

Figure 5: A screenshot of the Data-flow Discovery plug-in in ProM: the output of the plug-in is a Petri net
with data. The white and black rectangles identify the visible and invisible transitions. The yellow “rounded
rectangles” represent the variables defined in the process data-flow. The dotted arrows going in and out the
yellow rectangles describe the write and read operations, respectively. When passing over a transition, a
light-blue pop-up shows the possible guard. The transitions with red inscriptions or filled in red are those,
visible or invisible, which are associated a guard.

with data discovered by the Data-flow Discovery plug-in.
Next we investigate how accuracy is influenced by event

logs that are not fully conforming to the process control-flow.
For this, we removed various percentages of events from the
log and we used the resulting event log as input for the Data-
flow Discovery plug-in. To finally check the accuracy of the
discovered data-flow process model, we checked the data-flow
conformance of the discovered process and the original log,
i.e. the event log before removing the events. To measure
the data-flow conformance, we used our implementation of a
data-flow Conformance Checker, which extends [3] to deal
with infinite domains. In the same way as [3], the data-flow
conformance of a trace is measured with a value between
0 (none of the events is conforming) and 1 (all events are
conforming).

Table 1 shows a summary of the results of the experiments
after removing different percentages of events. For each value
of percentage, we run the experiment 10 times, randomly
removing an appropriate percentage of events. Up to 20%,
removing events from the traces does not cause significant
differences in the discovered guards. Indeed, in most of the
runs of the experiments, the data-flow conformance is still
1 for each trace. Only in few cases, when removing 20% of
the events, the average data-flow conformance of all traces is
0.9999. When removing 20-35% of events performance start
to degrade gradually. As result, the function estimators are
no longer completely accurate, and, hence, the discovered
guards may contain some mistakes. Indeed, in a few exper-
iment runs, the average value of data-flow conformance of
each trace even reduces to 0.8. When removing 35%, 40%
or 50% of events, the event log starts containing too little
information and, hence, fewer guards are discovered, even
though they are exactly as they would be expected. As
result, the data-flow conformance is again 1. Nonetheless,
the data-flow model is underfitting: since the guards are not
discovered, too much behavior is allowed.

In conclusion, the solution approach that we propose is

valuable, since it allows for discovering correct data-flows.
And it can adequately deal with event logs with deviations,
as well.

5.2 Validation Using a Real-life Event Log
Next, we evaluate the approach using a real-life log from a

Dutch Financial Institute. The log is publicly available and
can be downloaded using the following DOI doi:10.4121/

uuid:3926db30-f712-4394-aebc-75976070e91f. The orig-
inal event log contains 13087 cases and 262200 events dis-
tributed over 36 activities ranging over a period from 1-Oct-
2011 to 14-Mar-2012. The process represented in the event
log is an application process for a personal loan or overdraft
within a global financing organization. The application can
be declined if it does not pass any checks. Applicants may
be contacted for further information. The application is
subjected to a final assessment upon which the application is
either approved and activated, declined, or cancelled. Each
case in the event log has an attribute AMOUNT REQ, which
specifies the amount of loan/overdraft requested by a cus-
tomer, and REG DATE, which is the date when the request
was submitted.

Using the insights reported in [2], we designed a model
of the process control-flow, in form of Petri net (without
data). Using the control-flow conformance checking plug-in
available in ProM [1], we verified that this Petri net is a
good representation of the control-flow, according to the real
behaviors observed in the event log.

The control-flow model was used as input for our Data-flow
Discovery plug-in. To have a more accurate validation, we
split the event log in two sets. We randomly chose 6500 traces
(i.e., 50% of traces the original log) to discover a DPN-net.
Afterwards, we compute the data-flow conformance of the
discovered DPN-net against the remaining traces to check
the accuracy of the discovered model. From a performance
viewpoint, the data-flow discovery was computed in few
seconds, using 500 MB of memory, which shows that the

approach scales very well and is also applicable for quite
large event logs. The average data-flow conformance was
0.85, from which we can derive the discovered DPN-net model
is a good reflection of the reality.

The discovered data-flow allowed us to find recurring pat-
terns in the management of the requests. The guard asso-
ciated with activity Accept Request is AMOUNT REQ ≥
3000 ∧ AMOUNT REQ < 49000. It means that, usually,
when a request is accepted, the amount requested is be-
tween 3000 and 49000 Euros. Similarly, activity Cancel
Request is associated a guard AMOUNT REQ < 3000 ∨
AMOUNT REQ ≥ 49000, which means, when a request
is cancelled, the amount requested is usually either small
(< 3000) or large (≥ 49000). No guard has been discovered
for activity Decline Request, which means that declining a
request has nothing to do with the amount that is requested.
From the analysis of the guards of other transitions in the
model, we could only derive is that, when a request is provi-
sionally accepted and, later, declined, the amount is generally
less than 5350 Euros. Note that REG DATE appears in no
guards, which means that, to handle a request and determine
the outcome, the procedure has not changed over time (i.e.
no concept drift in the data-flow conditions).

To sum up, although the event log contains only two
data attributes, we could derive an insightful process data-
flow and, hence, interesting information about recurring
behaviors. It is clear that the availability of more data
attributes would have allowed for discovering a more detailed
data flow. Therefore, we aim to make further investigations
with richer logs.

6. CONCLUSION
In paper, we presented a novel technique for data-aware

process mining. This is a neglected topic in literature as most
process mining approaches focus on control-flow only. To the
best of our knowledge, only the decision mining approach
presented in [7] focuses on data-flow discovery. However, this
approach has many limitations. For example, it cannot deal
with event logs with deviating behavior and more complex
control-flow constructs. To address these problems we first
align log and model and only then apply decision-tree learning
algorithms.

The proposed solution has been implemented in ProM and
evaluated using both synthetic and real-life event logs. For
example, this paper reports on experiences with an event log
originating from Dutch financial institute. The experimental
results show that the discovered data flows are accurate, even
in presence of event logs with non-conforming traces (which
is the case in most real-life event logs). Moreover, from a
performance viewpoint, the data-flow can typically be mined
in few seconds even for large event logs. Only if there are
many different event attributes (say hundreds), the “curse
of dimensionality” for traditional data mining approaches
kicks in. Experiences with real-life logs have shown that
the data-flow perspective can be discovered quickly and the
results provide useful additional insights.

Nevertheless, there is still room for further improvements
and extensions. In our current implementation, we can only
discover guards that are conjunctions/disjunctions of expres-
sions of the form variable-operator-constant (e.g. x > 4).
Moreover, we only deal with the activity preconditions. It
is also important to mine the post-conditions as they char-
acterize the usual output of the activities’ performance. We

believe that we can find a solution for both problems by
adapting techniques developed to detect invariants in soft-
ware programs, e.g., Daikon [4] can discover such invariants
but has not been applied in the context of process mining
yet.

Acknowledgements. The authors thank J.C. Bose for his
analysis of the real-life event log [2]. The research leading
to these results has received funding from the European
Community’s Seventh Framework Program FP7/2007-2013
under grant agreement no 257593.

7. REFERENCES
[1] A. Adriansyah, B. F. an Dongen, and W. M. P. van der

Aalst. Conformance Checking Using Cost-Based
Fitness Analysis. In IEEE International Enterprise
Distributed Object Computing Conference, pages 55–64.
IEEE Computer Society, 2011.

[2] R. P. J. C. Bose and W. M. P. van der Aalst. Process
Mining Applied to the BPI Challenge 2012: Divide and
Conquer While Discerning Resources. Technical Report
BPM Center BPM-12-16, bpmcenter.org, 2012.

[3] M. de Leoni, W. M. P. van der Aalst, and B. F. van
Dongen. Data- and Resource-Aware Conformance
Checking of Business Processes. In 15th International
Conference on Business Information Systems, volume
117 of LNBIP, pages 48–59. Springer Verlag, 2012.

[4] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant,
C. Pacheco, M. S. Tschantz, and C. Xiao. The Daikon
System for Dynamic Detection of Likely Invariants.
Science of Computer Programming, 69(1–3):35–45,
2007.

[5] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs,
C. Roxburgh, and A. Byers. Big Data: The Next
Frontier for Innovation, Competition, and Productivity.
McKinsey Global Institute, 2011.

[6] J. R. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufmann Publishers Inc., 1993.

[7] A. Rozinat and W. M. P. van der Aalst. Decision
Mining in ProM. In Proceedings of the 4th international
conference on Business Process Management, volume
4102 of LNCS, pages 420–425. Springer-Verlag, 2006.

[8] N. Sidorova, C. Stahl, and N. Trčka. Soundness
Verification for Conceptual Workflow Nets With Data:
Early Detection of Errors With the Most Precision
Possible. Information Systems, 36(7):1026–1043, 2011.

[9] W. M. P. van der Aalst. Process Mining - Discovery,
Conformance and Enhancement of Business Processes.
Springer, 2011.

[10] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. van
Dongen, and W. M. P. van der Aalst. XES, XESame,
and ProM 6. In Information Systems Evolution,
volume 72 of LNBIP, pages 60–75, 2011.

[11] W. M. P. van der Aalst, et al. Process Mining
Manifesto. In Proceedings of Business Process
Management Workshops 2011, volume 99 of LNBIP.
Springer Verlag, 2012.

