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Abstract

An exponential growth of event data can be witnessed across all industries. Devices connected to the internet (“in-
ternet of things”), social interaction, mobile computing, and cloud computing provide new sources of event data and
this trend will continue. The omnipresence of large amounts of event data is an important enabler for process mining.
Process mining techniques can be used to discover, monitor and improve real processes by extracting knowledge from
observed behavior. However, unprecedented volumes of event data also provide new challenges with which state-of-
the-art process mining techniques often cannot cope. This paper focuses on “conformance checking in the large” and
presents a novel decomposition technique that partitions larger process models and event logs into smaller parts that
can be analyzed independently. The so-called Single-Entry Single-Exit (SESE) decomposition not only helps to speed
up conformance checking, but also provides improved diagnostics. The analyst can zoom in on the problematic parts
of the process. Importantly, the conditions under which the conformance of the whole can be assessed by verifying the
conformance of the SESE parts are described, which enables the decomposition and distribution of large conformance
checking problems. All the techniques have been implemented in ProM, and experimental results are provided.
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1. Introduction

In the last decade process mining emerged as a novel
discipline for addressing challenges related to Business
Process Management (BPM) and “Big Data” [1]. In-
formation systems (and many other computer-supported
systems) record overwhelming amounts of event data.
These can be seen as the “footprints” left by the pro-
cess. For example, Boeing jet engines may produce up
to 10 terabytes of operational information every 30 min-
utes, and Walmart logs may store one million customer
transactions per hour [2].

Event logs can be used to conduct three types of pro-
cess mining [1].The first and most prominent is discov-
ery. A discovery technique takes an event log and pro-
duces a model without using a priori information. For
many organizations it is surprising that existing tech-
niques are indeed able to discover real processes based
only on example behaviors recorded in event logs. The
second type is conformance where an existing process
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model is compared with an event log of the same pro-
cess. Conformance checking can be used to check if re-
ality, as recorded in the log, conforms to the model and
vice versa. The third type is enhancement where the
idea is to extend or improve an existing process model
using information about the actual process recorded in
an event log. Whereas conformance checking measures
alignment between model and reality, this third type of
process mining aims to change or extend the a priori
model; for instance, using timestamps in the event log,
one can extend the model to show bottlenecks, service
levels, throughput times, and frequencies.

In conformance checking, the seminal work by Roz-
inat et al.[3] was the first in formalizing the problem
and enumerating the four dimensions to consider for de-
termining the adequacy of a model in describing a log:
fitness, precision, generalization and simplicity. In this
paper, we will focus on evaluating fitness, that measures
the capability of a model in reproducing the traces of a
log. As modeling notation, we will focus on the Petri net
formalism [4], although most of the conclusions of the
paper can be generalized to similar process formalisms
[5].

Preprint submitted to Information Systems February 10, 2014



In real-life situations, event logs often do not fit its
corresponding models, i.e., some log traces cannot be
fully reproduced in the model. These non-fitting sit-
uations should be communicated to the stakeholders,
in order to take decisions on the process object of
study. However, in reality process models can be non-
deterministic, which complicates the analysis. Non-
determinism may arise when the model contains silent
or duplicate activities, which is often the case in prac-
tice. Moreover, the presence of noise in the log (rare or
infrequent behavior that has been recorded in the log)
complicates even more the algorithmic detection of non-
fitting situations. Due to this, the initial proposal from
Rozinat et al. to replay log traces in a model in order
to assess whether a trace can fit a model has been re-
cently reconsidered, giving rise to the notion of align-
ment. Alignment techniques relate execution sequences
of the model and traces in the event log. The tech-
niques can cope with deviations and models with du-
plicate/invisible activities [6, 7, 8]. However, alignment
techniques are extremely challenging from a computa-
tional point of view. Traces in the event log need to
be mapped on paths in the model. A model may have
infinitely many paths and the traces may have an arbi-
trary amount of deviating events. Hence, although the
algorithms have demonstrated to be of great value for
undertaking small or medium-sized problem instances
[1, 9], they are often unable to handle problems of in-
dustrial size. We believe that decomposition techniques
are an important means to tackle much large and more
complex process mining problems. Therefore, this pa-
per addresses this problem through decomposition and
distribution.

There is a trivial way to decompose the conformance
checking problem. One can simply split the event log
into sublogs such that every trace appears in precisely
one of these sublogs. Note that the conformance is still
checked on the whole model. Linear speed-ups are pos-
sible using such a simple decomposition. However, the
real complexity is in the size of the model and the num-
ber of different activities in the event log. Therefore, we
propose a different approach. Instead of trying to assess
the conformance of the whole event log and the com-
plete Petri net, conformance checking is only performed
for selected subprocesses (subnets of the initial Petri net
and corresponding sublogs). Subprocesses are identi-
fied as subnets of the Petri net that have a single-entry
and a single-exit node (SESE), thus representing an iso-
lated part of the model with a well-defined interface to
the rest of the net. SESEs can be efficiently computed
and hierarchically represented in a tree-like manner into
the Refined Process Structured Tree (RPST) [10].

Experiments (cf. Sec.6) show a considerable reduc-
tion (orders of magnitude) in the time required to per-
form fitness checking. Moreover the techniques pre-
sented in this paper allow for identifying those subnets
that have fitness problems, allowing the process owner
to focus on the problematic parts of a large model. Im-
portantly, we have performed analytical comparisons of
the conformance problem when decomposition is con-
sidered or not, related to the size of the components
and the average length of the log traces. In terms of
complexity, those studies reveal a clear superiority of
the methods proposed in this paper, being more robust
for these important matters (size of the components and
length of log traces). Remarkably, this significant com-
plexity alleviation comes without any penalty on the ca-
pability of the method: by applying decomposition tech-
niques conformance checking of the whole can still be
assessed.

The SESE decomposition is not only used for effi-
ciency reasons. We also use it to provide diagnostics
that help the analyst in localizing conformance prob-
lems. We create a topological structure of SESEs in or-
der to detect the larger connected components that have
fitness problems. Moreover, problematic parts can be
analyzed in isolation. Finally, a hierarchical perspec-
tive of the conformance checking problem is presented,
which may open the door for zoom-in zoom-out anal-
ysis, and also focus the analysis of the hierarchy into
particular subprocesses that have common features.

This paper extends and generalizes two recent con-
ference papers [11, 12]. The extensions and generaliza-
tions can be summarized as follows. First, we present
a strategy to compute fitness by adapting a partition-
ing of the RPST in order to satisfy the valid decom-
position requirements from [13]. Second, we have ex-
tended the decomposition approach of [12] in order to
deal with silent and duplicate activities. Third, different
perspectives to the conformance problem are presented
which aim to provide more flexibility during analysis.
Three alternatives to the traditional conformance check-
ing practice are proposed: (1) subprocess, (2) hierarchi-
cal and (3) filtered conformance checking. The filtered
conformance checking perspective is based on the initial
one presented in [11], but a new data perspective is pro-
posed in this paper. Fourth, we have reimplemented the
initial architecture of [11, 12] in order to address prob-
lems encountered when analyzing large event logs. The
new implementation results in some cases in speed-ups
of orders of magnitude. Fifth, we have extended consid-
erably the empirical evaluation from [11, 12], incorpo-
rating studies that relate the performance of the decom-
posed technique with respect to the log trace length and
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the size of the subprocesses.
The paper is structured as follows: Sect. 2 intro-

duces preliminaries needed in the remainder. In Sect. 3
the SESE-decomposition is presented formally. Sec-
tion 4 describes the high-level use of the RPST structure
for diagnostics of conformance checking problems, by
means of a topology of SESE components. Various ap-
plications of the decomposition technique are presented
in Sect. 5. Section 6 presents the experimental evalua-
tion of the techniques described in this paper. Related
work is discussed in Sect. 7. Section 8 concludes the
paper.

2. Preliminaries

2.1. Mathematical Preliminaries

Definition 1 (Multisets) Given a set X, a multiset M of
X is a mapping M : X → N. B(X) denotes the set of all
multisets over X.

Multisets can be represented in vector format, i.e.,
[x3, y, z2] is the multiset that has three occurrences of x,
one of y and two occurrences of z. M1 ≤ M2 if M1(x) ≤
M2(x) for all x ∈ X. (Domains are extended if needed.)
For example, [y, z] ≤ [x3, y, z2] and [y2] � [x3, y, z2].
The difference (M1 − M2) and union (M1 + M2) are de-
fined as usual. For example, [x3, y, z2] − [y, z] = [x3, z].

Definition 2 (Projection) Let X be a set and Q ⊆ X
one of its subsets. σ�Q denotes the projection of σ ∈ W∗

on Q, e.g., aabc�{a,c}= aac. The projection can also be
applied to multisets, e.g., [x3, y, z2]�{x,y}= [x3, y].

2.2. Petri Nets and Logs

For a deeper introduction of Petri nets the reader is
refereed to [4].

Definition 3 (Petri Net, Workflow Net) A Petri net
is a tuple PN = (P,T, A), being P the set of places,
T the set of transitions, where P ∩ T = ∅, and
A ⊆ (P × T ) ∪ (T × P) the flow relation. For a node n
(place or transition) of a Petri net, •n (n•) is the prede-
cessor (successor) set of n in A.

A workflow net WF-net = (P,T, A, start, end) is a par-
ticular type of Petri net where the net has one source
place ’start’ and one sink place ’end’, and all the other
nodes are in a path between them.

A marking in a Petri net defines the global state,
which is distributed among its places. Formally:

Definition 4 (Marking, Firability) Let PN = (P,T, A)
be a Petri net. A marking M is a multiset of places, i.e.,
M ∈ B(P). A transition t ∈ T is enabled in a marking
M iff •t ≤ M. Firing transition t in M results in a new
marking M′ = M−•t + t•, i.e., tokens are removed from
•t and added to t•. A marking M′ is reachable from
M if there is a sequence of firings σ = t1t2 . . . tn that
transforms M into M′, denoted by M[σ〉M′.

Definition 5 (System Net) A system net is a tuple SN =

(PN,Mini,Mfin), where PN is a Petri net and Mini, Mfin

define the initial and final marking of the net, respec-
tively.

A system net defines a set of sequences, each one
starting from the initial marking and ending in the final
marking.

Definition 6 (Full Firing Sequences, Boundedness)
Let SN = (PN,Mini,Mfin) be a system net. The set
{σ | (PN,Mini)[σ〉(PN,Mfin)} denotes all the full firing
sequences of SN. A Petri net is said to be k-bounded
or simply bounded if all the possible markings in the set
of full firing sequences are bounded by k (e.g., no place
contains more than k tokens). When k is 1 the Petri net
is called safe.

An event log is a collection of traces, where a trace
may appear more than once. Formally:

Definition 7 (Trace, Event Log) Let T ∗ be a trace. An
event log L ∈ B(T ∗) is a multiset of traces.

In this simple definition of an event log, an event
refers to just an activity. Often event logs store addi-
tional information about events, e.g., resource, times-
tamp, or additional data elements. In this paper, we ab-
stract from such information. However, the results pre-
sented can easily be extended to event logs containing
additional information.

Process discovery is concerned with learning a pro-
cess model (e.g., a Petri net) from an event log. The fo-
cus of this paper is however on conformance checking,
i.e., comparing observed and modeled behavior. There
are four quality dimensions for comparing model and
log: (1) replay fitness, (2) simplicity, (3) precision, and
(4) generalization [1]. A model with good replay fit-
ness allows for most of the behavior seen in the event
log. A model has a perfect fitness if all traces in the log
can be replayed by the model from beginning to end.
The simplest model that can explain the behavior seen
in the log is the best model. This principle is known
as Occam’s Razor. Fitness and simplicity alone are not
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sufficient to judge the quality of a discovered process
model. For example, it is very easy to construct an ex-
tremely simple Petri net (“flower model”) that is able to
replay all traces in an event log (but also any other event
log referring to the same set of activities). Similarly, it
is undesirable to have a model that only allows for the
exact behavior seen in the event log. Remember that
the log contains only example behavior and that many
traces that are possible may not have been seen yet. A
model is precise if it does not allow for “too much” be-
havior. Clearly, the “flower model” lacks precision. A
model that is not precise is “underfitting”[14]. Underfit-
ting is the problem that the model over-generalizes the
example behavior in the log (i.e., the model allows for
behaviors very different from what was seen in the log).
At the same time, the model should generalize and not
restrict behavior to just the examples seen in the log.
A model that does not generalize is “overfitting” [15].
Overfitting is the problem that a very specific model is
generated whereas it is obvious that the log only holds
example behavior (i.e., the model explains the particu-
lar sample log, but there is a high probability that the
model is unable to explain the next batch of cases).

In the remainder, we will focus on replay fitness
which we will simply refer to as fitness. The follow-
ing definition states whether a trace or log fits the model
or not.

Definition 8 (Fitting Trace) A trace σ ∈ T ∗ fits SN =

(PN,Mini,Mfin) if (PN,Mini)[σ〉(PN,Mfin), i.e., σ corre-
sponds to a full firing sequence of SN. An event log
L ∈ B(T ∗) fits SN if (PN,Mini)[σ〉(PN,Mfin) for all
σ ∈ L.

Note that different metrics to quantify fitness are pos-
sible. For example, we can look at the percentage of
fitting traces. Using alignments we can go one step fur-
ther and look at the event level. Finally, although in
this paper we focus on fitness, other dimensions such
as precision [7, 8] and generalization [15] can be con-
sidered at the level of subnets. However, the computa-
tion of the overall precision and generalization in a de-
composed way will require revisiting both dimensions
because the current definitions are defined globally and
cannot be reformulated in a decomposed manner easily.

2.3. SESE and RPST

The intuitive idea behind the decomposition tech-
nique in the following section is to find subgraphs that
have a simple interface with respect to the rest of the
net. The following set of definitions formalize the idea

of Single-Entry Single-Exit (SESE) subnet and the cor-
responding decomposition. The underlying theory dates
back to the seminal work of Hopcroft and Tarjan in the
seventies [16], but recent studies have made consider-
able progress into making the algorithms practical when
applied to process models [17]. We start defining the
graph structure used for decomposing a process model:

Definition 9 (Workflow Graph) Given a Petri net
PN = (P,T, A), we define its workflow graph simply as
the directed graph G = (V, E) where no distinctions are
made between places and transitions, i.e., V = P ∪ T
and E = A.

In the remainder, the following context is assumed:
Let G be a workflow graph of a given WF-net, and let
GS = (VS , S ) be a connected subgraph of G formed by
a set of edges S and the vertices VS = Π(S ) induced by
S .1

Definition 10 (Subnet nodes [10]) A node x ∈ VS is in-
terior with respect to GS iff it is connected only to nodes
in VS ; otherwise x is a boundary node of GS . A bound-
ary node y of GS is an entry of GS iff no incoming edge
of y belongs to S or if all outgoing edges of y belong
to S . A boundary node y of GS is an exit of GS iff no
outgoing edge of y belongs to S or if all incoming edges
of y belong to S .

As next definition formalizes, a SESE is a special
type of subgraph with a very restricted interface with
respect to the rest of the graph:

Definition 11 (SESE [10]) A set of edges S ⊆ E is a
SESE (Single-Exit-Single-Entry) of graph G = (V, E)
iff GS has exactly two boundary nodes: one entry and
one exit. A SESE is trivial if it is composed of a single
edge. S is a canonical SESE of G if it does not partially
overlap with any other SESE of G, i.e., given any other
SESE S ′ of G, they are nested (S ⊆ S ′ or S ′ ⊆ S ) or
they are disjoint (S ∩ S ′ = ∅). By definition, the source
of a WF-net is an entry to every fragment it belongs to
and the sink of the net is an exit from every fragment it
belongs to.

The decomposition based on canonical SESEs is a
well studied problem in the literature, and can be com-
puted in linear time. In [18], the authors proposed the
algorithm for constructing the Refined Process Structure

1Π(R) =
⋃

(a,b)∈R {a, b} is the set of elements referred to by relation
X ⊆ A × B.
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Figure 1: A WF-net, its workflow graph and the RPST and SESE decomposition.

Tree (RPST), i.e., a hierarchical structure containing all
the canonical SESEs of a model. In [10], the computa-
tion of the RPST is considerably simplified and gener-
alized by introducing a pre-processing step that reduces
the implementation effort considerably.

Definition 12 (RPST [10]) Let G be the workflow
graph of a given WF-net.2 The Refined Process Struc-
tured Tree (RPST) of G is the tree composed by the set
of all its canonical SESEs, such that, the parent of a
canonical SESE S is the smallest canonical SESE that
contains S . The root of the tree is the entire graph, and
the leaves are the trivial SESEs. The set of all the nodes
of the tree is denoted as S.

In the remainder of the paper, we will refer to canoni-
cal SESEs resulting from the RPST decomposition sim-
ply as SESEs. Also note that the SESEs are defined as
a set of edges (i.e., S ) over the workflow graph (not as
subgraphs, i.e., GS ). However, for simplicity and when
the context is clear, we will use the term SESE to refer
also to the subgraph induced by those edges. We will
denote as PNS = (PS ,T S , AS ) the Petri net determined
by the SESE S , i.e., PNS = (P∩Π(S ),T ∩Π(S ), A∩S ).
The nodes (either transitions or places) determined by
S are denoted as NS , i.e., (P ∪ T ) ∩ Π(S ).

2.4. Running Example
Conformance checking techniques investigate how

well an event log L and a system net SN fit together.
Note that SN may have been discovered through pro-
cess mining or may have been made by hand. In any

2Although the approach presented in this paper can be generalized
to graphs with several sources and sinks, for the sake of clarity in this
paper we restrict to the case with only one source and only one sink
[10].

case, it is interesting to compare the observed example
behavior in L with the potential behavior of SN.

As indicated before there are four quality dimensions
for comparing model and log (fitness, simplicity, preci-
sion, and generalization), but here we focus on fitness.
A model with good fitness allows for most of the be-
havior seen in the event log. We use the model shown
in Fig. 2 to illustrate the notion of fitness and the role
of alignments when comparing modeled and observed
behavior.

The model in Fig. 2 was inspired by a similar model
presented in [19] and represents the possible situations
to handle claims in a insurance company. In the follow-
ing, we will use the letters in each transition to refer to
the corresponding activity, e.g., a refers to the “register
claim” event.

Consider the following event log
L1 = [σ1 = abdfgehmnpqs, σ2 = abijlmnpqnpqs].
An optimal alignment between a log trace and a model
is a pair of traces denoting what is the best way the log
trace can be reproduced by the model. For trace σ1 of
L1, the optimal alignment is:

a b d f g e h m n p q s
a b d f g e h m n p q s

The top row of each alignment corresponds to “moves
in the log” and the bottom row correspond to “moves in
the model”. If a move in the model cannot be mimicked
by a move in the log, then a “�” (“no move”) appears
in the top row. The symmetric situation (a move in the
log that cannot be mimicked by a move in the model)
can also happen and is denoted analogously. Any of the
two aforementioned situations reveal fitness problems
between the model and the log trace. When both log
and model can execute the same activity (in other words,
they move synchronously), it denotes a fitting step be-
tween log and model. Since the optimal alignment for

5



b

d

e

f

g

h

i
j

k
l

m

n

o

p

q

s

r

a

register
claim

decide
high-low

start high
check

start low
check

high insurance check

high medical history check

contract hospital

low insurance check

low medical history check

end high
check

end low
check

start
notification

prepare
notification

notify

re-notification
need

register
notification

archive
claim

re-process claim

Figure 2: Running example: claims in a insurance company.

trace σ1 has only fitting steps, the trace is fitting. An
optimal alignment for trace σ2 is:

a b i j � l m n p � q n p q s
a b i j k l m n p o � n p q s

This optimal alignment for trace σ2 has several fit-
ness problems represented by asynchronous moves of
log or model. For instance, when the claim is low,
the model considers it mandatory to check the medi-
cal history, while in reality this step did not happen,
which is manifested in the alignment above by an asyn-
chronous model move in the fifth position of the align-
ment: (�, k). On the other hand, the notification cannot
be registered if there are still pending notifications: the
asynchronous log move in the eleventh position of the
alignment (q,�) reveals this situation.

In general, costs can be assigned to the different types
of misalignments and global or individual fitness val-
ues can be defined and computed [6]. For the example
above, and assuming that each misalignment has equal
cost (say 1), the fitness of the model with respect to the
log for trace σ1 is 1.0 (perfect fitness), while the fitness
for trace σ2 is 0.9.

3. Decomposing Conformance Checking using
SESEs

It is well known that checking conformance of large
logs and models is a challenging problem. The size
of log and model and the complexity of the underlying
process strongly influence the time needed to compute
fitness and to create optimal alignments. Divide-and-
conquer strategies are a way to address this problem
[11, 12]. As indicated before, we do not just want to
partition the traces in the event log (providing a trivial
way to distribute conformance checking). The poten-
tial gains are much higher if also the model is decom-

posed and traces are split into smaller ones. To decom-
pose conformance checking problems, the overall sys-
tem net SN is broken down into a collection of subnets
{SN1, SN2, . . . SNn} such that the union of these subnets
yields the original system net.

Definition 13 (Decomposition) Let SN = (PN,Mini,
Mfin) be a system net where PN = (P,T, A). D =

{SN1, SN2, . . . SNn} is a decomposition of SN if and only
if:
• P =

⋃
1≤i≤n Pi,

• T =
⋃

1≤i≤n T i,
• A =

⋃
1≤i≤n Ai where Ai ∩ A j = ∅ for 1 ≤ i < j ≤ n.

Note that each place or transition can be shared
among different subnets, while each arc resides in just
one subnet.

Any decomposition that satisfies Def. 13 may be con-
sidered for decomposing a conformance problem, e.g.,
subnets containing only one arc, or subnets randomly
grouping distant nodes on the net. However, given
that the ultimate goal of a decomposition is to be able
to diagnose, comprehend and understand conformance
problems, the use of meaningful decompositions is pre-
ferred. In [11] SESEs fragments were used to decom-
pose conformance: given the structure of a SESE where
a unique single entry and a unique single exit exist,
a SESE becomes an appropriate unit of decomposi-
tion. Intuitively, each SESE may represent a subpro-
cess within the main process (i.e., the interior nodes are
not connected with the rest of the net) , and the anal-
ysis of every SESE can be performed independently.
The RPST of a net can then be used to select a possi-
ble set of SESEs forming a decomposition. As it shown
in Prop. 1, any transverse cut over the RPST defines a
decomposition.

Proposition 1 (SESE decomposition) Let SN =
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(WF-net,Mini,Mfin) be the system net of the workflow
net WF-net = (P,T, A, start, end). Consider the RPST
decomposition of WF-net, where S represents all the
SESEs in the RPST. We define a transverse-cut over
the RPST as a set of SESEs D ⊆ S such that any
path from the root to a leaf of RPST contains one
and only one SESE in D. Given a transverse-cut
D = {S 1, S 2, . . . S n}, let the decomposition DD be de-
fined as DD = {SNS 1 , SNS 2 , . . . SNS n }, where SNS i =

(PNS i ,Mini �PS i ,Mfin �PS i ), i.e., the Petri net determined
by the SESE S i, and the projection of the initial and fi-
nal markings on the places of the subnet. The decompo-
sition DD derived from the SESEs satisfies the definition
of decomposition given in Def. 13

Proof. By definition of RPST, the arcs of each SESE
in the RPST are contained in one, and only one, of
its children (unless it is a trivial SESE). Therefore, any
transverse-cut set of SESEs contains all the arcs, where
each arc only appears in only one SESE. 2

Proposition 2 (A SESE decomposition from RPST
exists) Given any RPST, a decomposition always exists.

Proof. Given any RPST, the root (i.e., the whole net)
defines a decomposition. In addition, the set of all the
leaves (i.e., the trivial SESEs with only one arc) also
defines a decomposition. 2

As it is claimed in Prop. 2, the overall net is, by def-
inition, a decomposition by itself. But it is obvious to
see that this trivial way of decomposition does not al-
leviate the initial conformance problem. On the other
hand, a decomposition formed only by trivial SESEs
will produce meaningless components, and at the same
time, the posterior analysis will have to deal with the
analysis overhead produced by the creation of the nu-
merous components. A decomposition which lays in
between the aforementioned extremes seems more in-
teresting from the practical point of view, i.e., to gen-
erate components large enough to become meaningful
subprocesses, but whose size can be handled in prac-
tice. Hence, the algorithm proposed in Alg. 1 can gen-
erate a decomposition which limits the maximum size
of each component to k in order to control the size and
complexity of individual components.

Algorithm 1 shows how to compute a k-
decomposition, for any k such that 1 ≤ k ≤ |A|
(where |A| stands for the number of arcs of the overall
net). The algorithm keeps a set of nodes that conform
the decomposition (D) and a set of nodes to consider
(V). Initially V contains the root of the RPST, i.e.,
the overall net. Then, the algorithm checks, for each

Algorithm 1 k-decomposition algorithm
procedure k-dec(RPST,k)

V = {root(RPS T )}
D = ∅

while V , ∅ do
v← pop(V)
if |v.arcs()| ≤ k then D = D ∪ {v}
else V = V ∪ {children(v)}

return D

node v to consider, if v satisfies the k property, i.e., the
number of arcs of SESE v is less or equal than k. If
this is the case, v is included in the decomposition. If
not, it discards v and includes the RPST children of v
into the nodes to consider. Note that, given any RPST,
a k-decomposition always exists, i.e., in worst case, the
decomposition formed by all the leaves of the RPST
will satisfy the definition. The algorithm proposed has
linear complexity with respect to the size of the RPST,
and termination is guaranteed by the fact that the size
of the component is reduced in every iteration.

A SESE is a component that only interfaces with the
rest of the net through the single entry and single exit
boundary nodes, which may be shared among different
components. The rest of nodes of a SESE (i.e., the inte-
rior nodes) have no connection with other components.
Given that the SESE computation is performed over the
workflow graph (i.e., where there is no distinction be-
tween places and transitions), we distinguish two possi-
ble cases for the boundary nodes: transition boundary
and place boundary.

The transition boundary case occurs when the node
determined to be the entry or the exit of a SESE is a
transition. Figure 3 shows an example of a transition
boundary. In the example, the overall net is decom-
posed into two subnets that correspond to the SESEs S 1
and S 2, being d the boundary transition shared between
them.

As it is proven in [13], a transition boundary de-
composition represents no problem from a conformance
point of view, i.e., given a decomposition with only tran-
sition boundaries, a log trace fits the overall net if and
only if it fits all the subnets. The reason for that is
that when a transition is shared among subnets, the la-
bel of the transition is used to synchronize the subnets
that contain that transition on their boundaries, ensur-
ing that the decisions on model’s ability to reproduce
that label are done jointly. Consider the decomposition
DD = {SNS 1 , SNS 2 } from the example of Fig. 3, where
SNS 1 = (PNS 1 , [start], []) and SNS 2 = (PNS 2 , [], [end])
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(c) log traces

σ1 abcddefg=

σ1 S1 abcdd=

σ1 S2 ddefg=
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σ2 S1 abc=

σ2 S2 efg=

Figure 3: Example of decomposition with transition boundary.

are the systems nets derived from the SESEs S 1 and S 2.
Consider the trace σ1 = abcddefg shown in Fig. 3c.
Such trace does not fit the overall net due to the dou-
ble d. The projection of that trace on SNS 1 and SNS 2

results in σ1 �T S 1 = abcdd and σ1 �T S 2 = dde f g respec-
tively (cf. Fig. 3c). Note that, although σ1�T S 2 fits SNS 2

(on SNS 2 , the preset of d is empty hence it can fire more
than once), σ1�T S 1 does not fit SNS 1 . Hence, the trace
σ1 that does not fit the overall net, does not fit all the
subnets (at least there is one that is not fitting). A simi-
lar situation happens with the trace σ2 = abcefg (where
no d appears), i.e., trace σ2 does not fit the overall net,
hence σ2 �T S 1 does not fit SNS 1 or σ2 �T S 2 does not fit
SNS 2 . In the latter example, actually both do not fit.

a
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d

e
f

p

a
b

c p

d

e
f

p

S1 S2

S1

S2

(a) original model

(b) decomposition

start

start

end

end

(c) log traces

σ1 abcdef=

σ1 S1 abc=

σ1 S2 def=

σ2 abdecf=

σ2 S1 abc=

σ2 S2 def=

Figure 4: Example of decomposition with place boundary.

On the other hand, the case of place boundary is dif-
ferent. When the boundary (entry or exit) is a place, it is
shared among two or more subnets. However, the arcs
connected to the place (the ones in charge of produc-

ing and consuming tokens) are split among the subnets.
This makes the place unable to synchronize, and there-
fore, it is impossible to analyze the different subnets
in isolation. The example in Fig. 4 reflects this situa-
tion. The original net is decomposed into two subnets,
DD = {SNS 1 , SNS 2 }, corresponding with the SESEs S 1
and S 2, and being p the boundary place shared by both
subnets. It can be seen that the arcs that produce to-
kens in p and the ones that consume tokens from p are
distributed into different subnets. Consider now the log
traces σ1 = abcdef and σ2 = abdecf of Fig. 4. While
σ1 fits the overall net, σ2 does not. However, the pro-
jections of both traces on T S 1 and T S 2 are the same (cf.
Fig. 4). This problem materializes when we analyze the
subnets. Firstly, given that any arc that produces tokens
in p is contained in PNS 1 , we need to consider an initial
marking for SNS 2 different than [] (otherwise, the sub-
net would be deadlocked initially). If we consider the
initial marking [p], σ1 �T S 2 does not fits SNS 2 . There-
fore the fitness correctness is not preserved, i.e., a trace
that fits the overall net like σ1 must fit all the subnets.
On the other hand, if we consider the initial marking
with two (or more) tokens on p (i.e., [p2]), σ2�T S 2 fits
SNS 2 (similarly, σ2�T S 1 fits SNS 1 ). However σ2 is a non-
fitting trace of the overall net, and consequently, it must
not fit all the subnets. Therefore, when the decomposi-
tion contains place boundaries, the preservation of the
fitness correctness is not guaranteed.

In [13] the definition of decomposition is revisited to
propose the so called valid decomposition, i.e., a de-
composition that only shares transitions (but not places
nor arcs).

Definition 14 (Valid Decomposition [13]) Let SN =

(PN,Mini,Mfin) be a system net where PN = (P,T, A).
D = {SN1, SN2, . . . SNn} is a valid decomposition of SN
if and only if:
• T =

⋃
1≤i≤n T i,

• P =
⋃

1≤i≤n Pi where Pi ∩ P j = ∅ for 1 ≤ i < j ≤ n,
• A =

⋃
1≤i≤n Ai where Ai ∩ A j = ∅ for 1 ≤ i < j ≤ n.

In [13, Theorem 2] it is proven that all valid decom-
position preserves the fitting correctness, i.e., a log is
fitting a system net if and only if fits all the subnets.

As has been illustrated in the previous examples, a
decomposition based directly on SESEs is not necessar-
ily a valid decomposition, i.e., boundary places may be
shared among subnets. However, in the remainder of
this section an approach to transform a SESE decom-
position into a valid decomposition is presented, which
tries to preserve the underlying semantics behind the
SESE decomposition. This technique is called bridging,
and consists of: (1) transforming each place boundary
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found into a transition boundary (i.e., boundary place
is removed) and (2) creating explicit subnets (called
bridges) for each boundary place. The bridges contain
all the transitions connected with the boundary place,
and they are in charge of keeping the place synchro-
nized among subnets. In addition, the boundary places
together with the arcs connected to them are removed
from the original subnets. Formally:

Definition 15 (Bridging a SESE decomposition)
Let D = {S 1, . . . S n} be SESE decomposition of the

WF-net (P,T, A, start, end). Let ID = {i1, . . . , in} and
OD = {o1, . . . , on} be the set of all entry and exit nodes
of the SESEs in D. B = {p1, . . . , pk} = ((IP ∪ OP) ∩
P) \ {start, end} = (IP ∩ OP) ∩ P is the set of bound-
ary places, i.e., entry and exit nodes of the SESEs that
are places but not the source or sink place of the WF-
net WN. The decomposition after applying bridging
D′ = {S ′1, . . . S

′
n, B1 . . . Bk} of D is constructed as fol-

lows:

• For all 1 ≤ i ≤ n: S ′i = {(x, y) ∈ S i | {x, y} ∩ B = ∅}

(boundary places are removed from the SESEs).

• For 1 ≤ j ≤ k: B j = {(x, y) ∈ A | p j ∈ {x, y}}
(bridges are added).

DD′ = {SNS ′1 , . . . SNS ′n , SNB1 . . . SNBk } represents the
decomposition constructed from D′.

Figure 5 illustrates the effects of the bridging on the
example previously shown in Fig. 4. In this case, the
boundary place p (and its arcs) are removed from S 1
and S 2, and a bridge B1 is created. Note that now, the
transitions connected to p (i.e., b, c, d and e) are shared
(instead of p), keeping the synchronization among com-
ponents, and making DD′ a valid decomposition.

Proposition 3 shows that the decomposition derived
from applying SESE decomposition and then bridging
results in a valid decomposition, according to Def. 14.

Proposition 3 (Bridging results in valid decomposi-
tion)

Let D′ = {S ′1, . . . S
′
n, B1 . . . Bk} be obtained from a

SESE decomposition after applying bridging. The de-
composition DD′ = {SNS ′1 , . . . SNS ′n , SNB1 . . . SNBk } is a
valid decomposition according to Def. 14.

Proof. By construction, a SESE decomposition only
shares transitions and places. After applying the bridg-
ing, all the shared places are removed, creating explicit
components with only one instance of these places. 2
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S2

S'1

S'2

B1

(a) original model

(c) decomposition and bridging

(b) decomposition

end

end

end

start

start

start

Figure 5: Example of decomposition with bridging.

Moreover, given that the bridging produces a valid
decomposition, it also preserves the property that a trace
in the log fits the overall process model if and only
if each subtrace fits the corresponding process frag-
ment. Hence, fitness checking can be decomposed using
SESEs and bridges.

Proposition 4 (Fitness Checking can be decom-
posed) Let L be a log and SN = (WF-net,Mini,Mfin)
be a system net where WF-net is a workflow net. Let
DD′ = {SN1, SN2, . . . SNn} be a valid decomposition re-
sulting of the application of the SESE decomposition
and bridging over WF-net. Let SN i = (PN i,Mi

ini,M
i
fin),

where PN i = (Pi,T i, Ai).
A trace σ ∈ L fits SN (i.e.,

(WF-net,Mini)[σ〉(WF-net,Mfin)) if and only if
it fits all the parts, i.e., for all SN i ∈ DD′ ,
(PN i,Mi

ini)[σ�T i〉(PN i,Mi
fin).

Proof. Special case of the more general Theorem 2 in
[13]. If the overall trace σ fits S N, then each of the pro-
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Figure 6: Components resulting from 15-decomposition and bridging for the running example of Fig. 2.

jected tracesσ�T i fits the corresponding subnet. If this is
not the case, then at least there exist one projected trace
σ�T i that does not fit. But this is impossible because, by
construction, each subnet is a relaxation of the behavior
of the overall net. If the projected traces σ �T i fit the
corresponding subnets, then these traces can be stitched
back into a trace σ that fits S N. 2

Going back to the running example of this paper
(Fig. 2), Fig. 6 shows the SESE decomposition using
a k of 15. Let us show how the fitness problems are now
identified in a decomposed manner. For that, we will
use the trace σ2 = abijlmnpqnpqs from the log L1 in
Sect. 2.4. Given σ2 and each one of the SESEs provided
in Fig. 6, the only ones that reveal fitness anomalies are
S ′3, B4 and B6 (for the other components we can find
perfect alignments when projecting σ2 to the activities
of the component). The alignment for S ′3 is:

i j � l
i j k l

which reveals that the mandatory check of the medical
history is missing in the log. Analogously, the align-
ment for B4 is:

m n � n
m n o n

that identifies the explicit need for notifying again the
client, an action missing in the log but required by the
model. Finally, the alignment for B6:

q q s
� q s

reveals another fitness problem for trace σ2: the system
has stored in the log an early registration of the notifi-
cation which was not meant at that point in time, since
later notifications were sent and according to the model,

the registration is only expected to be done at the end of
the case.

Using Prop. 4, we can infer that the fact that some
components in the decomposition identify fitness prob-
lems implies that the whole model does not fit log L1.

3.1. Decomposing with Invisible/Duplicates

So far, the approach presented in this paper was as-
suming that all the Petri net transitions were associated
with a unique single activity, i.e., a transition could be
unambiguously identified by its label. In this section we
lift this assumption in order to consider invisible and du-
plicate transitions. An invisible transition is a transition
without activity associated, e.g., transitions included for
routing purposes. Duplicate transitions are transitions
with the same activity associated. For example, con-
sider the net of Fig.7, which is a slight variation of the
running example of Fig. 2. This model contains an in-
visible transition (represented in black) used to skip the
execution of contract hospital, i.e., now contract hos-
pital is optional. Moreover, the new model does not
distinguishes between high insurance check and low in-
surance check, but the same action insurance check is
modeled in two different parts of the model, i.e., is a
duplicate activity.

The definition of Petri net presented in the preliminar-
ies is now adapted to include the possibility of invisible
and duplicate transitions.

Definition 16 (Labeled Petri Net) A labeled Petri net
PN = (P,T, A, l) is a Petri net (P,T, A) with labeling
function l ∈ T 9 UA where UA is some universe of
activity labels. If a transition t < dom(l), it is called in-
visible. Tv(PN) = dom(l) is the set of visible transitions
in PN. T u

v (PN) = {t ∈ Tv(PN) | ∀t′∈Tv(PN) l(t) = l(t′) ⇒
t = t′} is the set of unique visible transitions in PN (i.e.,
there are no other transitions having the same visible
label).
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Figure 7: Variant of the running example of Fig. 2 including invisible and duplicates (top), and its corresponding decomposition (bottom).

As it has been illustrated previously in this paper,
when a net is decomposed, the labels of the transitions
are used to synchronize and preserve the fitness prop-
erties. However, sharing invisible and duplicate tran-
sitions among subnets generates ambiguity invalidating
this synchronization. Thus, the definition of valid de-
composition presented in Def.14 is refined to consider
invisible and duplicates, i.e., only unique visible transi-
tions can be shared among subnets.

Definition 17 (Valid Decomposition with Invisible
and Duplicates[13]) Let SN = (PN,Mini,Mfin) be
a system net where PN = (P,T, A, l). D =

{SN1, SN2, . . . SNn} is a valid decomposition of SN if and
only if:
• SN i = (PN i,Mi

ini,M
i
fin) is a system net with PN i =

(Pi,T i, Ai, li) for all 1 ≤ i ≤ n,
• li = l�T i for all 1 ≤ i ≤ n,
• Pi ∩ P j = ∅ for 1 ≤ i < j ≤ n,
• T i ∩ T j ⊆ T u

v (SN) for 1 ≤ i < j ≤ n, and
• SN =

⋃
1≤i≤n SN i.

Let SN = (PN,Mini,Mfin) with N = (P,T, A, l)
be a system net with valid decomposition D =

{SN1, SN2, . . . , SNn}. We can observe the following
properties:

- each place appears in precisely one of the subnets,
i.e., for any p ∈ P: |{1 ≤ i ≤ n | p ∈ Pi}| = 1,

- each invisible transition appears in precisely one of
the subnets, i.e., for any t ∈ T \ Tv(SN): |{1 ≤ i ≤ n |
t ∈ T i}| = 1,

- visible transitions that do not have a unique label
(i.e., there are multiple transitions with the same la-
bel) appear in precisely one of the subnets, i.e., for
any t ∈ Tv(SN) \ T u

v (SN): |{1 ≤ i ≤ n | t ∈ T i}| = 1,
- visible transitions having a unique label may appear

in multiple subnets, i.e., for any t ∈ T u
v (SN): |{1 ≤

i ≤ n | t ∈ T i}| ≥ 1, and
- each edge appears in precisely one of the subnets,

i.e., for any (x, y) ∈ A: |{1 ≤ i ≤ n | (x, y) ∈ Ai}| = 1.
In order to instantiate a decomposition comply-

ing with this new definition of valid decomposition,
Algorithm1 needs to be refined (cf. Alg. 2).

Algorithm 2 checks if considering the children of a
SESE s will violate the definition of valid decomposi-
tion in Def.17. The three conditions need to be satisfied:

- transitions shared (T ) between any subset of SESEs
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Algorithm 2 Refined k-decomposition algorithm
function k-dec(RPST,k)

V = {root(RPS T )}
D = ∅

while V , ∅ do
v← pop(V)
if |v.arcs()| ≤ k or not Decomposable(v) then

D = D ∪ {v}
else V = V ∪ {children(v)}

return D

function Decomposable(s)
{s1, . . . sn} ← children(s)
T ← shared transitions in {s1, . . . sn}

P← shared places in {s1, . . . sn}

T P ← transitions connected with P

if T ∩ T u
v , T then return false

else if T P ∩ T u
v , T then return false

else if same label in different {s1, . . . sn} then
return false

else return true

{s1, . . . sn} must be unique visible transitions (T u
v ).

- places shared (P) between any subset of SESEs
{s1, . . . sn} will be bridged according to Def. 15.
Therefore, transitions connected with the places
shared (P) between any subset of {s1, . . . sn}must be
unique visible transitions (T u

v ), in order to avoid be
duplicated boundary transitions after the bridging.

- Transitions with the same label must belong to the
same vi.

The main difference between the original k-
decomposition algorithm presented previously and Alg.
2 is that the latter checks if considering the children
of SESE v for the decomposition D will violate the
valid decomposition definition (Def.17). This additional
checking makes the algorithm quadratic in the number
of edges, although our experiments show no noticeable
increase in computation time. Notice that by defini-
tion, if the children {s1, . . . sn} of v violate the definition,
considering further descendants of v will also violate
the definition. Therefore, when the algorithm checks
that the SESE must not be decomposed, it includes it
into the decomposition D. As a result, Algorithm 2
does not guarantee the k property, i.e., some compo-
nents may have more than k arcs. For instance, con-
sider the subnets resulting of a 15-decomposition and
bridging shown in Fig.7. Unlike Fig.6, here when the
algorithm tries to decompose the SESE S 2, it detects

than this will result in splitting the duplicate e, and thus
it must consider S 2, even if the number of arcs of S 2 is
greater 153. Notice that some worst case scenarios exist
for Alg. 2: consider the example of Fig.8. In this case,
the presence of invisible transitions in the model bound-
aries makes it impossible for the algorithm decompose
more that the root S 1, and therefore, the resulting de-
composition will be the overall net. The effect of those
cases can be alleviated by pre-processing the model and
the log before applying the decomposed conformance.

(a) workflow net

t1 t7
a b

S2S
S1 S1S

S2S
ba

(b) RPST

...
...

Figure 8: Example of worst case scenario for the k-decomposition
with invisible/duplicates.

4. Topology of a Decomposition

A valid decomposition is a collection of subnets that
may be related to each other through the sharing of tran-
sitions, i.e., two subnets are related if they share a transi-
tion. The topology of a valid decomposition is an undi-
rected graph where the vertices denote subnets and the
edges denote the sharing of transitions.

Definition 18 (Topology of a Decomposition) Let D =

{SN1, SN2, . . . SNn} be a valid decomposition, where
SN i = (PN i,Mi

ini,M
i
fin) and PN i = (Pi,T i, Ai). The

topology of decomposition D is defined as the undi-
rected graph TD = (D,C) such that two components
are connected if they share any transition, i.e., C =

{{SN i, SN j}|1 ≤ i < j ≤ n ∧ T i ∩ T j , ∅}.

In the general definition of topology over a valid de-
composition the relations remain undirected, i.e., two
subnets sharing the same transition are connected by
an undirected edge. However, in the specific case of a
valid decomposition derived from SESEs, this definition
can be extended to include the concept of direction: the
transition being the exit of the SESE is considered the

3Notice that, after the bridging process, a fragment may lose its
SESE structure, e.g., the entry and exit places of S 2 are removed when
it becomes S ′2 due to the bridges B2 and B3. In spite of this, the
decomposition obtained still satisfies Def. 17. Moreover, although the
entry or exit place has been removed explicitly from the graph, the
fragment still represents its corresponding subprocesses.
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Figure 9: Example of valid decomposition and its topology

source of the edge, while the entry is the target. Bridges
can have multiple entry and exit nodes, but again we
can derive the direction connections among bridges and
SESEs.

Definition 19 (Topology of a SESE Decomposition)
Let D = {S 1, . . . S n} and D′ = {S ′1, . . . S

′
n, B1, . . . Bk} be

a SESE decomposition before and after applying bridg-
ing. Let {p1, . . . , pk} be the boundary places in D. Let
DD′ = {SNS ′1 , . . . SNS ′n , SNB1 . . . SNBk } represent the de-
composition constructed from D′. The topology of DD′

is defined as the directed graph TDD′ = (DD′ ,C) such
that C = {(SNS ′i , SNS ′j )|1 ≤ i, j ≤ n ∧ (y, x) ∈
S i ∧ (x, z) ∈ S j} ∪ {(SNS ′i , SNB j )|1 ≤ i ≤ n ∧ 1 ≤
j ≤ k ∧ (y, p j) ∈ S i} ∪ {(SNB j , SNS ′i )|1 ≤ i ≤ n ∧ 1 ≤
j ≤ k ∧ (p j, y) ∈ S i}.

Note that the topological graph has as vertices the
nets in D′, but some arcs of this graph (those regard-
ing connection to bridges) are defined over the original
SESE decomposition D, e.g., (y, p j) ∈ S i refers to an
arc in the original SESE and is used to infer a directed
connection from SNS ′i to SNB j .

One of the features of the topology is to aid in the vi-
sualization of a valid decomposition. For example, let
us consider the valid decomposition in Fig. 9 (a slight
modification of the model in Fig. 1). The decompo-
sition is the result of applying a 4-decomposition over
the model of Fig. 9a (i.e., SESEs with at most 4 edges:
S ′1, S

′
2, S

′
3, S

′
5, S

′
6, S

′
8) and followed by the bridging (re-

sulting in two bridges, B1 and B2, corresponding with

the two boundary places p6 and p9)4. The correspond-
ing topology is shown in Fig. 9b.

Besides simply showing the connections among sub-
nets, the topology can be enhanced with other informa-
tion about the components and their characteristics. For
instance, bridges can be denoted by circles having dot-
ted borders and SESEs can be denoted by circles hav-
ing solid borders. Moreover, the size of the nodes in
the graph is directly related with the size of the corre-
sponding subnets, i.e., a subnet with many arcs is de-
picted using a larger circle compared to subnets with
fewer arcs. Given the final goal of this paper (i.e.,
conformance analysis), a particular interesting case is
to enhance the topology with conformance informa-
tion. For example, consider the trace σ = t1t3t4t5t7t7t9.
When we check fitness in the subnets of decomposition
DD′ = {SNS ′1 , . . . SNS ′8 , SNB1 , SNB2 }, we detect the fol-
lowing fitness anomalies: in SNS ′2 , t4 is fired without
firing t2; in SNS ′5 , t7 is executed twice, but this requires
the firing of t5 also twice; finally, in the bridge SNB2 , t7
is fired twice, but t9 only once, leaving a token remain-
ing in p9. This information can be used to enhance the
topology of Fig. 9b. As shown in Fig. 9c the vertices
have problems can be depicted in gray (here S ′2, S ′5 and
B2).

Although the topology is an important aid for the pro-
cess diagnosis by itself, it can also guide further analy-

4Note that the original trivial SESE S 4 that corresponds to the arc
(t4, p6) has disappeared once the bridging has been done, i.e., the arc
is now in B1. The same happens for the original trivial SESE S 7
corresponding to the arc (p9, t9).
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sis. For instance, the topological graph enhanced with
conformance information can be used to identify max-
imal process fragments with fitness problems. This al-
lows us to focus on the problematic parts of a model,
discarding the parts without any fitness problems. Al-
gorithm 3 describes a procedure that is based on detect-
ing connected components (Cc) on the graph induced by
the non-fitting vertices. First, the topological graph (TD)
is filtered, leaving only non-fitting vertices (V). Then,
the weakly connected components (Cc) are detected:
1) a random node v1 is chosen, 2) all nodes {v1, . . . vn}

weakly connected (i.e., connected vertices without con-
sidering the direction of the edges) with v1 are computed
using a depth-fist search exploration and they constitute
a new connected component, and finally 4) {v1, . . . vn}

are removed from the graph and the exploration of con-
nected components continues. For each connected com-
ponent, we project the elements of the original net they
refer to. Note that this algorithm prioritizes the con-
nectivity among vertices resulting in weakly connected
components. However, alternative versions of the algo-
rithm yielding strongly connected components are pos-
sible. For instance, given the example of Fig. 9c, two
connected components are found as shown in Fig. 10:
one corresponding to SNS ′2 and the other to the union of
SNS ′5 and SNB2 .
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Figure 10: Examples of non-fitting weakly connected components.
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Figure 11: Example of a non-fitting subnet.

The topological graph enhanced with conformance
information can also be used to create one complete
subnet that includes all non-fitting subnets of the de-
composition, i.e., a connected set of vertices V con-
taining all the non-fitting vertices Vnf . Algorithm 4 il-
lustrates the heuristic-based approach proposed, based
on the greedy expansion of the largest non-fitting con-
nected components, to compute the complete non-fitting
subnet. Initially, V contains the non-fitting vertices Vnf ,

Algorithm 3 Non-Fitting Weakly Connected Compo-
nents Algorithm

function nfwcc(TD,V) . V is non-fitting vertices
Cc = ∅

remove from TD: . Graph induced by V
-all arcs c = {x, y} such that x, y < V
-all vertices z < V

while TD has vertices do
v1 ← select random vertex on TD

{v1, . . . vn} ← get vertices weakly connected
with v1 using Depth-first search

remove {v1, . . . vn} from TD

Cc = Cc ∪
⋃n

1 vi

return Cc

and G denotes the graph induced by V . The goal of the
algorithm is to have all the vertices in V connected, i.e.
G be connected. If this is not the case, the algorithm de-
tects the two largest connected components (c1 and c2)
of G, and then computes the shortest path ({v1 . . . vn})
between any vertex in c1 and any vertex in c2. Finally,
{v1 . . . vn} are included to V , and it is checked again if
the induced graph G is connected. Given the example
of Fig. 9c, the net resulting (shown in Fig. 11) contains
the union of the subnets SNS ′2 , SNS ′4 , SNB1 , SNS ′5 and
SNB2 .

Algorithm 4 Non-Fitting Subnet Algorithm
function nfn(TD,Vnf ) . Vnf is non-fitting vertices

V ← Vnf

G← graph induced by V on TD

while G is not connected do
c1 ← get the 1st largest conn. comp. of G
c2 ← get the 2nd largest conn. comp. of G
{v1 . . . vn} ← shortest path vertex(TD, c1, c2)
V = V ∪ {v1 . . . vn}.
G← graph induced by V on TD

return Petri net induced by V

In Fig. 12, the topology for the running example is
presented as a screenshot of the tool associated with this
paper. In the figure, the alignment for the problematic
component 4 (S ′3 in Fig. 6) is also shown.

5. Multi-level Analysis and its Applications

Thus far the analysis of the conformance was al-
ways performed using a complete decomposition of the
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Figure 12: Screenshot of the topology for the running example.

model. However, for detailed process diagnosis it is im-
portant to also be able to do a more focused analysis.
This section presents three approaches to achieve this:
(1) stand-alone checking, (2) multi-level analysis, and
(3)filtering.

5.1. Stand-alone Checking

First we consider the problem of analyzing a selected
subprocess in isolation. Clearly, assumptions on the
subprocess and its context must be defined in order to
perform such an isolated conformance check. The con-
formance results obtained are strongly correlated with
the assumptions considered, and hence the analysis of
the model properties and domain knowledge becomes
an essential part, e.g., whether a place has a bound on
the number of tokens, or the number of activations of
the subprocess within a trace.

Let us show an application of the stand-alone check-
ing for the typical case of well-structured process mod-
els, that can easily be modeled using the subclass of
safe workflow nets (for formal details see [11]). Given a
SESE S obtained from a decomposition, one can apply
the following steps to conduct a local diagnosis of S :

1. Workflowing the SESE: In order to have a clear
starting and ending point for the subprocess rep-
resented, re-define the net derived from S . In other
words, given a SESE S , define the net derived from
S in terms of a workflow net (cf. Def. 3), with a
starting place (start) and a final place (end). By
construction, a SESE has both an entry (i) and an
exit (o) node. The start corresponds with i if i is a
place. However, when i is a transition, we define

start to be an artificial place and we connect it with
i. Similarly for end and o.

2. Initial and Final Marking: Given the workflow-
net from the previous step, determining a plausible
initial marking becomes straightforward, i.e., due
to the safeness assumption of safe workflow nets,
we consider a single token in the start in order to
enable the execution of the subprocess. Similarly
for the final marking.

3. SESE activations: the number of potential activa-
tions of a SESE within a case must be determined.
In case it is always one, the SESE is left as is.
However, in case it can be executed more than once
(e.g., the SESE is inside some loop in the model),
the net in the previous step is short-circuited, using
a silent transition between end and start. Finally,
it can also happen that a SESE may be not exe-
cuted in a trace. In this last case, a silent transition
between start and end avoiding the SESE content
will be used. Determining if a suprocess can be ex-
ecuted several times is a complex matter. In [11],
it is proposed the use of Petri net structural theory
(minimal T-invariants [20]) as a best effort strategy
for estimating repetitive behavior.

5.2. Multi-Level Analysis

In this section we propose to combine the stand-alone
checking just presented with the RPST to achieve a
conformance analysis on a hierarchical manner. RPST
nodes enriched with conformance information enable
the analysis at different degrees of granularity and in-
dependence, similar to zooming in and out using on-
line maps. Note that, by construction, the root of the
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RPST is the overall net. Therefore, any hierarchical
analysis that involves the conformance checking of all
the RPST nodes will require checking conformance on
the original net (plus the checks of the rest of nodes),
i.e., the computation time for a exhaustive hierarchi-
cal analysis will always be, by definition, greater than
checking conformance on the overall net. For com-
plex and time-consuming cases, this problem can be al-
leviated by limiting the size of the nodes to check or
by using less expensive replay-based conformance tech-
niques like [3, 21]. The latter techniques use heuristics
in order to deal with unfitting situations.

5.3. Filtering

The experiments presented in [11] suggest that there
are three main differences between manual hierarchi-
cal decomposition and the one provided by the RPST-
based decomposition: (1) analysts prefer to discard
small components, (2) analysts prefer to not consider
similar components, and (3) analysts prefer to have a hi-
erarchy with a limited number of levels. Additionally, in
this paper we point out a fourth difference: (4) analysts
prefer to base hierarchies on other (non-control-flow)
perspectives. In the remainder of this section we pro-
pose filtering techniques to allow for RPST-based de-
compositions closer to hierarchical decompositions pre-
ferred by analysts.
- Small components: Small components of the RPST

can be removed by filtered using a minimal size
threshold.

- Similarity: In order to reduce the redundancy of com-
ponents and the unnecessary growth of the hierarchy,
a similarity metric between parent-child components
is defined, together with a threshold that determines
the similarity frontier that will determine when two
components are considered essentially the same. The
proposed metric for estimating the similarity between
a node S and its single child S ′ is based on two fac-
tors: size and simplicity. The size factor is related
with the number of arcs of S not included on S ′. The
more arcs shared by both components, the more simi-
lar they are. For instance, considering the component
S 1 of Fig. 13a, all its arcs are included in S 2 except
two, i.e., S 2 is in essence S 1. Therefore, a detailed
conformance diagnosis over S 1 may be sufficient for
understanding both subprocesses. The simplicity fac-
tor refers to the simplicity of part of the parent S not
included on the child S ′. When such part defines a
simple behavior (e.g., the strictly sequential behavior
of S 3 not included in S 4, in Fig. 13b), the analysis and
understanding of the parent may again be enough. On

(a) similar size among SESEs

S2SS1

S3 S4S

(b) high simplicity among SESEs

Figure 13: Example of cases with high similarity between nested
SESEs.

the other hand, when the behavior not included in S ′

contains complex control-flow constructs (e.g., mix-
tures of concurrency and choice) it may be more ad-
visable to analyze both subprocesses. An example
similarity metric is formalized as follows.

Definition 20 (Similarity Metric) Let S P =

(VP, FP) be an RPST node, and let S C = (VC , FC)
be its only child. Let size define the difference
on size between them, i.e., size = |FC |/|FP|. Let
FO = FP \ FC be the set of non-intersecting arcs. Let
F∗O be the arcs in FO that have a source vertex with
only one outgoing edge, and a target vertex with only
one incoming edge, i.e., F∗O = {(x, y) ∈ FO|(x, v) ∈
FO| = 1 ∧ |(w, y) ∈ FO| = 1}. Let simplicity
define the simplicity of the non-intersecting arcs,
i.e., simplicity = |F∗O|/|FO|. The similarity between
S P and S C is the harmonic mean between size and
simplicity:

similarity = 2 ·
size · simplicity
size + simplicity

Although the similarity evaluation is restricted to
nodes with only one child, our experimental results
show that the reduction achieved on the RPST may
be significant (specially after applying a small nodes
filtering).

- Multi-perspective filtering: The filtering presented
until now is based on only structural net properties,
not taking into account other perspectives (e.g., data,
costs, roles, departments). However, there may be
situations where we would like to focus the analysis
only on those subprocesses satisfying certain domain
conditions, e.g., an analyst may want to focus on the
subprocesses involving tasks executed in a particu-
lar department. Therefore, we need to support filter-
ing based on user-requirements and focus the analysis
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Figure 14: A screenshot illustrating the filtering by similarity and small components (left), or together with multi-perspective (right).

on the subprocesses involving activities relevant from
the selected viewpoint. Such filtering is not limited
to activities and may involve other perspectives (e.g.,
resources, actors, or costs), determining the activities
they are connected with, and using them for filtering.
This type of filtering was not considered in [11].
Figure 14 illustrates some of the aforementioned
multi-level analysis with a log that includes informa-
tion on resources. The figure is a screenshot of the
tool implementing the techniques of this paper. The
figure shows two windows, representing the result of
applying two different filters to a model for this log.
In the left-hand side of the main window, the filtered
RPST is shown. The parameters used for the filtering
are similarity 0.8 and considering small components
to be less than 10. The RPST is enhanced with con-
formance information (white RPST nodes have no
conformance problems, and a gradient between green
and red on an RPST node identifies the severity of
a conformance problem). By clicking in any of the
RPST nodes, the corresponding SESE in the net is
highlighted. The user can analyse the replay or the
net used (cf. Sect. 5.1) on the tab section in the top of
the figure for each one of the RPST nodes. Finally,
the tool provides the means to focus on particular
transitions of the model that involve some resources.
In the case of the example, the RPST of the left win-
dow is further filtered by only considering the transi-

tions under the supervision of the user Bob. This is
shown in the small right window.

6. Implementation and Experiments

In this section we provide experimental results
demonstrating that our decomposition approach pro-
vides significant performance gains and improved diag-
nostics. Moreover, we briefly describe the Decomposed
Conformance package in ProM used to conduct these
experiments.

Implementation
The techniques presented in this paper have been

implemented within the ProM 6 tool5, and have been
included in the package Decomposed Conformance.
The new implementation (unlike the one presented in
[11, 12]) is fully compliant with the Divide&Conquer
package – a new initiative for a common frame-
work among all decomposed process mining techniques
within ProM, such as [22, 23, 11, 12]. This modular
framework is based on common objects and encourages
and facilitates the reusability of plugins, both for discov-
ery and conformance. Compared to the implementation
in [11, 12] the architecture changed dramatically. For
example, arrays of components are used, instead of the

5http://www.promtools.org/prom6/nightly
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Figure 15: Comparison of computation time among different approaches: the new decomposed conformance checking technique (two variants:
one which limits the maximum size of each component to k = 25 and the other to k = 50), the old decomposed conformance checking technique
[12], and the approach without decomposition.

sequential creation and processing of the components.
These changes in the implementation had a significant
impact on the performance of the techniques. The De-
composed Conformance package in ProM supports all
of the decomposition and filtering approaches and the
advanced diagnostics described in this paper.

Performance Improvements
Figure 15 illustrates the performance improvement

achieved by SESE-based decomposition and the new
implementation in ProM. For this first analysis we
use the bpm2013 benchmark6 that was also used in
[12]. The benchmark contains large models with dif-
ferent levels of fitness (ranging from perfectly fitting as
prBm6, to models with fitness of 0.57 – like prCm6),
according to the fitness metric in [6]. Figure 15 com-
pares four approaches using seven model-log combina-
tions. The chart includes the results of the new Decom-
posed Conformance (DC), using a k to decompose of 25
and 50 respectively (cf. Alg. 1). In this experiment (and
in the rest of section) we used a conformance based on
alignments for checking the conformance of each com-
ponent [6]. The comparison also includes the results of
the previous implementation (with k of 50) [11, 12], and
the non-decomposed results of [6] (using the same algo-
rithm and parameters as the decomposed approach).

The chart illustrates perfectly the vast difference, in
computation time, between the approach presented and
the non-decomposed alternative. The non-decomposed
approach remains competitive for the less complex and
highly fitting models (e.g., prAm6 and prBm6). Be-
cause of the component creation overhead the non-
decomposed approach may even be faster for simple
and well-fitting models as noted in [12]. For example,

6http://dx.doi.org/10.4121/uuid:

44c32783-15d0-4dbd-af8a-78b97be3de49

for prAm6 and prBm6 the non-decomposed approach
is faster than the previous implementation presented in
[12]. This is no longer the case for the new decom-
posed implementation which is outperforming the ear-
lier approaches. In those cases where the complexity
and fitness is an issue, the difference could reach two
orders of magnitude (e.g., from 15 to 3566 seconds in
prEm6). More importantly, the approach proposed in
this paper is able to tackle and provide conformance in-
formation for those cases (prDm6, prFm6 and prGm6)
where [6] is not able to provide a result within a pe-
riod of 12 hours. Notice though, that the goal of both
approaches is slightly different: while [6] aims for a
global conformance, the decomposed approach aims for
an optimal conformance of each component. However,
a decomposed approach makes it possible to locate in
a smaller vicinity where the conformance problems are,
get a better understanding of the cause, and eventually
be able to provide and bound conformance properties
in a global manner [13, 11, 12]. The comparison also
shows the significant speedup yield by the new imple-
mentation with respect to the one in [12], due to the new
architecture based on arrays of components.

Conformance Diagnosis

One of the main contributions presented in this pa-
per is a decomposed strategy to aid on the diagnosis
of conformance problems in large systems, pinpointing
which subprocesses are producing them. In order to il-
lustrate this contribution we provide the fitness results
per component for the running example and the bench-
mark bpm2013 (cf. Fig. 16 and Fig. 17).

We use a circumference to graphically depict the fit-
ness evaluation of a decomposition by means of a col-
ored gradient for each component. All components of
the decomposition are placed in different positions of
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Figure 17: Fitness results per components for benchmark bpm2013.
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Figure 16: Fitness visualization for the running example.

the circumference. Let us use the running example of
this paper to illustrate the graphical visualization used.

For each component, a line from the center of the cir-
cumference indicates its fitness. If the line reaches the
perimeter, the fitness is 1.0 (components S ′1, B1, B2, S ′2,
B3, S ′4, B5, S ′6), while the line for components with fit-
ness anomalies does not reach the perimeter. To show
intuitively the fitness, a color gradient is included in the
circumference: the fitness ranges from red (fitness prob-
lems close to 0.0) down to green (perfect fitness of 1.0).

The fitness diagnosis of each one of the models of
benchmark bpm2013 can be understood more easily: for
model prAm6, 7 components have fitness anomalies,
with diverse severity.7 On the other hand, all compo-
nents in prBm6 are perfectly fitting. This contrasts with
prCm6, where fitness problems are clearly spread over
multiple components. The other of benchmark model-
log combinations have fitness anomalies in just a few
components. This supports the approach taken in this
paper. The diagnostics help to focus on the problematic
parts while at the same time provide performance gains.

Performance vs Comprehension

The previous experiment included two different sizes
for the decomposition: 25 and 50. This second set of ex-
periments is designed to determine the optimal decom-
position size for both perspectives: performance impact

7When no fitness anomalies exist, we do not explicitly label com-
ponents in the visualization.

and comprehension of the conformance anomalies de-
tected. The benchmark used (isbpm2013), has been
made publicly available within the 3TU.Datacentrum,
and can be referred and accessed through its DOI8. The
isbpm2013 benchmark includes several models, and a
set of logs with different properties for each model. The
models have been generated by PLG tool [24], and the
logs are the result of the log generator based on the re-
player from [21]. In this experiment we have checked
conformance for different values of k. Note that, when
the k is the total number of arcs of the model, the de-
composed approach behaves as non-decomposed (i.e.,
there is only one component). Figure 18 reflects the
computation time for two of the cases in the bench-
mark (pr1908-m34-l3-noise and pr1151-m37-l3-noise),
which summarizes the global tendency for all the mod-
els in the benchmark. The mark representing the mini-
mum time is slightly differentiated.

The main conclusion one can reach from the experi-
ments is that, from a computational time point of view,
the smaller the better. This is perfectly reflected in
Fig. 18. For small values of k (e.g., 1 . . . 20), the re-
sults show a slight overhead because many components
need to be created. However the effect of this overhead
is negligible in most of the cases. On the other hand,
when the k-decomposition starts to allow larger com-
ponents, the computation time abruptly increases. This
disruption on the computation time is produced by the
hierarchical nature of the RPST, e.g., a decomposition
k instead of k + 1 could lead the selection of n subpro-
cesses of low complexity instead of the one subprocess
that includes all n. The results and insights based on
these new experiments differ from [12], where –due to
inefficiencies of the previous implementation– the over-
head caused by the processing of components was sig-
nificantly higher, making k of 200 faster than 50 in some
cases.

If components are excessively small (e.g., 1 . . . 10),
the semantic information they provide is rather trivial

8http://dx.doi.org/10.4121/uuid:

b8c59ccb-6e14-4fab-976d-dd76707bcb8a
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Figure 18: Comparison of computation time among different k values.

or insufficient. From a diagnostic point of view, the sub-
processes to be analyzed should be large enough to be
able to make meaningful conclusions. Our empirical ex-
periments show that, decomposition with k between 20
and 40 could represent a good trade-off between com-
putation time and diagnostic quality.

Trace length and grouping

A third set of experiments was conduced to study the
effect of the trace lengths on the proposed approach. We
aim to compare decomposed and non-decomposed con-
formance checking for different traces lengths. All logs
and models of this experiments are included in the is-
bpm2013 benchmark. For each model used in this ex-
periment, four logs were generated, each one with a dif-
ferent average length of the traces on it (e.g., pr1908-
m18-l1 has an average trace length of 18, while pr1908-
m41-l4 has average length of 41). Each one of these
four logs has been generated from simulating the same
model and using the same parameters (except the length
of the traces), and all them are completely fitting. Ad-
ditionally, we have created another four logs for each
model, with the same characteristics, but containing

noise (and hence being non-fitting). Figure 19 shows
the results for two models: pr-1908 and pr-1151, be-
ing the results similar for the rest of models-logs in the
benchmark. For each model, the chart contains the com-
putation times of each alternative: decomposed (using k
of 25) with noisy logs and fitting logs, and the results for
the same noisy and fitting logs using the original non-
decomposed approach.
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Figure 19: Comparison of computation time among different trace
length.

The first conclusion that arises from the experiments
refers to the processes with noise – the most plausi-
ble assumption in a real world scenario. Figure 19
shows that, when the log has short traces, both decom-
posed and non-decomposed alignment checking per-
form good. However, once the length of the traces
grows (or simply traces of large models or with lot
of concurrency), it has a severe effect on the non-
decomposed performance. This was to be expected, i.e.,
the more activities in a trace, the more difficult it is to
compute the alignment. On the other hand, the decom-
posed approach performs both fast and with a near-to
constant growth (and eventually constant at some point).
This is justified by the effect of the decomposition on
the computation time (as has been shown in Fig. 15),
but also due to the grouping (as explained below).
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Figure 20: Results of filtering by small (< 10) and merging by similarity (> 0.8) over the model prCm6.

The current implementation of the align-based con-
formance checking includes the grouping optimization:
when the algorithm analyzes a trace, it first checks if
it has already computed an alignment for an identical
trace. In this is the case, it re-uses the previously com-
puted alignment, thus reducing the time significantly.
The effect of this optimization for the non-decomposed
scenario depends on the case at hand, and it is strongly
related with the size and the behavior of the model.
However, in the decomposed scenario, the chances to
encounter this situation increase: the smaller is the com-
ponent (e.g., k = 25), the fewer activities it contains,
and therefore, the more likely it is to find a trace al-
ready seen before (once the original trace has been pro-
jected onto the component). The effects of the grouping
are perfectly reflected by the fitting cases of Fig. 19:
the decomposed approach performs faster than the non-
decomposed alternative even in a fitting scenario. This
is remarkable because alignments can be created easily
in this case.

Topology and Filtering

The last set of experiments is designed to illustrate
the effects of some of the techniques proposed for pro-
cess diagnosis. In particular, the Non-fitting Subnet Al-
gorithm (cf. Alg. 4), and the techniques of filtering the
RPST based on small components and similarity (cf.
Sect. 5.3). Table 1 shows the application of the NFN

algorithm over the benchmark bpm2013, with compo-
nents of size at most 50. For each model (containing
P places and T transitions) the table provided the size
of the minimal net containing all the non-fitting compo-
nents, i.e., the number of places and transitions (|P| and
|T |), and the number of vertices |V | used to create the
net. The table illustrates the benefits of the proposed al-
gorithm to detect and isolate the fitness mismatches. In
case the fitness problems are spread all over the whole

model, the resulting net is almost the original net (e.g.,
prCm6). However, when the fitness problems are local,
the net that encloses all problem spots may be orders of
magnitude smaller than the original net, thus easing the
diagnosis.

Table 1: Results of NFN algorithm.
Dataset NFN

P T |V | |P| |T |
prAm6 363 347 14 15 14
prCm6 317 317 113 315 317
prDm6 529 429 31 55 52
prEm6 277 275 31 29 40
prFm6 362 299 7 27 25
prGm6 357 335 5 34 29

The final experiment performed illustrates the effects
of the simplification techniques over the RPST. Figure
20 reflect the results for one of the models (prCm6).
The charts show the number of nodes of the original
RPST, after filtering small components (< 10) and then
merging by similarity (> 0.8). The number of nodes are
distributed by levels of depth in the RPST tree, i.e., the
distance with the root represented as the level 1. The
chart clearly reflects the difference between the number
of components on the original RPST and the one after
removing the small components, i.e., most of the RPST
nodes are small. After removing small nodes the depth
of the RPST only decreases two levels (from 14 to 12).
On the other hand, when merging on similarity is ap-
plied over the filtered RPST, the number of nodes is not
reduced so drastically, but the number of levels of the
tree is (from 13 to 6), providing a hierarchical decom-
position with less redundancy and more aligned with the
human perception [11].
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7. Related Work

For an introduction to process mining we refer to [1].
For an overview of best practices and challenges, we
refer to the Process Mining Manifesto [25].

The seminal paper [3] established the basics of con-
formance checking, based on the use of model replay
to determine the fitness of a log trace. In the last
years, however, the use of alignment techniques has in-
creased [6]. In spite of its high complexity, alignment
techniques provide a robust analysis of fitness anoma-
lies, especially in the presence of non-determinism in
the model or noise in the logs. Replay techniques have
been revisited recently in the scope of a general frame-
work for conformance checking based on the use of neg-
ative information [21].

Decomposing large graphs into smaller fragments is a
topic widely studied in the literature. There exist plenty
of techniques with different goals for that task, e.g.,
minimizing the connectivity among fragments [26], or
obtaining fragments with a single entry and a single exit
[16, 10]. Regarding decomposed conformance check-
ing, there have been recent contributions related to the
one presented in this paper. In [22] it is shown that
so-called “passages” can be used to decompose both
process discovery and conformance checking problems.
The aforementioned work is then generalized in [13],
where the minimal requirements for decomposing con-
formance in general are described. This paper uses
the results presented in [13] for the particular case of
SESEs. Experimental results suggest that a SESE-based
decomposition is faster than a decomposition based on
passages.

Also related is the work on conformance checking of
proclets [27]. Proclets can be used to define so-called
artifact centric processes, i.e., processes that are not
monolithic but that are composed of smaller interacting
processes (called proclets). In [27] it is shown that con-
formance checking can be done per proclet by project-
ing the event log onto a single proclet while considering
interface transitions in the surrounding proclets.

8. Conclusions and Future Work

This paper presented a novel decomposition tech-
nique for handling large conformance instances and en-
abling the detailed and focused diagnosis of confor-
mance checking. By focusing the decomposition on
finding subprocesses with a clear interface to the rest
of the process we achieve two goals: (1) conformance
checking can be done much faster and allows us to

analyze models/logs previously intractable and (2) im-
proved diagnostics. We were able to exploit existing
results for Single-Entry Single-Exit (SESE) decompo-
sitions and apply these to the process mining domain.

The decomposition approach and related diagnostic
capabilities have been implemented in ProM. Extensive
experimental results demonstrate the advantages of our
approach and efficiency of the implementation. The use
of the decomposed paradigm reduces the computation
time of the original stand-alone conformance approach
due to a reduction of the state-space to explore, and the
effect of the grouping. Moreover, innovative visualiza-
tions of the misalignments further support the diagno-
sis of the conformance problems. The technique can
deal with models of hundreds of nodes, representing a
disruptive step into enabling conformance checking for
industrial scenarios.

There are several research directions that can be tack-
led based on the results presented in this paper. First,
we aim to extend divide and conquer techniques with a
decomposed fitness metric that would serve as an esti-
mate for the real fitness value of the whole model. We
would also like to include other conformance metrics,
e.g., precision. Note that this is far from trivial for met-
rics that correspond to global properties. We also aim
to extend the technique presented in this paper in or-
der to deal with other perspectives (e.g., data) available
in the event log. It appears to be possible to apply the
approach to process models having data conditions or
resource allocation rules. Future work includes also the
study of new decomposition techniques that minimize
the bridging process, in order to preserve the strict SESE
structure of the fragments as much as possible. Finally,
we would like to use the insights provided in this paper
to develop SESE-based discovery techniques.
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Appendix A. Benchmarks

Table A.2: isbpm2013 and bpm2013 Benchmarks – Logs

log cases activities length fitting
pr-1244-A59 l1 2000 59 17 yes
pr-1244-A59 l1 noise 2000 59 17 no
pr-1244-A59 l2 2000 59 29 yes
pr-1244-A59 l2 noise 2000 59 29 no
pr-1244-A59 l3 2000 59 41 yes
pr-1244-A59 l3 noise 2000 59 41 no
pr-1244-A59 l4 2000 59 55 yes
pr-1244-A59 l4 noise 2000 59 55 no
pr-1151-A48 l1 2000 48 12 yes
pr-1151-A48 l1 noise 2000 48 12 no
pr-1151-A48 l2 2000 48 23 yes
pr-1151-A48 l2 noise 2000 48 23 no
pr-1151-A48 l3 2000 48 37 yes
pr-1151-A48 l3 noise 2000 48 37 no
pr-1151-A48 l4 2000 48 50 yes
pr-1151-A48 l4 noise 2000 48 50 no
pr-1908-A32 l1 2000 32 18 yes
pr-1908-A32 l1 noise 2000 32 18 no
pr-1908-A32 l2 2000 32 27 yes
pr-1908-A32 l2 noise 2000 32 27 no
pr-1908-A32 l3 2000 32 34 yes
pr-1908-A32 l3 noise 2000 32 34 no
pr-1908-A32 l4 2000 32 41 yes
pr-1908-A32 l4 noise 2000 32 41 no
pr-1912-A57 l1 2000 57 15 yes
pr-1912-A57 l1 noise 2000 57 15 no
pr-1912-A57 l2 2000 57 26 yes
pr-1912-A57 l2 noise 2000 57 26 no
pr-1912-A57 l3 2000 57 39 yes
pr-1912-A57 l3 noise 2000 57 39 no
pr-1912-A57 l4 2000 57 52 yes
pr-1912-A57 l4 noise 2000 57 52 no

log cases tasks length fitting
prAm6 1200 317 32 no
prBm6 1200 317 41 yes
prCm6 500 317 43 no
prDm6 1200 429 249 no
prEm6 1200 275 99 no
prFm6 1200 299 241 no
prGm6 1200 335 143 no

Table A.3: isbpm2013 and bpm2013 Benchmarks – Models

model P T A Inv
pr-1244-A59 71 68 164 9
pr-1151-A48 55 56 130 8
pr-1908-A32 37 36 86 4
pr-1912-A57 64 57 142 5

model P T A
prAm6 363 347 842
prBm6 317 317 748
prCm6 317 317 748
prDm6 529 429 1136
prEm6 277 275 648
prFm6 362 299 768
prGm6 357 335 822
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