
Passages in Graphs

W.M.P. van der Aalst

Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, The Netherlands.
BPM Discipline, Queensland University of Technology, GPO Box 2434, Brisbane QLD 4001, Australia.

WWW: www.vdaalst.com, E-mail: w.m.p.v.d.aalst@tue.nl

Abstract

Directed graphs can be partitioned in so-called passages. A passage P is a set of edges such that any
two edges sharing the same initial vertex or sharing the same terminal vertex are both inside P or are
both outside of P . Passages were first identified in the context of process mining where they are used to
successfully decompose process discovery and conformance checking problems. In this article, we examine the
properties of passages. We will show that passages are closed under set operators such as union, intersection
and difference. Moreover, any passage is composed of so-called minimal passages. These properties can be
exploited when decomposing graph-based analysis and computation problems.
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1. Introduction

Recently, the notion of passages was introduced in the context of process mining [2]. There it was
used to decompose process discovery and conformance checking problems [1]. Any directed graph can be
partitioned into a collection of non-overlapping passages. Analysis can be done per passage and the results
can be combined easily, e.g., for conformance checking a process model can be decomposed into process
fragments using passages and traces in the event log fit the overall model if and only if they fit all process
fragments.

As shown in this article, passages have various elegant problems. Although the notion of passages is very
simple, we could not find this graph notion in existing literature on (directed) graphs [3, 6]. Classical graph
partitioning approaches [7, 8] decompose the vertices of a graph rather than the edges, i.e., the goal there
is to decompose the graph in smaller components of similar size that have few connecting edges. Some of
these notions have been extended to vertex-cut graph partitioning [5, 9]. However, these existing notions
are not applicable in our problem setting where components need to behave synchronously and splits and
joins cannot be partitioned. We use passages to decompose a graph into sets of edges such that all edges
sharing an initial vertex or terminal vertex are in the same set. To the best of our knowledge, the notion
of passages has not been studied before. However, we believe that this notion can be applied in various
domains (other than process mining). Therefore, we elaborate on the foundational properties of passages.

The remainder is organized as follows. In Section 2 we define the notion of passages, provide alternative
characterizations, and discuss elementary properties. Section 3 shows that any graph can be partitioned
into passages and that any passage is composed of so-called minimal passages. Section 4 introduces passage
graphs visualizing the relations between passages. Graphs may be partitioned in different ways. Therefore,
Section 5 discusses the quality of passage partitionings. Section 6 concludes this article.

2. Defining Passages

Passages are defined on directed graphs, simply referred to as graphs.

Definition 1 (Graph). A (directed) graph is a pair G = (V,E) composed of a set of vertices V and a set
of edges E ⊆ V × V .
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Figure 1: Graph G1 with 9 vertices, 12 edges, and 32 passages.

A passage is a set of edges such that any two edges sharing the same initial vertex (tail) or sharing the
same terminal vertex (head) are both inside or both outside of the passage. For example, {(a, b), (a, c)} is
a passage in graph G1 shown in Figure 1 because there are no other edges having a as initial vertex or b or
c as terminal vertex.

Definition 2 (Passage). Let G = (V,E) be a graph. P ⊆ E is a passage if for any (x, y) ∈ P and
{(x, y′), (x′, y)} ⊆ E: {(x, y′), (x′, y)} ⊆ P . pas(G) is the set of all passages of G.

Figure 2 shows 7 of the 32 passages of graphG1 shown in Figure 1. P2 = {(b, e), (b, f), (c, f), (c, d), (d, d), (d, f)}
is a passage as there are no other edges having b, c, or d as initial vertex or d, e, or f as terminal vertex.
Figure 2 does not show the two trivial passages: ∅ (no edges) and E (all edges).
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Figure 2: Seven example passages of graph G1 shown in Figure 1.

Lemma 1 (Trivial Passages). Let G = (V,E) be a graph. The empty passage ∅ and the full passage E
are trivial passages of G. Formally: {∅, E} ⊆ pas(G) for any G.

Some of the passages in Figure 2 are overlapping: P6 = P3 ∪ P4 ∪ P5 and P7 = P1 ∪ P3 ∪ P4. To combine
passages into new passages and to reason about the properties of passages we define the following notations.

Definition 3 (Passage Operators). Let G = (V,E) be a graph with P, P1, P2 ⊆ E. P1 ∪ P2, P1 ∩ P2,
P1 \ P2, P1 = P2, P1 6= P2, P1 ⊆ P2, and P1 ⊂ P2 are defined as usual. π1(P ) = {x | (x, y) ∈ P} are
the initial vertices of P , π2(P ) = {y | (x, y) ∈ P} are the terminal vertices of P , P1#P2 if and only if
P1 ∩ P2 = ∅, P1 . P2 if and only if π2(P1) ∩ π1(P2) 6= ∅.
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Note that d is both an initial and terminal vertex of P2 in Figure 2: π1(P2) = {b, c, d} and π2(P2) = {d, e, f}.
P5#P7 because P5 ∩ P7 = ∅. P4 . P5 because π2(P4) ∩ π1(P5) = {h} 6= ∅.

The union, intersection and difference of passages yield passages. For example, P7 = P1 ∪ P3 ∪ P4 is a
passage composed of three smaller passages. P5 = P6 \ P7 and P6 ∩ P7 = P3 ∪ P4 are passages.

Lemma 2 (Passages Are Closed under ∪, ∩ and \). Let G = (V,E) be a graph. If P1, P2 ∈ pas(G)
are two passages, then P1 ∪ P2, P1 ∩ P2, and P1 \ P2 are also passages.

Proof. Let P1, P2 ∈ pas(G), (x, y) ∈ P1∪P2, and {(x, y′), (x′, y)} ⊆ E. We need to show that {(x, y′), (x′, y)} ⊆
P1 ∪ P2. If (x, y) ∈ P1, then {(x, y′), (x′, y)} ⊆ P1 ⊆ P1 ∪ P2. If (x, y) ∈ P2, then {(x, y′), (x′, y)} ⊆ P2 ⊆
P1 ∪ P2.

Let P1, P2 ∈ pas(G), (x, y) ∈ P1∩P2, and {(x, y′), (x′, y)} ⊆ E. We need to show that {(x, y′), (x′, y)} ⊆
P1 ∩ P2. Since (x, y) ∈ P1, {(x, y′), (x′, y)} ⊆ P1. Since (x, y) ∈ P2, {(x, y′), (x′, y)} ⊆ P2. Hence,
{(x, y′), (x′, y)} ⊆ P1 ∩ P2.

Let P1, P2 ∈ pas(G), (x, y) ∈ P1 \P2, and {(x, y′), (x′, y)} ⊆ E. We need to show that {(x, y′), (x′, y)} ⊆
P1 \ P2. Since (x, y) ∈ P1, {(x, y′), (x′, y)} ⊆ P1. Since (x, y) 6∈ P2, {(x, y′), (x′, y)} ∩ P2 = ∅. Hence,
{(x, y′), (x′, y)} ⊆ P1 \ P2. �

A passage is fully characterized by both the set of initial vertices and the set of terminal vertices. Therefore,
the following properties hold.

Lemma 3 (Passage Properties). Let G = (V,E) be a graph. For any P1, P2 ∈ pas(G):

• π1(P1) = π1(P2) ⇔ P1 = P2 ⇔ π2(P1) = π2(P2),

• P1#P2 ⇔ π1(P1) ∩ π1(P2) = ∅, and

• P1#P2 ⇔ π2(P1) ∩ π2(P2) = ∅.

Proof. X = π1(P ) implies P = {(x, y) ∈ E | x ∈ X} (definition of passages). Hence, π1(P1) = π1(P2) ⇒
P1 = P2 (because a passage P is fully determined by π1(P )). The other direction (⇐) holds trivially. A
passage P is also fully determined by π2(P ). Hence, π2(P1) = π2(P2) ⇒ P1 = P2. Again the other
direction (⇐) holds trivially.

The second property follows from the observation that two passages share an edge if and only if the
initial vertices overlap. If two passages share an edge (x, y), they also share initial vertex x. If two passage
share initial vertex x, then they also share some edges (x, y).

Due to symmetry, the same holds for the third property. �

The following lemma shows that a passage can be viewed as a fixpoint: P = ((π1(P )×V )∪(V ×π2(P )))∩E.
This property will be used to construct minimal passages.

Lemma 4 (Another Passage Characterization). Let G = (V,E) be a graph. P ⊆ E is a passage if
and only if P = ((π1(P )× V ) ∪ (V × π2(P ))) ∩ E.

Proof. Suppose P is a passage: it is fully characterized by π1(P ) and π2(P ). Take all edges leaving
from π1(P ): P = (π1(P ) × V ) ∩ E. Take all edges entering π2(P ): P = (V × π2(P )) ∩ E. Hence,
P = (π1(P )× V ) ∩ E = (V × π2(P )) ∩ E. So, P = ((π1(P )× V ) ∪ (V × π2(P ))) ∩ E.

Suppose P = ((π1(P )×V )∪ (V ×π2(P )))∩E. Let (x, y) ∈ P and {(x, y′), (x′, y)} ⊆ E. Clearly, (x, y′) ∈
(π1(P )×V )∩E and (x′, y) ∈ (V ×π2(P ))∩E. Hence, {(x, y′), (x′, y)} ⊆ ((π1(P )×V )∪(V ×π2(P )))∩E = P .

�
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3. Passage Partitioning

After introducing the notion of passages and their properties, we now show that graph can be partitioned
using passages. For example, the set of passages {P1, P2, P3, P4, P5} in Figure 2 partitions G1. Other passage
partitionings for graph G1 are {P2, P5, P7} and {P1, P2, P6}.

Definition 4 (Passage Partitioning). Let G = (V,E) be a graph. P = {P1, P2, . . . , Pn} ⊆ pas(G) \ {∅}
is a passage partitioning if and only if

⋃
P = E and ∀1≤i<j≤n Pi#Pj.

Any passage partitioning P defines an equivalence relation on the set of edges. For e1, e2 ∈ E, e1 ∼P e2 if
there exists a P ∈ P with {e1, e2} ⊆ P .

Lemma 5 (Equivalence Relation). Let G = (V,E) be a graph with passage partitioning P. ∼P defines
an equivalence relation.

Proof. We need to prove that ∼P is reflexive, symmetric, and transitive. Let e, e′, e′′ ∈ E. Clearly, e ∼P e
because e ∈ E =

⋃
P (P is a passage partitioning). Hence, there must be a P ∈ P with e ∈ P (reflexivity).

If e ∼P e′, then e′ ∼P e (symmetry). If e ∼P e′ and e′ ∼P e′′, then there must be a P ∈ P such that
{e1, e2, e3} ⊆ P . Hence, e ∼P e′′ (transitivity). �

Any graph has a passage partitioning, e.g., {E} is always a valid passage partitioning. However, to decompose
analysis one is typically interested in partitioning the graph in as many passages as possible. Therefore,
we introduce the notion of a minimal passage. Passage P6 in Figure 2 is not minimal because it contains
smaller non-empty passages: P3, P4, and P5. Passage P7 is also not minimal. Only the first five passages in
Figure 2 (P1, P2, P3, P4 and P5) are minimal.

Definition 5 (Minimal Passages). Let G = (V,E) be a graph and P ∈ pas(G) a passage. P is minimal
if and only if there is no non-empty passage P ′ ∈ pas(G) \ {∅} such that P ′ ⊂ P . pasmin(G) is the set of
all non-empty minimal passages.

Two different minimal passages cannot share the same edge. Otherwise, the difference between both passages
would yield a smaller non-empty minimal passage. Hence, an edge can be used to uniquely identify a minimal
passage. The fixpoint characterization given in Lemma 4 suggests an iterative procedure that starts with a
single edge. In each iteration edges are added that must be part of the same minimal passage. As shown
this procedure can be used to determine all minimal passages.

Lemma 6 (Constructing Minimal Passages). Let G = (V,E) be a graph. For any (x, y) ∈ E, there
exists precisely one minimal passage P(x,y) ∈ pasmin(G) such that (x, y) ∈ P(x,y).

Proof. Initially, set P := {(x, y)}. Extend P as follows: P := ((π1(P ) × V ) ∪ (V × π2(P ))) ∩ E. Repeat
extending P until it does not change anymore. Finally, return P(x,y) = P . The procedure ends because the
number of edges is finite. If P = ((π1(P )× V ) ∪ (V × π2(P ))) ∩E (i.e., P does not change anymore), then
P is indeed a passage (see Lemma 4). P is minimal because no unnecessary edges are added: if (x, y) ∈ P ,
then any edge starting in x or ending in y has to be included.

To prove the latter one can also consider all passages P = {P1, P2, . . . , Pn} that contain (x, y). The
intersection of all such passages

⋂
P contains edge (x, y) and is again a passage because of Lemma 2. Hence,⋂

P = P(x,y). �

The construction described in the proof can be used compute all minimal passages and is quadratic in the
number of edges.

pasmin(G1) = {P1, P2, P3, P4, P5} for the graph shown in Figure 1. This is also a passage partitioning.
(Note that the construction in Lemma 6 is similar to the computation of so-called clusters in a Petri net
[4].)

Theorem 1 (Minimal Passage Partitioning). Let G = (V,E) be a graph. pasmin(G) is a passage par-
titioning.
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Proof. Let pasmin(G) = {P1, P2, . . . , Pn}. Clearly, {P1, P2, . . . , Pn} ⊆ pas(G) \ {∅},
⋃

1≤i≤n Pi = E and
∀1≤i<j≤n Pi#Pj (follows from Lemma 6). �

Figure 3 shows a larger graph G2 = (V2, E2) with V2 = {a, b, . . . , o} and E2 = {(a, b), (b, e), . . . , (n, o)}. The
figure also shows six passages. These form a passage partitioning. Each edge has a number that refers to
the corresponding passage, e.g., edge (h, k) is part of passage P4. Passages are shown as rectangles and
vertices are put on the boundaries of at most two passages. Vertex a in Figure 3 is on the boundary of P1

because (a, b) ∈ P1. Vertex b is on the boundary of P1 and P2 because (a, b) ∈ P1 and (b, e) ∈ P2. G2 has
no isolated vertices, so all vertices are on the boundary of at least one passage.
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Figure 3: A passage partitioning for graph G2.

The passage partitioning shown in Figure 3 is not composed of minimal passages as is indicated by the
two dashed lines. Both P1 and P6 are not minimal. P1 can be split into minimal passages P1a = {(a, b)}
and P1b = {(c, d)}. P6 can be split into minimal passages P6a = {(m, l)} and P6b = {(n, o), (n,m)}. In fact,
as shown next, any passage can be decomposed into minimal non-empty passages.

Theorem 2 (Composing Minimal Passages). Let G = (V,E) be a graph. For any passage P ∈ pas(G)
there is a set of minimal non-empty passages {P1, P2, . . . , Pn} ⊆ pasmin(G) such that

⋃
1≤i≤n Pi = P and

∀1≤i<j≤n Pi#Pj.

Proof. Let {P1, P2, . . . , Pn} = {P(x,y) | (x, y) ∈ P}. These passages are minimal (Lemma 6) and also cover
all edges in P . Moreover, two different minimal passages cannot share edges. �

A graph without edges has only one passage. Hence, if E = ∅, then pas(G) = {∅} (just one passage),
pasmin(G) = ∅ (no minimal non-empty passages), and ∅ is the only passage partitioning. If E 6= ∅, then
there is always a trivial singleton passage partitioning {E} and a minimal passage partitioning pasmin(G)
(but there may be many more).

Lemma 7 (Number of Passages). Let G = (V,E) be a graph with k = |pasmin(G)| minimal non-empty
passages. There are 2k passages and Bk passage partitionings.1 For any passage partitioning {P1, P2, . . . , Pn}
of G: n ≤ k ≤ |E|.

1Bk is the k-th Bell number (the number of partitions of a set of size k), e.g., B3 = 5, B4 = 15, and B5 = 52 [10].
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Proof. Any passage can be composed of minimal non-empty passages. Hence, there are 2k passages. Bk is
the number of partitions of a set with k members, thus corresponding to the number of passage partitionings.

If there are no edges, there are no minimal non-empty passages (k = 0) and there is only one possible
passage partitioning: ∅. Hence, n = 0. If E 6= ∅, then pasmin(G) is the most refined passage partitioning.
There are at most |E| minimal non-empty passages as they cannot share edges. Hence, n ≤ k ≤ |E|. Note
that n ≥ 1 if E 6= ∅. �

Graph G2 in Figure 3 has 28 = 256 passages and B8 = 4140 passage partitionings.

4. Passage Graphs

Passage partitionings can be visualized using passage graphs. To relate passages, we first define the
input/output vertices of a passage.

Definition 6 (Input and Output Vertices). Let G = (V,E) be a graph and P ∈ pas(G) a passage.
in(P ) = π1(P ) \ π2(P ) are the input vertices of P , out(P ) = π2(P ) \ π1(P ) are the output vertices of P ,
and io(P ) = π1(P ) ∩ π2(P ) are the input/output vertices of P .

Note the difference between input, output, and input/output vertices on the one hand and the initial and
terminal vertices of a passage on the other hand. Given a passage partitioning, there are five types of
vertices: isolated vertices, input vertices, output vertices, connecting vertices, and local vertices.

Definition 7 (Five Types of Vertices). Let G = (V,E) be a graph and P = {P1, P2, . . . , Pn} a passage
partitioning. Viso = V \ (π1(E) ∪ π2(E)) are the isolated vertices of P, Vin = π1(E) \ π2(E) are the input
vertices of P, Vout = π2(E) \ π1(E) are the output vertices of P, Vcon =

⋃
i 6=j π2(Pi) ∩ π1(Pj) are the

connecting vertices of P, Vloc =
⋃
i π1(Pi) ∩ π2(Pi) are the local vertices of P.

Note that V = Viso ∪ Vin ∪ Vout ∪ Vcon ∪ Vloc and the five sets are pairwise disjoint, i.e., they partition V .
In the passage partitioning shown in Figure 3: a is the only input vertex, k and o are output vertices, and
e, i and m are local vertices. All other vertices are connecting vertices.

Definition 8 (Passage Graph). Let G = (V,E) be a graph and P = {P1, P2, . . . , Pn} a passage partition-
ing. (P, {(P, P ′) ∈ P × P | P . P ′}) is corresponding passage graph .

Figure 4 shows a passage graph. The graph shows the relationships among passages and can be used to
partition the vertices V into Viso ∪ Vin ∪ Vout ∪ Vcon ∪ Vloc .

a P1 P2 P3 P4

b,d f,g

e

h
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k

P5
c j

P6

nl

om

Figure 4: Passage graph based on the passage partitioning shown in Figure 3.
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5. Quality of a Passage Partitioning

Passages can be used to decompose analysis problems (e.g., conformance checking and process discovery
[2]). In the extreme case, there is just one minimal passage covering all edges in the graph. In this case,
the graph cannot be decomposed. Ideally, we would like to use a passage partitioning P = {P1, P2, . . . , Pn}
that is accurate and that has only small passages. One could aim at as many passages as possible in order

to minimize the average size per passage: av(P) = |E|
n per passage. One can also aim at minimizing the

size of the biggest passage (i.e., big(P) = max 1≤i≤n |Pi|) because the biggest passage often takes most of
the computation time.

To have smaller passages, one may need to abstract from edges that are less important. To reason
about such “approximate passages” we define the input as Gπ = (V, π) with vertices V and weight function
π ∈ (V × V ) → [−1, 1]. Given two vertices x, y ∈ V : π(x, y) is “weight” of the possible edge connecting
x and y. If π(x, y) > 0, then it is more likely than unlikely that there is an edge connecting x and y. If
π(x, y) < 0, then it is more unlikely than likely that there is an edge connecting x and y. One can view
π(x,y)+1

2 as the “probability” that there is such an edge. The penalty for leaving out an edge (x, y) with
π(x, y) = 0.99 is much bigger than leaving out an edge (x′, y′) with π(x′, y′) = 0.15. The accuracy of a
passage partitioning P = {P1, P2, . . . , Pn} with E = ∪1≤i≤n Pi for input Gπ = (V, π) can be defined as

acc(P) =
∑

(x,y)∈E π(x,y)

maxE′⊆V×V

∑
(x,y)∈E′ π(x,y)

. If acc(P) = 1, then all edges having a positive weight are included in

some passage and none of edges having a negative weight are included. Often there is a trade-off between
higher accuracy and smaller passages, e.g., discarding a potential edge having a low weight may allow for
splitting a large passage into two smaller ones. Just like in traditional graph partitioning [7, 8], one can look
for the passage partitioning that maximizes acc(P) provided that av(P) ≤ τav and/or big(P) ≤ τbig , where
τav and τbig are suitably chosen thresholds. Whether one needs to resort to approximate passages depends
on the domain, e.g., when discovering process models from event logs causalities tend to be uncertain and
including all potential causalities results in Spaghetti-like graphs [1], therefore approximate passages are
quite useful.

6. Conclusion

In this article we introduced the new notion of passages. Passages have been shown to be useful in the
domain of process mining. Given their properties and possible applications in other domains, we examined
passages in detail. Passages are closed under the standard set operators (union, difference, and intersection).
A graph can be partitioned into components based on its minimal passages and any passage is composed of
minimal passages. The theory of passages can be extended to deal with approximate passages. We plan to
examine these in the context of process mining, but are also looking for applications of passage partitionings
in other domains (e.g., distributed enactment and verification).

References

[1] W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer-
Verlag, Berlin, 2011.

[2] W.M.P. van der Aalst. Decomposing Process Mining Problems Using Passages. In S. Haddad and L. Pomello, editors,
Applications and Theory of Petri Nets 2012, volume 7347 of Lecture Notes in Computer Science, pages 72–91. Springer-
Verlag, Berlin, 2012.

[3] J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications (Second Edition). Springer-Verlag, Berlin,
2009.

[4] J. Desel and J. Esparza. Free Choice Petri Nets, volume 40 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, Cambridge, UK, 1995.

[5] U. Feige, M. Hajiaghayi, and J. Lee. Improved Approximation Algorithms for Minimum-Weight Vertex Separators. In
Proceedings of the thirty-seventh annual ACM symposium on Theory of computing, pages 563–572. ACM, New York,
2005.

[6] J.L. Gross and J. Yellen. Handbook of Graph Theory. CRC Press, 2004.
[7] G. Karpis and V. Kumar. A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs. SIAM Journal

on Scientific Computing, 20(1):359–392, 1998.

7



[8] B.W. Kernighan and S. Lin. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell Systems Technical
Journal, 49(2), 1970.

[9] M. Kim and K. Candan. SBV-Cut: Vertex-Cut Based Graph Partitioning Using Structural Balance Vertices. Data and
Knowledge Engineering, 72:285–303, 2012.

[10] N.J.A. Sloane. Bell Numbers. In Encyclopedia of Mathematics. Kluwer Academic Publishers, 2002. http://www.

encyclopediaofmath.org/index.php?title=Bell_numbers&oldid=14335.

8

http://www.encyclopediaofmath.org/index.php?title=Bell_numbers&oldid=14335
http://www.encyclopediaofmath.org/index.php?title=Bell_numbers&oldid=14335

	1 Introduction
	2 Defining Passages
	3 Passage Partitioning
	4 Passage Graphs
	5 Quality of a Passage Partitioning
	6 Conclusion

