
Petra: A Tool for Analysing a Process Family

D.M.M. Schunselaar?, H.M.W. Verbeek?, W.M.P. van der Aalst?, and H.A.
Reijers?

Eindhoven University of Technology,
P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

{d.m.m.schunselaar, h.m.w.verbeek, w.m.p.v.d.aalst, h.a.reijers}@tue.nl

Abstract. When looking for the best model, simulation is often used
for “what-if” analysis. The properties of a modelled process are explored
by repeatedly executing the model. Based on the outcomes, parts of
the model may be manually modified to improve the process. This is
iteratively done to obtain the model best suited to a user’s requirements.
In most cases, this is a labour-intensive and time-consuming task. To
improve on the state of the art, we propose a framework where the user
defines a space of possible process models with the use of a configurable
process model. A configurable process model is a compact representation
of a family of process models, i.e., a set of process models related to each
other. Within the framework, different tools can be used to automatically
compute characteristics of a model. We show that, when used on data
from multiple real-life models, our framework can find better models in
an automated way.

1 Introduction

Within the CoSeLoG project, we are cooperating with 10 Dutch municipalities.
Each of these municipalities has to provide the same set of services to their cit-
izens, but each may do so in its own way [1]. This “couleur locale” justifies that
there may be different solutions to realise a particular process. The union of
local variations for these services spans a solution space containing the process
models currently selected by municipalities (and possibly more). When a munic-
ipality wants to improve their process model, they can use the solution space to
find a better solution (process model) to replace their process model. In Fig. 1,
we illustrate the solution space spanned by interpolating between the different
process models from the municipalities A, B, and C. In [1], we have shown how
to obtain this solution space. This initial solution space lacks the explicit infor-
mation which of the models is the most desired one for an organisation (in Fig. 1
indicated by “?/?”). In this paper, we present Petra: A generic tool to explore
a space of possible models by repeatedly analysing elements of the space and
supporting the collection and comparison of analysis results. Using Petra, we
transform the initial solution space to a solution space with explicit information
? This research has been carried out as part of the Configurable Services for Local

Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).



A

B C

A

B C

Petra

?/? �/+

?/? ��/+

?/? +/+

?/? �/�
?/? +/�

?/? ++/�

Fig. 1: Given a space of models spanned by a family of process models, we can
compute characteristics (2 in this example) for all the process models. These
characteristics can be used to find the “best” model.

about various aspects of the model, e.g., sojourn time, cost, and complexity (in
Fig. 1 indicated with “+/-”, “+/+”, etc.).

Some approaches exist for the problem at hand. Unfortunately, these ap-
proaches are either only existent on paper, or they are limited to a single tool
capable of computing a predetermined set of characteristics. Therefore, we in-
troduce Petra1, which stands for “Process model based Extensible Toolset for
Redesign and Analysis”. Petra is a generic and extensible framework. The so-
lution space it operates on is defined using configurable process models. The
values obtained from different analysis techniques are stored using properties.
By providing a generic interface, any analysis tool can be used in our framework
by implementing this interface.

Configurable process models are a compact representation for a family of
process models, i.e., a set of process models which are related to each other.
Different members of the family can be obtained by selecting different elements
(from a predetermined set of elements) to be removed. This selection is called a
configuration. This notion of configurable process models subsumes adjusting the
model with the use of XOR/OR gateways. For our configurable process models,
we use block-structured process models called Process Trees [2], which are a
generalisation of the formalism presented in [1]. Process Trees are specifically
developed within our project and all developed analysis techniques have been
designed for Process Trees.

The executable model obtained after configuring the configurable process
model is a model from the aforementioned solution space which one would like to
analyse. Using the aforementioned properties, we can annotate a process model
with analysis results. Properties are generic and can encode any analysis result
obtainable, e.g., sojourn time, costs, etc. Apart from analysis results, properties
are also used to encode run-time characteristics of a process model, e.g., the
arrival process of cases, work schedules of resources, and variable working speeds
of resources.

Since any analysis result can be encoded and we do not want to limit the
analysis power of Petra, we provide a generic tool interface. On this interface,
we provide a configured process model with relevant properties. The analysis

1 Petra is implemented as a ProM plugin http://www.processmining.org/

270 PNSE’14 – Petri Nets and Software Engineering



tools interacting with Petra are expected to, if required, make a transformation
from our Process Trees to the tool specific formalism. Conversions already exist
from Process Trees to classical Petri nets, BPMN, and YAWL for structural
analysis. When the tool finishes its analysis, we expect it to return a Process
Tree annotated with analysis results. We have used CPN Tools [3] as a first
example of an analysis tool in the context of Petra. We have selected CPN
Tools for 3 reasons; (1) it provides flexibility in defining the to-be-computed
characteristics, (2) by using Coloured Petri Nets, we can easily encode the more
advanced insights in resource behaviour, and (3) through Access/CPN [4], it is
possible to simulate all the models without human involvement.

Apart from providing the Petra framework and its implementation, we also
conducted a case study in which we applied our tool to the models from the
municipalities involved in the CoSeLoG project. In this case study, we have taken
models from two municipalities and transformed these into a configurable process
model. For each of the configured models in the solution space, we automatically
created a CPN model and simulated the CPN model to obtain time-related
information. Afterwards, we have enriched the analysed models with the output
of the simulation. This case study shows that our simulation models approach
reality and that we can find better models using Petra.

The remainder of this paper is organised as follows: Sect. 2 presents related
work. In Sect. 3, we present our high-level architecture, Process Trees, and the
properties currently used within our framework. The transformation of a Process
Tree with properties to a CPN model is presented in Sect. 4. After presenting
the key concepts of our framework, we use a case study to demonstrate the
applicability of Petra (Sect. 5). Finally, in Sect. 6, we present our conclusions
and sketch venues for extensions and research. A technical report supporting
this paper can be found in [2].

2 Related work

In this section, we will first elaborate on the techniques applicable to our prob-
lem setting. Afterwards, different techniques are discussed which reason on a
configurable process model to obtain a process model most desired by the user.
Finally, we briefly discuss the used formalism for Petra, as well as its limitations
and benefits relative to other formalisms.

2.1 Applicable techniques for our problem setting

In [5], an approach is presented that is based on configurable process models.
As far as we know, it is the approach most similar to ours. The configurable
process models that are used by it are modelled in Protos [5]. By converting the
configurable process model to a CPN model, the authors can use the same model
to analyse multiple variants of the same process model. The main limitation of
their approach is the fact that the focus is on the use of a single tool (CPN
Tools) which results in a non-extensible set of analysis results. Furthermore, the

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 271



resource model employed is rather simplistic (see [6], for an overview on the
importance of correctly modelling resources), i.e., all resources are available all
of the time. There is also no support for data, i.e., exclusive choices are chosen
randomly. Finally, with respect to determining soundness, state space analysis
has to be employed.

Another approach related to our approach is presented in [7]. On the existing
process model, process measures are computed. Afterwards, different applicable
best practices are evaluated and applied to obtain new process models. Finally,
on these process models, process measures are computed, the best-performing
process models are kept, and the steps are repeated. In [8], an implementation
is presented. However, the focus is on simulation and time-related information.
Furthermore, a single tool is selected for the analysis, prohibiting to gather
information not provided by this specific tool.

In [9], there is a direct dependency on process mining techniques to obtain the
process model as-is, and on enrichment of the process model with information
from the event log. After obtaining the enriched model, there is an iterative
approach of finding the malfunctioning parts of the process model, selecting
transformation from a database to be applied, generating process models for the
different redesign possibilities. The generated process models are stored, and, if
required, the aforementioned steps can be re-executed to change another part of
the process model. From all the generated process models, the best process model
is selected and returned to the user. However, it is unclear how the database of
redesigns is obtained, and it has not been implemented.

2.2 Configurable process models

In [10], a questionnaire-based approach is presented to deduce on a high level
the requirements a user poses on the best instantiation of a configurable process
model. This, in combination with functional requirements, results in an instan-
tiated process model closest to the user’s requirements. This approach does not
give any performance information, but it can be used beforehand to limit the
to-be-analysed solution space.

The Provop framework contains context-based configuration of the config-
urable process model [11]. Within the Provop framework, there are so-called
context rules which limit the configuration possibilities by including contextual
information. These context rules specify, for instance, that if the user requests
high quality, then certain other activities have to be included in the process
model. As with the approach in [10], the focus of this approach is not on collect-
ing performance information. Yet, it can be used to limit the solution space.

2.3 Process Trees and properties

Configurable process models have been defined for different modelling formalisms,
e.g., configurable EPC [12,13], configurable YAWL [14], configurable BPEL [14],
CoSeNets [1], and Process Trees [2]. The first 3 formalism are more expressive

272 PNSE’14 – Petri Nets and Software Engineering



than the latter two, i.e., the CoSeNets and Process Trees are a subclass of Free-
Choice Petri nets. However, with the first 3, explicit attention has to be paid to
the soundness [1] of the configured model. Furthermore, CoSeNets only focus on
control flow. Therefore, we use Process Trees as our formalism.

Process Trees are related to the RPST [15] in the sense that both are block-
structured. However, the RPST is used to convert non-block structured mod-
els into block-structured models and focusses on the control-flow perspective.
Furthermore, RPST can have so-called rigids which are non block-structured
fragments of the process model. These are not present in Process Trees.

Efforts have been made on enriching BPMN models with simulation infor-
mation by the WfMC standard BPSim [16]. However, we allow, amongst others,
for a richer resource model through supporting arousal-based working speeds.
Furthermore, BPSim is tailored towards simulation and thus abstracting from
non-simulation related information, e.g., compliance. We would like to be able to
encode this non-simulation related information as this might be of importance
for different analysis techniques. The properties are related to and inspired by
BPSim and a transformation from properties to BPSim has been made which
works in conjunction with the L-SIM tool from Lanner2.

3 Petra

In this section, we show the high-level architecture of Petra. We will also discuss
the lefthand side of Fig. 2, i.e., the process model and the properties used.

3.1 Architecture

The architecture of Petra, including the use of our sample, analysis tool, is
depicted in Fig. 2. In Petra, we have a family of process models defined by
a configurable process model from which we want to select the “best”. This is
2 http://www.lanner.com/en/l-sim.cfm

CPN Tools

100/20/37/0

200/40/10/0

70/80/15/0

P E

A B C

A B C

A B

A C

A

A B C

A B

A C

A

30/40/5/0

?/?/?/?

?/?/?/?

?/?/?/?

?/?/?/?

Configurable Model Family of Process Models Family of Analysed Process ModelsAnalysis Tool

Fig. 2: In Petra, we start with a configurable process model which describes a
family of process models. Each of these models is analysed resulting in a family
of analysed process models.

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 273



subject to the exact requirements of the organisation. We extend every process
model with relevant properties computed using different tools, e.g., sojourn time,
queue time, costs, etc. After obtaining the relevant properties, we have a family
of analysed models. At a later stage, the user can, via different views on this
family of models, select the desired process model.

Petra consists of 3 key concepts: a family of process models, a set of prop-
erties, and a tool interface. We first elaborate on the properties and the tool
interface. Afterwards, the Process Trees are discussed, and the family of process
models last.

Properties Properties come in two different flavours; independent (facts), and
dependent (deduced from facts). By not limiting the framework to a fixed set
of properties, we keep our framework generic. Furthermore, properties can be
part of every construct, e.g., resources, data, etc. In this paper, we focus on an
often used quantitative measure namely time. But properties can also be used
to encode for instance the model complexity.

Tool interface To the analysis tool employed, we offer a Process Tree annotated
with properties on interface P . An analysis tool has to make a transformation
from the Process Tree with properties, to the tool-specific formalism or use one
of the currently available conversions, e.g., to classical Petri Nets or BPMN.
Afterwards, if the tool has finished its computations, the output of the tool has
to be transformed into dependent properties and the Process Tree should be
enriched with this information (interface E ). The properties offered on interface
P can both be independent, and dependent. In our framework, we assume an
incremental approach, i.e., tools may only modify or add dependent properties
and are not allowed to remove (in)dependent properties. Since the amount of
possible models can be exponential in the amount of configuration points, we
require a tool to run automatically, i.e., without the need of human involvement.
Interface P can also be used to query properties of a tool, e.g., properties the
tool can compute (and for which nodes), and properties necessary for that.

3.2 Process Trees

Process Trees are block-structured process models, a subclass of Free-Choice
Petri nets, in which each block has a single entry and a single exit. A Process
Tree consists of 3 perspectives: control-flow, resource, and data. Next to this,
we have two extra perspectives to encode contextual information namely: envi-
ronment, and experiment. In Fig. 3, the different perspectives are depicted and
their relation to each other. Each of the perspectives contains a set of configura-
tion points with configuration options. In the remainder of this section, we deal
with each of the perspectives and their properties, and show the configuration
options.

Control-flow perspective The control-flow perspective consists of nodes, and di-
rected edges between these nodes which denotes the order of execution. Nodes

274 PNSE’14 – Petri Nets and Software Engineering



v1, v2

1

2

0

v1:
0.3

0.7

1

0.8

0.2

7

2

a

v2:
0.3

0.7

1

1 M Tu W Th F

r1

Environment

Data Control Flow Resource

Experiment

- Queueing: FiFo , LiFo

- Allocation: Push

- Replication length: 1000

- # Replications: 30 , 40 , 50

- Warm-up period: 500 , 1000 , 1500

arousal

speed

A

B C

[v1 == “1”] [v2 == “2”]

D E

Fig. 3: The different perspectives in a Process Tree.

come in two different flavours: tasks and blocks. Tasks are the units of work which
need to be executed, e.g., A in Fig. 3, and can be manual (with a resource) or
automatic. Blocks specify the causal relationship between its children, e.g., the
block with the arrow in Fig. 3 denotes a sequential execution. All the nodes are
depicted in Fig. 4 with their Petri net semantics3. Note that, we use some of the
notations for events in Petri nets from [17].

If there is an edge from a block to a node, then we say that this node is a child
of that block. We have a total order on the outgoing edges as for most blocks
the order has semantics, e.g., seq. In general, all nodes can have any number of
children excepts for the event (letter or clock), loopxor, and loopdef (see
Fig. 4). Finally, the set of nodes and edges forms a connected Directed Acyclic
Graph (DAG) with a single root node, i.e., a node without any incoming edges.
Process Trees are encoded as a DAG to minimise duplication of behaviour and
thus increasing maintainability.

There are three types of configuration options: (1) hiding, (2) blocking, and
(3) substitution. Substitution entails the option to replace a part of the pro-
cess model with a subprocess from a predetermined collection of subprocesses
(see [1]). Hiding, which is shown in Fig. 5 with the curved arrow, entails the op-
tion to abstract from a part of the process model by substituting the subprocess
with an automatic task, e.g., Fig. 5(b). Blocking, shown with a no-entry sign in
Fig. 5, denotes the option to prevent the flow of entering a part of the process
model, e.g., Fig. 5(a). Note that blocking has non-local effects, e.g., if a part of
a sequence is blocked, then the entire sequence becomes blocked.

In Fig. 5, the space of models is depicted ((a)-(d)) using hiding and blocking.
Figure 5(a) and (c), shows the configured model if we select blocking (note
that we have removed the xor as it is redundant), Fig. 5(b) and (c) shows the
configured model if hiding is selected and finally, Fig. 5(d) shows the configured
model when none of the configuration options is selected.
3 Note that, for many nodes, Fig. 4 shows the semantics for the case with only two

children. However, it is trivial to extend this to more children.

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 275



A A
Manual

Automatic

A Z

A Z

seq

A Z

and

A

Z

A Z

xor

[gz][ga]
A

Z

[ga]

[gz _ ¬ga]

A Z

[gz][ga]
or

A

Z

[ga ^ ¬gz]

[¬ga ^ gz]

[ga ^ gz]

D R E

[gr]

loopxor

D

R

E

[gr] [¬gr]

X Xis shorthand notation for

A Z

def

D R E

loopdef

do

redo

exit

do

redo

exit

Fig. 4: The different nodes and their (abstract) Petri net semantics.

Data perspective The data perspective specifies which expressions are used for
the outgoing edges of a choice (between “[” and “]”), which variables are read and
written (line from A to v

1

and to v
2

in Fig. 3). Furthermore, we have variables
encoded as Markov chains denoting which values a variable might take, with
which probability it may take this value, and what the initial value is of a
variable. For instance, in Fig. 3 (left-hand side), the variable v

1

has initial value
“0”, it may take the values “0”, “1”, and “2”, and it changes value according to the
probabilities on the edges.

Expressions reason over variables and values for those variables. They have
the following operators: conjunction, disjunction, and negation. Furthermore,
variables may be compared to values on equality and inequality.

On the outgoing edges of choice constructs, there is the option to select
an expression from a set of expressions. For variables, we can change which
nodes read/write this variable. Furthermore we have the following properties
for variables: we have the option to change the initial values, which values may
be taken, and whether an edge with a certain probability exists between two
values. In Fig. 6, the different possibilities are shown for removing a potential
value and removing an edge between two values for a variable. The family of data
perspectives is spanned by the cartesian product of the options for the variables
and expressions.

276 PNSE’14 – Petri Nets and Software Engineering



A

B C

[v1 == ”1”] [v2 == ”2”]

D E

A B

D E

A

D E

A

C

[v1 == ”1”] [v2 == ”2”]

D E

A

B C

[v1 == ”1”] [v2 == ”2”]

D E

Configurable control-flow perspective All possible configured control-flow perspectives

(a) (b)

(c) (d)

Fig. 5: An example family of control flows.

Resource perspective The resource perspective specifies which resource may exe-
cute which activity, e.g., in Fig. 3, we have a resource r

1

and she may execute D
and E. Furthermore, the properties of the resource perspective specify (1) when
a resource is available to work on the process (closely related and inspired by [6]),
e.g., r

1

is available on Monday morning and evening, but not on Friday, and (2)
how many resources there are of a particular kind. Finally, different working
speeds can be specified based on the busyness of a resource, this to model effects
such as the phenomenon described by the Yerkes-Dodson law of arousal [18]4.
For the work schedule, one can remove intervals in which the resource is available
to the process (Fig. 7 at the top). The number of resources is selected from a
predetermined set of values. Finally, the arousal based work speed offers the op-
tion to remove parts of the work speeds associated with the arousal levels (Fig. 7
at the bottom). The family of resource perspectives is spanned by the cartesian
product of the options for the work schedule, arousal based work speed, and
number of resources.

Environment perspective Currently, we only have the option to select the ar-
rival process (a property) for the environment perspective. The arrival process
specifies the distribution of arrivals of new cases to the process. Configuring the
arrival process entails selecting a distribution describing the arrival of cases.

Experiment perspective The experiment perspective consists of the simulation
property (Fig. 3 top left), which specifies the arguments for the simulation tool.
We can select a queuing principle, e.g., FiFo, and whether push or pull allocation
is used. Furthermore, we can set the warm-up period, replication length, and

4 The Yerkes-Dodson law of arousal describes the correlation between the arousal
(pressure) and the working speed of a person

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 277



1

2

0

v1

0.3

0.7

1

0.8

0.2

7

2

a

v2

0.3

0.7

1

1

1

2

0

0.3

0.7

0.8

0.2

7

2

a

0.3

0.7

1

1

(a)

(b)

7

a

1

1

1

2

0

0.3

0.7

1

0.8

0.2

(b)

(a)

1

All possible configured data perspectivesConfigurable data perspective

Fig. 6: Example families of Markov chains for variables v
1

and v
2

.

M Tu W Th F

r1

M Tu W Th F M Tu W Th F(a) (b)

(a) (b)

Configurable resource perspective All possible configured resource perspectives

arousal

speed

arousal

speed

arousal

speed

Fig. 7: Example families of work schedules and work speeds for resource r
1

.

number of replications. For each of the arguments, a single value has to be
selected from a predetermined set of values.

The properties inside of the experiment perspective are not entirely inde-
pendent of the used tool, e.g., the simulation property uses concepts from the
simulation domain. When analysis techniques from another domain is used, there
should be a property with common concepts from that domain.

3.3 Solution space

The solution space of a Process Tree is spanned by the cartesian product of
possible selections of configuration options for the various configuration points
in the various perspectives. In case of Fig. 3, we have a total of 2304 = 2·4·4·4·18
possible models, i.e., 2 possibilities for the environment perspective, 4 for the data
perspective, 4 for the control-flow perspective, 4 for the resource perspective, and
18 for the experiment perspective. Petra is able to traverse this solution space
automatically irrespective of the used properties.

278 PNSE’14 – Petri Nets and Software Engineering



4 Sample tool: CPN Tools

In this section, we elaborate on the transformation of a configured Process Tree
to a CPN model. Since the implementation for controlling CPN Tools using
Access/CPN and parsing the output is relatively straightforward [2], we do not
elaborate on it here.

4.1 Transforming a Process Tree to a CPN model

Transforming a Process Tree to a CPN model is done along four perspectives:
control-flow, data, resources, and environment; the experiment perspective con-
sists mainly of controlling CPN Tools itself. Each of the four perspectives is
treated separately. Modifications that only impact on a single perspective also
only modify the CPN model in that perspective. Between different perspectives,
we have introduced the notion of a controller such that the perspectives can
communicate with each other. For example, the control-flow perspective uses
the allocation controller to signal that a resource is necessary.

Data perspective The transformation of the expressions in the Process Tree
is straightforward, i.e., we have a variable (v

expr

) storing whether an expression
evaluated to true of false. A transition guarded with the expression itself is in
charge of updating v

expr

based on the values of the variables in the expression
and based on the previous version of the expression.

Modelling the variables themselves is a bit more involved. When a new case
is started, the variable is initialised with the initial value. If a variable is written,
we determine the new value of a variable. Most notable for the variable is the
fact that we employ two different views on the variables: a control-flow view,
and a guard view. We made the distinction because the different views serve two
different purposes. For the control-flow view, it is irrelevant what the value of a
variable is but it is important to know whether an update has been performed.
For the guard view, it is important to know the exact value of a variable as these
are used to evaluate guards.

Resource perspective The resource perspective mainly comprises of the work
schedules of the resources. The number of resources available to the process is a
modification of the initial marking. The task controller computing the resource
arousal level and thus the duration of a task is discussed at the control-flow
perspective (the computation is in the task controller).

A work schedule is a list of reals denoting the length of the intervals of being
present and absent. An integer denotes at which index the schedule currently is,
and a timestamp denotes at what time the last change took place. For instance,
if we have (2, [11.3, 4.1, 7, 4], 15.4), the “2” denotes that we are at
index 2, i.e., the value “7”, the values between “[” and “]” are the encoding of
the work schedule (available, unavailable), and the “15.4” at the end denotes
the timestamp of the last change. Note that since CPN Tools does not allow

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 279



guards based on time5, we cannot directly use the time of the last change added
to the duration of the interval as a guard for a transition making a resource
(un)available to the process.

Control-flow perspective Within the control-flow perspective, certain parts
of the process model do not always contribute to a case. For instance, for an or

construct only the selected branches (at run-time) contribute. To prevent the
explicit modelling of all possible paths through the or, we have introduced the
notion of true/false tokens. If the true/false token is true, then that part of the
process contributes to the case; otherwise it does not [19].

To be able to cope with multiple cases, we add to each token the notion of
a case identifier. Furthermore, this means that transitions for synchronising a
subprocess, e.g., the parallel execution of a number of tasks, are now guarded
with the requirement that they can only synchronise if all the tokens have the
same identifier. With the aforementioned directed acyclic graph of the Process
Tree, we might have tokens with the same identifier but belonging to different
instantiations of the subprocess. To solve this issue, we unfold the directed acyclic
graph of the Process Tree into a tree prior to applying the transformation.

In order to obtain timing information from the simulation, we have extended
every token with a timestamp, duration, and performance information about
the sojourn time, processing time, queue time, and wait time. The timestamp
denotes when a token entered a subprocess rooted at the node. The duration
denotes the processing time for a task and is updated just before the tasks starts.
The duration of a task is computed by the controller of a task since the duration
is based on the task and the arousal level of the allocated resource. Finally, the
performance information is used to obtain information about subprocesses and
can be used to compute the performance characteristics of a node based on its
children. The sojourn time is the time from the start of a subprocess for a case
until the end of that subprocess, processing time is the total amount of time
resources spent working on a case within a subprocess, queue time is the total
amount of time a case waited for a resource in a subprocess, and wait time is
the time spend in synchronising parallel branches for a subprocess.

Nodes All nodes offer the same interface places to their parent in the CPN encod-
ing. The interface places offered to the parent are: scheduled , started , withdrawn,
and completed . Scheduled denotes that a subprocess may start. Started denotes
that a subprocess actually has started. Withdrawn is specifically for accommo-
dating events, in which case all events are scheduled at the same time and the
event that starts first withdraws the others. Finally, completed denotes that the
subprocess has finished its execution. The interface places are encoded using
fusion places in CPN Tools [3].

Connected to the interface places are some standard transitions. The with-
draw transition fires when a token is received on interface place withdrawn, and
5 Guards are only reevaluated when tokens are added/removed in the surrounding

places.

280 PNSE’14 – Petri Nets and Software Engineering



we have not started the execution of this subprocess. If the subprocess has al-
ready been started, then the withdrawn token is forwarded with high priority to
the children. By using priorities on the transitions, we guarantee that nothing
ordinary can happen between obtaining and forwarding the withdrawn token.
When a subprocess is scheduled with a true token, then first the init transition
is fired. The init transition is linked to another fusion place which forms a hook
for a controller to notice that a subprocess has been scheduled. Similar, we have
a final transition to consume the token after a controller has been notified on
the completion of this subprocess. Finally, there is a skip transition in case a
false token is received in the scheduled place.

Tasks As tasks do not have children, we cannot receive a withdraw token after
starting the task, i.e., we can only start the task after all unprocessed withdraw
tokens have been processed. In case we receive a true token, the task signals the
controller of this task being scheduled. As soon as the task is allowed to start,
a token is produced signalling that the initialisation has been finished, and the
task starts and signals its parent by producing a token on the started interface
place. Afterwards, the task signals the task controller that it needs a resource
and a duration for its work item. The task controller adds the work item to the
list of currently unallocated work items. As soon as a resource has been allocated
to a work item (by the allocation controller, which we explain later on), the task
controller notifies the task and determines the processing time for the task based
on the arousal level of the allocated resource. After the duration has elapsed, a
token is made available and the task can complete. During the completion of a
task, the used resource is released, the read and written variables are updated,
and the statistics of the task are computed.

The statistics for a task are computed as follows: The queue time is the
elapsed time between a token entering the task’s subprocess and the moment a
resource has been allocated to the work item. The processing time is the duration
of a task. The wait time for a task in isolation is 0 by definition. Finally, the
sojourn time is the sum of the queue time and the processing time, i.e., the total
time spent in the task subprocess.

Blocks Blocks have the same set of places exposed to their parent as a task
has, e.g., a block is also scheduled, and a block signals her parent that she
has completed. Dependent on the type of block, different children receive a true
token based on different information, e.g., in case of an and block all the children
receive a true token, in case of a xor block only the first child for which the
expression evaluates to true receives a true token, etc.

Due to space limitations, we show the transformation of the xor block and
the loopxor block. The reason for this is that the and, or, and def blocks
can be easily inferred from the xor block. In turn, the seq and loopdef blocks
can be easily inferred from the loopxor block. For the encoding of the event

block, we refer the reader to [2].
The most interesting part of the xor is in the selection of which children

should receive a true token and which should receive a false token. The relevant

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 281



if getStatus(token0) 
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getWaitTimeSum((token0::token1::nil), getWaitTime(token))) else nil

if getStatus(token0) 
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getQueueTimeSum((token0::token1::nil), getQueueTime(token))) else nil

if getStatus(token0) 
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getProcessingTimeSum((token0::token1::nil), getProcessingTime(token))) else nil

if getStatus(token0) 
orelse getStatus(token1) then 1`(getCaseId(token), "XorX_183adaf7-20a1-4b68-98d4-21218b66cdff", getSojournTimeMax((token0::token1::nil), getSojournTime(token))) else nil

token1

token0

token

token

token

token

token

token

updTimestampStatus(token,time(),not(getStatus(token1)))

token1

token

(caseId,rs,b)

(caseId,rs,b)

token

updTimestampStatus(token, time(), b)

updStatus(token, b)

token

(caseId,rs,b)

(caseId,rs,b)

token

token

token

token

token

setStatsTime(updTimestampStatus(token, time(), getStatus(token0)orelse getStatus(token1)), getSojournTimeMax((token0::token1::nil), getSojournTime(token)) + getSojournTime(token), getProcessingTimeSum((token0::token1::nil), getProcessingTime(token)) + getProcessingTime(token), getQueueTimeSum((token0::token1::nil), getQueueTime(token)) + getQueueTime(token), getWaitTimeSum((token0::token1::nil), getWaitTime(token)) + getWaitTime(token))token

updStatus(token, false)

token

token

token

token

token
token

token

XorXChild1Started

P_HIGH

XorXChild0Started

P_HIGH

XorXChild1Scheduled

caseId = getCaseId(token) andalso getCaseId(token) = getCaseId(token1)

XorXChild0Scheduled

caseId = getCaseId(token)

XorXNoWithdraw

P_HIGH

XorXComplete

match(token::token0::token1::nil)

XorXFinal

XorXInit

getStatus(token)

XorXSchedule

getStatus(token)

XorXSkip

not(getStatus(token))
XorXWithdraw

P_HIGHER

PCScheduleIn1
XorControllerCInCToken

PCScheduleOut1
XorControllerCOutCToken

XorXChild0Selected

CToken

PBScheduleIn0
XorControllerBInCToken

PBScheduleOut0
XorControllerBOutCToken

PExpr1
Expr1 CExpr

PExpr2
Expr2 CExpr

PXorXFinalised
183adaf7-20a1-4b68-98d4-21218b66cdffFinalisedCToken

PXorXFinalise
183adaf7-20a1-4b68-98d4-21218b66cdffFinaliseCToken

PXorXInitialised
183adaf7-20a1-4b68-98d4-21218b66cdffInitialisedCToken

PXorXInitialise
183adaf7-20a1-4b68-98d4-21218b66cdffInitialiseCToken

XorXBusy

CToken

PCCompleted1
0b157a75-927c-4945-8a6c-c49329dc50c7CompletedCToken

PCWithdrawn1
0b157a75-927c-4945-8a6c-c49329dc50c7WithdrawnCToken

PCStarted1
0b157a75-927c-4945-8a6c-c49329dc50c7StartedCToken

PCScheduled1
ScheduledC CToken

PBCompleted0
ccab42f4-1ccc-4e88-bd35-69b3bdb7507eCompletedCToken

PBWithdrawn0
ccab42f4-1ccc-4e88-bd35-69b3bdb7507eWithdrawnCToken

PBStarted0
ccab42f4-1ccc-4e88-bd35-69b3bdb7507eStartedCToken

PBScheduled0
ScheduledB CToken

StatsWaitTime
StatsWaitTime CStat

StatsSojournTime
StatsSojournTimeCStat

StatsProcTime
StatsProcTime CStat

StatsQueueTime
StatsQueueTimeCStat

PXorCompleted
183adaf7-20a1-4b68-98d4-21218b66cdffCompletedCToken

PXorWithdrawn
183adaf7-20a1-4b68-98d4-21218b66cdffWithdrawnCToken

PXorStarted
183adaf7-20a1-4b68-98d4-21218b66cdffStartedCToken

PXorScheduled
183adaf7-20a1-4b68-98d4-21218b66cdffScheduledCToken183adaf7-20a1-4b68-98d4-21218b66cdffScheduled

183adaf7-20a1-4b68-98d4-21218b66cdffStarted

183adaf7-20a1-4b68-98d4-21218b66cdffWithdrawn

183adaf7-20a1-4b68-98d4-21218b66cdffCompleted

StatsQueueTime

StatsProcTime

StatsSojournTime

StatsWaitTime

ScheduledB

ccab42f4-1ccc-4e88-bd35-69b3bdb7507eStarted

ccab42f4-1ccc-4e88-bd35-69b3bdb7507eWithdrawn

ccab42f4-1ccc-4e88-bd35-69b3bdb7507eCompleted

ScheduledC

0b157a75-927c-4945-8a6c-c49329dc50c7Started

0b157a75-927c-4945-8a6c-c49329dc50c7Withdrawn

0b157a75-927c-4945-8a6c-c49329dc50c7Completed

183adaf7-20a1-4b68-98d4-21218b66cdffInitialise

183adaf7-20a1-4b68-98d4-21218b66cdffInitialised

183adaf7-20a1-4b68-98d4-21218b66cdffFinalise

183adaf7-20a1-4b68-98d4-21218b66cdffFinalised

Expr2

Expr1

XorControllerBOut

XorControllerBIn

XorControllerCOut

XorControllerCIn

Fig. 8: Fragment in xor dealing with guards.

part is depicted in Fig. 8. After the xor has been initialised and scheduled, the
xor signals the fragments corresponding to the guards in the data perspective
that it is going to schedule its children. After these fragments are done, the
expressions are evaluated in the order of the outgoing edges. If an expression
evaluates to true, then we forward a true token to the corresponding child and
all other children obtain a false token. We have a special case when all the
expressions evaluate to false. In that case, we forward, similar to YAWL [20], a
true token to the last child (instead of a false token).

For the statistics for the xor, we take the statistic of the child which received
a true token, i.e., we do not want non-executed subprocesses to interfere with
the statistics.

For the loopxor, the most interesting part is the iteration of the loop
(Fig. 9). If a loop is scheduled, we first schedule the do child of the loop. When
the do child has completed, we schedule both the redo child and the exit child.
Based on the guard of the redo child, we either send the true token to the redo
child or the exit child, the other will be send a false token. Note that we employ
a similar strategy as for the xor, i.e., if all guards are false then the exit child
receives a true token hence we only need to evaluate the guard of the redo child.
If the redo child has received the true token, we execute the do child again. If
the exit child received the true token, then we can exit the loop.

282 PNSE’14 – Petri Nets and Software Engineering



if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", getWaitTime(token2) - getWaitTime(token)) else nil

if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", getQueueTime(token2) - getQueueTime(token)) else nil

if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", getProcessingTime(token2) - getProcessingTime(token)) else nil

if getStatus(token2) then 1`(getCaseId(token2), "XorLoopD_4767fb17-d018-419b-a140-77c3efdec445", time()-getTimestamp(token)) else nil

token2

token1

token

token
token

token
token

token0

updTimestampStatus(token0, time(), getStatus(token0) andalso b)

token0

token

token

token

token

token2

token2

setStatsTime(updTimestamp(token2, time()), getSojournTimeMax((token2::nil), 
getSojournTime(token)) + getSojournTime(token), getProcessingTimeSum((token2::nil), 
getProcessingTime(token)) + getProcessingTime(token), getQueueTimeSum((token2::nil), 
getQueueTime(token)) + getQueueTime(token), getWaitTimeSum((token2::nil), 
getWaitTime(token)) + getWaitTime(token))

token updStatus(token, false)

token

token

token

token

token

token token

(caseId, rs, b) (caseId, rs, b)

P_HIGH

P_HIGH

P_HIGH

ScheduleDo Redo

caseId = getCaseId(token0)

Exit

caseId = getCaseId(token0)

XorLoopDNoWithdraw

P_HIGH

XorLoopDFinal

getStatus(token)

getStatus(token)

XorLoopDSkip

not(getStatus(token))

XorLoopDWithdraw

P_HIGHER

ExitScheduleIn
LoopxorControllerExitInCToken

ExitScheduleOut
LoopxorControllerExitOutCToken

RedoScheduleIn
LoopxorControllerRedoInCToken

RedoScheduleOut
LoopxorControllerRedoOut

CToken

DoScheduleIn
LoopxorControllerDoInCToken

DoScheduleOut
LoopxorControllerDoOutCToken

PXorLoopDFinalised
4767fb17-d018-419b-a140-77c3efdec445FinalisedCToken

CToken

CToken CToken

CToken

NoExpression
NoExpression CExpr

CExpr

CToken

PCWithdrawn2
2362a173-2c05-4b5b-b6d9-26f6d65829ceWithdrawnCToken

PCStarted2
2362a173-2c05-4b5b-b6d9-26f6d65829ceStartedCToken

PCScheduled2
ExitScheduledCToken

CToken

PBWithdrawn1
81589419-e68c-47c8-b65d-47691ff7be5eWithdrawnCToken

PBStarted1
81589419-e68c-47c8-b65d-47691ff7be5eStartedCToken

PBScheduled1
RedoScheduledCToken

CToken

PAWithdrawn0
98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dWithdrawnCToken

PAStarted0
98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dStartedCToken

PAScheduled0
DoScheduledCToken

CStatCStatCStatCStat

PXorLoopCompleted
4767fb17-d018-419b-a140-77c3efdec445CompletedCToken

PXorLoopWithdrawn
4767fb17-d018-419b-a140-77c3efdec445WithdrawnCToken

PXorLoopStarted
4767fb17-d018-419b-a140-77c3efdec445StartedCToken

PXorLoopScheduled
4767fb17-d018-419b-a140-77c3efdec445ScheduledCToken4767fb17-d018-419b-a140-77c3efdec445Scheduled 4767fb17-d018-419b-a140-77c3efdec445Started 4767fb17-d018-419b-a140-77c3efdec445Withdrawn 4767fb17-d018-419b-a140-77c3efdec445Completed

DoScheduled

98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dStarted

98d96ca3-5dfc-4c4b-a3cd-4e6c2e4b1c7dWithdrawn

RedoScheduled

81589419-e68c-47c8-b65d-47691ff7be5eStarted

81589419-e68c-47c8-b65d-47691ff7be5eWithdrawn

ExitScheduled

2362a173-2c05-4b5b-b6d9-26f6d65829ceStarted 2362a173-2c05-4b5b-b6d9-26f6d65829ceWithdrawn

NoExpression

4767fb17-d018-419b-a140-77c3efdec445Finalised

LoopxorControllerDoOut

LoopxorControllerDoIn LoopxorControllerRedoIn

LoopxorControllerExitOut

LoopxorControllerExitIn

LoopxorControllerRedoOut

PExpr1
Expr1Expr1(caseId, rs, b) (caseId, rs, b)

CExpr

Schedule

PXorLoopDInitialise
4767fb17-d018-419b-a140-77c3efdec445Initialise4767fb17-d018-419b-a140-77c3efdec445Initialise XorLoopDInit

XorLoopDChild0Started

PExpr2
3a4b0ecf-a44a-4b36-a807-84aea9302fd73a4b0ecf-a44a-4b36-a807-84aea9302fd7

XorLoopDChild1Started

XorLoopDChild2Started

token1

StatsQueueTime
StatsQueueTimeStatsQueueTime

StatsProcTime
StatsProcTimeStatsProcTime

StatsSojournTime
StatsSojournTimeStatsSojournTime

StatsWaitTime
StatsWaitTimeStatsWaitTime

PXorLoopDFinalise
4767fb17-d018-419b-a140-77c3efdec445Finalise4767fb17-d018-419b-a140-77c3efdec445Finalise

XorLoopDBusy

DoCompleted
DoCompletedDoCompleted

RedoCompleted
RedoCompletedRedoCompletednot(getStatus(token2)) andalso getStatus(token1)

Complete

match(token::token2::nil) andalso not(getStatus(token1))
token2

PXorLoopDInitialised
4767fb17-d018-419b-a140-77c3efdec445Initialised4767fb17-d018-419b-a140-77c3efdec445Initialised

ExitCompleted
ExitCompletedExitCompleted

updTimestampStatus(token0, time(), getStatus(token0) andalso not(b))

Reschedule
updTimestamp(token1, time())

XorLoopDRedoExit
tokentoken

token

token

Fig. 9: Fragment in loopxor dealing with guards.

The statistics of the loopxor are stored in the token of the exit child. In the
tasks, we already increment the values for the different performance measures
and due to the fact that the children of the loopxor are sequential, e.g., do,
redo, do, and exit , there is no need to aggregate the values.

Environment Perspective The environment controller currently consists of
the arrival controller only. The arrival controller realises a token generator and
a token de-generator. The token generator generates new cases based on the
distribution of the arrival process. The token de-generator removes finished cases
from the model.

Extra Controllers A controller not belonging exclusively to any of the afore-
mentioned perspectives is the allocation controller . The allocation controller al-
locates work items to resources. It operates on the global list of work items,
which contains all cases waiting to be processed by an activity, and on the list
of currently available resources to the process. The allocation can either push or
pull items by taking either the work item or resource point of view. For instance,
if we take the resource point of view (pull), then the resource selects the work

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 283



item most desired by her. When taking the work item point of view (push), we
select the resource best fitting the work item.

5 Case study

We have taken the building permit process of two Dutch municipalities, MA

and MB , participating in the CoSeLoG project. Instead of simulating the entire
building permit process, we focus in particular on the “Bezwaar en Beroep”
(objection and appeal) subprocess6. This subprocess allows people to object and
appeal to the possible conferment7 of a building permit, and starts after the
municipality has published the disposal8 of a building permit, which gives people
the opportunity to object or appeal before the disposal becomes a conferment.
The disposal of a building permit means that the municipality agrees with the
building permit but it is not yet definitive, i.e., based on objections and appeals
the municipality may decide to disagree with the building permit.

In our case study, we want to show Petra can indeed analyse a family of
process models and find a better process model. From the municipality event
logs, we obtained the different perspectives for each of the municipalities. These
perspectives have been combined into a Process Tree using the aforementioned
configuration options. In order to verify that the perspectives were obtained
correctly, we first try to reproduce the behaviour recorded in the original logs
from the municipalities. This way we can verify that the perspectives are encoded
correctly.

Verifying perspectives The characteristics of the logs are listed in Table 1. The
log spans a time period of roughly 2 years. The log consists of create events and
of completed events, and every event has an executor associated with it. The
occurrences of the different event classes varies significantly. The least occurring
event class occurs just once, while the most occurring event class occurs 262 times
for MA and 451 times for MB . We only estimate processing times of activities
with at least 3 observations in the log, this to have somewhat reliable values for
the sojourn time of events whilst not disposing too many activities.

From the event logs, we have constructed Process Trees only consisting of the
control-flow perspectives. Since all the choices in the Process Tree are binary,
we use variables which with a certain probability are “0” or “1” denoting left and
right respectively.

Apart from the flow of the different cases, we also need to estimate the
resource behaviour. First, we estimated the work schedule of the resources. The
work schedule is estimated based on observations from the log. We have taken
the timestamps of all events and made the following assumptions; (1) people
work in shifts, (2) there is a morning shift and an afternoon shift, (3) as there
6 The case study data can be found at: https://svn.win.tue.nl/trac/prom/browser/

Documentation/Petra
7 Conferment means that a building permit is granted to the requester.
8 Disposal means that a building permit is about to be granted to the requester.

284 PNSE’14 – Petri Nets and Software Engineering



Table 1: The characteristics of the logs used in the case study
Characteristics Cases Events Event classes Resources
M

A

302 586 15 5
M

B

481 845 23 4

is no clear signal of breaks, we assume the shifts are consecutive, (4) if we have
at least one measurement in a shift, we assume that person is available for the
process during that whole shift, and finally, (5) we assume a weekly iteration,
e.g., if someone worked on a Monday, we assume she can work every Monday.

For the throughput times of the activities, we have used two sources of infor-
mation. First, by using alignments [21], we aligned the log to the earlier obtained
control-flow perspective in order to see where time is spent. Second, there is leg-
islation specifying legal time intervals, e.g., there is a legal limit within which
the municipality has to respond. Unfortunately, the law allows for exceptions
which are not observable in the log. To take the legal constraints into account,
we have explicitly added activities to model these time intervals, and where the
law is unclear, we have estimated the time interval. We have also analysed the
resource performance between resources when they are allowed to executed the
same activity. If there was a significant difference, we have encoded the sojourn
time per resource, else we estimated the same sojourn time for all the resources.
Furthermore, we have abstracted from outliers.

Using the aforementioned information, we were able to construct the simu-
lation models for both MA and MB . In the simulation, we used push allocation,
FiFo queues for the work items, a warmup period and replication length of
150, 000 steps in the simulator, and, we generated 30 replications for each.

Prior to comparing the simulation results to the logs, we first have to compute
the statistics of the log. Since the log can be seen as a single long replication, we
used batch means to be able to compute replications and to be able to compare
the log to the simulation results. See [22] for an overview of the batch means
method. Fig. 10 shows the results, where MA is shown left and MB is shown
right and times on the y-axis are in hours.

As one can clearly see, there is overlap in the box plots of the logs and the
simulations. Hence, we cannot conclude that our simulation model and reality
differ in an unacceptable manner.

Finding a better model After illustrating that the models used in Petra can
indeed mimic reality, we now combine the models from MA and MB into a single
Process Tree. This Process Tree is the union of MA and MB but allows for more
than just MA and MB . We want to use this combined Process Tree to improve
the sojourn time for MA by letting Petra automatically traverse the family of
process models.

Not all combinations make sense, e.g., MA will not hire the employees of
MB . Hence, we limit the configurability of the Process Tree. This means that we
take the characteristics of the employees of MB into account, e.g., work speed,

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 285



Fig. 10: Validation results.

Table 2: Case study results.
1 2 3 4 5 6 7 8

540 A A A B A B B B
630 A A B A B A B B
770 B A A B B A B A
Avg 1488.78 1572.48 1570.91 806.60 1496.11 1217.32 803.67 1224.50

Std. dev. 29.55 33.82 18.58 22.93 24.81 34.80 20.24 33.10

but do not put the employees of MB into the Process Tree. Furthermore, since
the building permit process is heavily subjective to legal requirements, there is
not much room to change what is done but there is room to change how it is
done. Therefore, we focus on the activities 540 Objection to disposal submitted ,
630 Appeal set , and 770 Establish decision phase original decree, since these
activities embody part of the significant difference between MA and MB , and
are related to how things are done.

With the focus on the activities 540 , 630 , and 770 , we have a solution
space of 8 models. After Petra traversed through the family of process models,
transformed these models to CPN models, simulated each of them, and enriched
the family of process models, we obtain the results (throughput times of the
entire process in hours) as in Table 2.

As one can see, working on the activities 540 and 770 in the same way as
MB can already significantly decrease the sojourn time for MA. Furthermore,
one can clearly see that changing 770 and 630 without changing 540 will not
yield any significant improvements. Finally, 630 does not have any significant
impact on the performance of the process.

6 Conclusion and future work

Using Petra, we can take a family of process models, as captured by a Process
Tree, traverse this family, and enrich every process model from this family with

286 PNSE’14 – Petri Nets and Software Engineering



KPIs using external analysis tool like CPN Tools. Based on these KPI values, a
process owner can then decide which process model suits her best.

Petra is generic and extensible. The genericity is achieved by not limiting our
set of performance indicators and set of properties. The extensibility is achieved
by allowing any tool to be used. Currently, we have two tools in our framework:
CPN Tools and L-SIM. Finally, the implementation of our framework has been
applied in a case study using the data from two municipalities resulting in an
improved model. The case study shows that it is indeed possible to obtain an
improved model. A technical report supporting this paper can be found at [2].

Our framework can be extended in various of directions. Currently, the sim-
ulation of each of the CPN models is a time-consuming task. Although Petra is
multi-threaded, in the experiments, simulating a single CPN model took around
3 days on a core of 2.80 GHz. Since simulation takes such a long time, we
would like to minimise the amount of Process Trees to be analysed. In our cur-
rent implementation, we naively iterate through all possible instantiations of the
configurable process model. This means that equivalent models, obtained by dif-
ferent configurations, are analysed multiple times. Defining equivalence classes
on configurations and taking these into account in the iteration through the
Process Trees could already result in a significant speed up. Another approach
to minimising the amount of to-be-analysed models, is to have knowledge be-
forehand on the performance measures a user wants to optimise. To exploit this
knowledge, we also want to have different (faster but imprecise) analysis tools in
our framework. This way it would be possible to obtain quick estimates in the
relevant measure to decide whether simulating the Process Tree will be worth-
while. Also, simulations could be aborted once it is clear that the model under
investigation will never be Pareto optimal. With the use of Petra, these things
can be easily incorporated without changing any of the aforementioned.

References

1. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.:
Creating Sound and Reversible Configurable Process Models Using CoSeNets. In
Abramowicz, W., Kriksciuniene, D., Sakalauskas, V., eds.: BIS. Volume 117 of
Lecture Notes in Business Information Processing., Springer (2012) 24–35

2. Schunselaar, D.M.M., Verbeek, H.M.W., Aalst, W.M.P. van der, Reijers, H.A.: Pe-
tra: Process model based Extensible Toolset for Redesign and Analysis. Technical
Report BPM Center Report BPM-14-01, BPMcenter.org (2014)

3. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

4. Westergaard, M.: Access/CPN 2.0: A High-Level Interface to Coloured Petri Net
Models. In Kristensen, L.M., Petrucci, L., eds.: Petri Nets. Volume 6709 of Lecture
Notes in Computer Science., Springer (2011) 328–337

5. Gottschalk, F., Aalst, W. M. P. van der, Jansen-Vullers, M.H., Verbeek, H.M.W.:
Protos2CPN: Using Colored Petri Nets for Configuring and Testing Business Pro-
cesses. International Journal on Software Tools for Technology Transfer 10(1)
(2008) 95–110

D.M.M. Schunselaar et al.: Petra: A Tool for Analysing a Process Family 287



6. Aalst, W.M.P. van der, Nakatumba, J., Rozinat, A., Russell, N.: Business Process
Simulation. In Brocke, J., Rosemann, M., eds.: Handbook on Business Process
Management 1. International Handbooks on Information Systems. Springer Berlin
Heidelberg (2010) 313–338

7. Netjes, M., Mansar, S.L., Reijers, H.A., Aalst, W.M.P. van der: Performing Busi-
ness Process Redesign with Best Practices: An Evolutionary Approach. In Filipe,
J., Cordeiro, J., Cardoso, J., eds.: ICEIS (Selected Papers). Volume 12 of Lecture
Notes in Business Information Processing., Springer (2007) 199–211

8. Netjes, M., Reijers, H.A., Aalst, W.M.P. van der: The PrICE Tool Kit: Tool
Support for Process Improvement. (2010)

9. Essam, M.M., Mansar, S.L.: Towards a Software Framework for Automatic Busi-
ness Process Redesign. ACEEE International Journal on Communication 2(1)
(March 2011) 6

10. La Rosa, M., Lux, J., Seidel, S., Dumas, M., Hofstede, A.H.M. ter: Questionnaire-
driven Configuration of Reference Process Models. Advanced Information Systems
Engineering 4495 (2007) 424–438

11. Hallerbach, A., Bauer, T., Reichert, M.: Capturing Variability in Business Process
Models: The Provop Approach. Journal of Software Maintenance and Evolution:
Research and Practice 22(6-7) (November 2010) 519–546

12. Rosemann, M., Aalst, W.M.P. van der: A Configurable Reference Modelling Lan-
guage. Information Systems 32(1) (2007) 1–23

13. La Rosa, M., Dumas, M., Hofstede, A.H.M. ter, Mendling, J.: Configurable multi-
perspective business process models. Inf. Syst. 36(2) (2011) 313–340

14. Gottschalk, F.: Configurable Process Models. PhD thesis, Eindhoven University
of Technology, The Netherlands (2009)

15. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. In
Dumas, M., Reichert, M., Shan, M.C., eds.: BPM. Volume 5240 of Lecture Notes
in Computer Science., Springer (2008) 100–115

16. Gagne, D., Shapiro, R.: BPSim 1.0. http://bpsim.org/specifications/1.0/WFMC-
BPSWG-2012-01.pdf (Feb 2013)

17. Aalst, W. M. P. van der, Hee, K. M. van: Workflow Management: Models, Methods,
and Systems. The MIT Press (January 2002)

18. Yerkes, R.M., Dodson, J.D.: The Relation of Strength of Stimulus to Rapidity of
Habit-Formation. Journal of Comparative Neurology and Psychology 18(5) (1908)
459–482

19. Leymann, F., Roller, D.: Production Workflow: Concepts and Techniques. Prentice
Hall PTR (September 1999)

20. Hofstede, A.H.M. ter, Aalst, W.M.P. van der, Adams, M., Russell, N., eds.: Modern
Business Process Automation: YAWL and its Support Environment. Springer
(2010)

21. Aalst, W.M.P. van der, Adriansyah, A., Dongen, B.F. van : Replaying History
on Process Models for Conformance Checking and Performance Analysis. Wiley
Interdisc. Rew.: Data Mining and Knowledge Discovery 2(2) (2012) 182–192

22. Fishman, G.S.: Grouping Observations in Digital Simulation. Management Science
24(5) (1978) pp. 510–521

288 PNSE’14 – Petri Nets and Software Engineering


