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Abstract. The aim of process discovery is to discover a process model based on
business process execution data, recorded in an event log. One of several exist-
ing process discovery techniques is the ILP-based process discovery algorithm.
The algorithm is able to unravel complex process structures and provides for-
mal guarantees w.r.t. the model discovered, e.g., the algorithm guarantees that a
discovered model describes all behavior present in the event log. Unfortunately
the algorithm is unable to cope with exceptional behavior present in event logs.
As a result, the application of ILP-based process discovery techniques in every-
day process discovery practice is limited. This paper addresses this problem by
proposing a filtering technique tailored towards ILP-based process discovery. The
technique helps to produce process models that are less over-fitting w.r.t. the event
log, more understandable, and more adequate in capturing the dominant behavior
present in the event log. The technique is implemented in the ProM framework.

Keywords: Process mining, process discovery, integer linear programming, fil-
tering

1 Introduction

Process mining [1] aims to assist in the improvement and understandability of business
processes. The basic input of process mining is process execution data, stored in an
event log. We identify three process mining branches. Process discovery aims at con-
structing a process model given an event log. Conformance checking aims at assessing
the conformance of an event log to a given process model. Process enhancement aims
at extending, improving or repairing existing process models using the two aforemen-
tioned disciplines as a basis. In process mining, a process model’s quality is evaluated
w.r.t. four essential quality dimensions [2]. Replay fitness describes to what extent a
model is able to reproduce the behavior present in an event log. Precision describes
what fraction of the behavior allowed by a model is present in an event log. General-
ization describes to what extent a model is able to reproduce future, unseen, behavior
of a process. Simplicity describes the (perceived) complexity of a process model.

The ILP-based process discovery algorithm [3] encodes an event log as a set of
linear inequalities that act as a core constraint body of a number of integer linear pro-
grams (ILPs) aimed at process model construction. The algorithm ensures perfect re-
play fitness, i.e., all behavior present in the event-log can be reproduced by the resulting
process model. Under the assumption that the event log only holds frequent behavior,
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the algorithm works well. Real event logs typically include low-frequent exceptional
behavior, e.g. caused by employees deviating from some normative process. As the al-
gorithm guarantees perfect replay-fitness, it guarantees that the resulting model allows
for all exceptional behavior present in the event log. In practice this leads to models that
are incapable of capturing the dominant behavior present in the event log.

To leverage the strict replay-fitness guaranteed by the ILP-based process discovery
algorithm we present a filtering technique that exploits the underlying data abstraction
used within the ILP formulation. Using a simple running example we show that the
approach enables us to filter exceptional behavior from event logs and results in models
that do not have perfect replay-fitness w.r.t. the input data. However, the models are
simpler and less over-fitting. To evaluate the technique we have applied it on a set of
artificially generated event logs with varying levels of exceptional behavior.

The outline of this paper is as follows. In Section 2 we motivate the need for an
ILP-based process discovery algorithm able to cope with the presence of exceptional
behavior. In Section 3 we explain the effect of exceptional behavior. In Section 4 we
introduce the concept of sequence encodings. In Section 5 we present a sequence en-
coding based filtering technique. In Section 6 we evaluate the approach in terms of its
effects on model quality. Section 7 concludes the paper.

2 Motivation

The ILP-based process discovery algorithm uses Petri nets without arc-weights1 as a
process model formalism. Petri nets allow for expressing complex control flow pat-
terns within event data, a valuable property from a business management perspective.
Consider the two models depicted in Figure 1a and Figure 1b which depict the result
of applying the ILP-based process discovery algorithm and the Inductive Miner [4]
on event log L = [〈a, c, d, e, f〉10, 〈a, c, b, d, f〉10, 〈a, c, e, d, f〉10, 〈a, e, c, d, f〉10]2. L
contains behavior generated by a model exhibiting a milestone pattern [5]. The ILP-
based discovery algorithm allows us to discover the milestone pattern whereas the in-
ductive miner neglects the pattern and results in an under-fitting Petri net, i.e., it allows
for much more behavior compared to the behavior present in the event log. This is due
to the fact that the inductive miner assumes that the resulting model is block-structured.

(a) Result of the ILP-based algorithm.
(b) Result of the Inductive Miner.

Fig. 1: Process discovery results of the conventional ILP-based discovery and the In-
ductive Miner [4] based on a log consisting of milestone pattern based behavior.

1We assume the reader to be acquainted with of Petri nets and refer to [1] for an overview.
2For event logs we use the notion of a mutliset of traces, using a control-flow perspective.
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(a) Resulting model using an event log
without exceptional behavior.

(b) Resulting model using an event log
with a minimal amount of exceptional behavior.

Fig. 2: Discovered Petri nets after applying conventional ILP-based process discovery
on event logs with and without the presence of exceptional behavior in the event log.

Many process discovery algorithms assume models to be (semi)-structured or as-
sume that only local dependencies exist amongst activities. As a side effect, the algo-
rithms are not able to find complex control flow patterns. Examples of such techniques
are the Heuristics miner [6], the Fuzzy miner [7] and the Genetic miner [8]. A selec-
tion of patterns that the ILP-based process discovery algorithm is able to reproduce are
patterns like interleaved parallel routing, critical section and arbitrary cycles.

The impact of exceptional behavior present in event logs becomes clear when re-
garding the two Petri nets depicted in Figure 2. The models are discovered using con-
ventional ILP-based process discovery. The event log used to discover the model in
Figure 2a only consists of traces that fit the model presented, i.e. no exceptional behav-
ior. The event log used for discovery of the model in Figure 2b is a slightly manipulated
version of the event log used for Figure 2a. The event log contains little exceptional be-
havior, i.e., 5% of the traces in the event log is manipulated. Clearly, the model depicted
in Figure 2b is not capturing the dominant behavior present in the event log.

The ILP-based process discovery algorithm allows for finding complex patterns
within business process event data yet at the same time the algorithm suffers drastically
from the presence of exceptional behavior in event logs. Therefore we need means to
cope with exceptional behavior in order to enable the algorithm to discover models that
more accordingly represent the dominant behavior present in an event log.

3 Exceptional Behavior & ILP-Based Discovery

The essential component of the ILP-based process discovery algorithm is a set of linear
inequalities, based on the event log, that is used as a basic ILP constraint body. The
global constraint expressed by these inequalities is best explained by the following sen-
tence: Any place present in the resulting Petri net must allow for each event in the input
event log to be executed. This leads to the fact that every trace in the log is completely
reproducible by the resulting process model, i.e. replay fitness is perfect. It is also the
root cause of the algorithm’s behavior w.r.t. to exceptional behavior, e.g. Figure 2.

Consider event logL = [〈a, b, c, d, e, g〉105, 〈a, c, b, d, e, g〉98, 〈a, b, c, d, e, f, e, g〉87,
〈a, c, b, d, e, f, e, g〉117] which could be a result of 407 executions of the process model
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Fig. 3: A Petri net corresponding to event log L, discoverable by the ILP-based process
discovery algorithm (3a) and an alternative place p′5 for place p5 given L′ (3b).

depicted in Figure 3a. Consider place p5 having an incoming arc from transition c and
an outgoing arc to transition d. As place p5 is not having an outgoing arc to transitions
a, b, c, e, f and g it does not interfere with firing these transitions at any point in time.
The outgoing arc of place p5 allows for firing d, only after firing transition c. This is in
line with the event log because if event d occurs, it is always (indirectly) preceded by
event c. In fact, each place within the Petri net allows for the execution of every activity
in L. Hence, the Petri net is discoverable by the ILP-based process discovery algorithm.

Consider the addition of the single trace 〈a, b, d, e, g〉 to event log L, resulting in
L′, consisting of 408 traces. Arguably we can deem the newly added trace as excep-
tional behavior. The newly added trace can not be executed by the Petri net depicted
in Figure 3a due to the presence of p5, as it prevents transition d from firing as long
as transition c has not fired. Consequently, given event log L′ which only consists of
one additional exceptional trace 〈a, b, d, e, g〉 w.r.t. event log L, the ILP-based process
discovery algorithm is unable to find the Petri net of Figure 3a. If we replace p5 by p′5
(Figure 3b), the resulting Petri net is again able to execute every activity in L′.

4 Sequence Encoding

The exact construction of the linear inequalities used by the ILP-based process discov-
ery algorithm is outside of the scope of this paper, hence we refer to [3, 9]. It suffices
to know that the set of linear inequalities is solely based on the prefix closure of the
event log. The prefix closure of L′ is the set of sequences L′ s.t. each sequence in L′

is either a prefix of a sequence in L′ or a prefix of a sequence in L′. Extrapolation
of trace frequency information present in the event log to the prefix closure is triv-
ial, i.e., L′ = [ε408, 〈a〉408, 〈a, b〉193, 〈a, c〉215, 〈a, b, c〉192, 〈a, b, d〉, 〈a, c, b〉215..., 〈a, b,
c, d, e, f, e, g〉87, 〈a, c, b, d, e, f, e, g〉117].

Each non-empty sequence in L′ is mapped to a linear inequality, representing an
ILP constraint. These linear inequalities can be represented by a pair consisting of the
Parikh-based multiset representation of the sequence’s prefix and the last event of the
sequence. Such tuple is deemed a sequence encoding. The Parikh-based multiset rep-
resentation of a sequence is just a mutliset denoting the number of occurrences of each
element in the sequence, e.g. given sequence 〈a, b, b, c〉, its Parikh-based multiset repre-
sentation is [a, b2, c]. Computing sequence encodings is straightforward, e.g. for 〈a〉 we
have ([], a), for 〈a, b〉 we have ([a], b), for 〈a, c, b, d, e, f, e, g〉 we have ([a, b, c, d, e2,
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f ], g), etc. Different sequences can have the same sequence encoding and therefore map
to the same constraint. Consider 〈a, b, c, d〉 and 〈a, c, b, d〉 both mapping to ([a, b, c], d).
The sequence encoding of ε is defined as ([], ε).

5 Sequence Encoding Filtering

The presence of 〈a, b, d, e, g〉 in L′ causes the ILP-based process discovery algorithm
to be unable to find place p5 of the Petri net depicted in Figure 3a. As the body of con-
straints of the ILP-based process discovery algorithm, i.e., the set of linear inequalities,
specifies this behavior, we need means to remove the inequalities related to 〈a, b, d, e, g〉
from the constraint body. We do so by constructing a directed acyclic graph where each
sequence encoding, i.e., each constraint, acts as a vertex. The sequence encoding ([], ε)
always acts as a root vertex. Two vertices are connected by an arc if the arc’s source
could be a prefix of the arc’s target. The arcs are labeled using sequence frequencies
present in the prefix closure of the event log. An example of such graph, based on L′ is
depicted in Figure 4.

In L′ the empty sequence ε acts as a prefix of 〈a〉. Hence ([], ε) has an outgoing
arc to ([], 〈a〉) labeled with 408, i.e., in 408 cases ε acts as a prefix of 〈a〉. Sequence
〈a〉 on its turn acts as a prefix of 〈a, b〉 and 〈a, c〉, thus, ([], a) is connected to ([a], b)
and ([a], c). The edge weights of the arcs from 〈a〉 to 〈a, b〉 and 〈a, c〉 are related to the
number of times 〈a〉 acts as a prefix of 〈a, b〉, 〈a, c〉 respectively. Applying the previous
rationale on all nodes yields the graph as presented in Figure 4.

After constructing the graph, we traverse it in a breadth-first manner and cut off
branches that represent exceptional behavior. We start at its root and assess what outgo-
ing arcs have a too low arc weight given some decision function. Once we have decided
what outgoing arcs should remain we traverse each of these arcs. From the end-point
of such arc we again evaluate all outgoing arcs. Only those constraints corresponding
to a vertex present in the filtered sequence encoding graph will be added to the ILP
constraint body. The decision function that decides whether we cut off a certain branch
is a parameter of the approach.

([], ε)
([], a)

([a], b)

([a], c)

([a, b], d)

([a, b], c)

([a, c], b)

([a, b, d], e)

([a, b, c], d)

([a, b, d, e], g)

([a, b, c, d], e)

([a, b, c, d, e], f)

([a, b, c, d, e], g)

([a, b, c, d, e, f ], e) ([a, b, c, d, e2, f ], g)
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1
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Fig. 4: Sequence encoding graph based on event log L′. Filtering affected the branch
starting at ([a], b) and ending in ([a, b, d, e], g).
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In the implementation of the algorithm we have adopted the following approach.
For each vertex that we decide to keep, we always include the outgoing edge with
the maximum edge label value. Additionally we include all other edges e that have
a lower (or equal) value than (to) the maximum value, as long as the difference of e’s
value w.r.t. the maximum is within some bounded range. The bounded range is typically
some fraction of the maximum, this fraction is deemed the cut-off coefficient cc. As an
example we apply this technique on the graph depicted in Figure 4 with cc = 0.25.

The root has one arc and thus we keep this arc. Traversing the arc leads us to vertex
([], a) which has two outgoing arcs. The outgoing arc from ([], a) with the maximum
label is the arc to ([a], c), labeled 215. This arc will be kept in the graph. The bounded
range for any other arc starting from vertex ([], a) is computed by multiplying the cut-
off coefficient with the maximum value for this node, i.e., the bounded range is 0.25×
215 = 53.75. Any edge going out of ([], a) that has a value greater than or equal to
215 − 53.75 = 161.25 is kept in the graph. In this case the arc from ([], a) to ([a],
b) will remain as it has a value of 193. In vertex ([a], b) we identify that we keep the
edge to ([a, b], c), which has the maximum label. We only keep outgoing arcs from
([a, b], c) with a label value greater than or equal to 192 − 0.25 × 192 = 144. As a
result we will drop the edge to ([a, b], d) as it only has a label value of 1. The result of
repeating the filtering procedure on all vertices is visualized Figure 4 where the filtered
branch, i.e., starting at ([a], b) and ending in ([a, b, d, e], g), is graying out. Note that
using the aforementioned approach all constraints related to (prefixes of) 〈a, b, d, e, g〉
are remove from the constraint body. As a consequence, place p5 in Figure 3a becomes a
feasible place again. Thus, the model depicted in Figure 3a can be found using sequence
encoding filtering applied on L′. As the model does not allow for 〈a, b, d, e, g〉, we no
longer guarantee perfect replay fitness w.r.t. L′.

6 Evaluation

For evaluation we used an implementation of sequence encoding filtering present in
the HybridILPMiner3 package within the ProM framework (http://www.promtools.org).
Here we discuss effects on model quality. For a quantification of the effect on ILP solve
time we refer to [9]. The event logs used for evaluation are artificially generated event
logs originating from a study related to the impact of exceptional behavior on rule-
based approaches in process discovery [10]. The event logs contain different levels of
exceptional behavior and are based on two ground truth event logs. The ground truth
event logs, a22f0n00 and a32f0n00, are free of exceptional behavior, i.e. all traces fit
the originating model. a22f0n00 consists of 22 different event classes whereas a32f0n00
consists of 32 different event classes. Out of each ground truth event log a total of four
new logs is generated, consisting of either 5%, 10%, 20% or 50% of manipulated traces.
Manipulation of traces is performed by either tail/head of sequence removal, random
part of sequence body removal or interchange of two randomly chosen events [10].

We primarily focus on precision, i.e. the amount of behavior allowed by the model
also present in the event log. If all behavior allowed by the model is present in the event

3
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Branches/

experiments/2015_bpm_ilp_filtering-0.2.1/

http://www.promtools.org
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Branches/experiments/2015_bpm_ilp_filtering-0.2.1/
https://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/Branches/experiments/2015_bpm_ilp_filtering-0.2.1/
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log, precision is maximal and equals 1. The more behavior is allowed by the model that
is not present in the event log, the lower the precision value will be. By definition, the
conventional ILP-based process discovery algorithm will result in models that allow
for all behavior present in the event log. Thus, if we use the conventional algorithm
on a manipulated event log, the resulting model will allow for all exceptional behavior.
As the exceptional behavior is not present in the ground truth events log, computing
precision of the resulting model based on the ground truth log is expected to be low. On
the other hand, if we discover models using an algorithm that is more able to handle the
presence of exceptional behavior, we expect the algorithm to allow for less exceptional
behavior and, w.r.t. the ground truth model, we expect a higher precision value.

In Figure 5 the results of applying the conventional ILP-based process discovery
algorithm and three different sequence encoding filtering instantiations for each event
log are depicted. We used the branch cut-off technique as described in Section 5 with
cut-off coefficients 1

4 , 1
2 , 3

4 . We measured both the replay-fitness and precision based on
the ground truth event logs. Replay-fitness of the discovered models w.r.t. the ground
truth event logs using all four approaches remains 1 in all cases4. Due to the incapability
of handling exceptional behavior of the conventional algorithm, as expected, precision
drops rapidly. For the sequence encoding filtering we identify the 1

4 variant to outper-
form the other two. This is explained by the fact that this variant is the most rigorous
filter and removes the most constraints. It is clear that the decrease of precision for the
sequence encoding based approaches is less severe compared to the conventional ap-
proach. This is in line with the rationale presented before, i.e., we expect the filtering
based approaches to be more able in handling exceptional behavior. Therefore, we con-
clude that the filtering based models discover Petri net patterns that more accurately
represent the dominant behavior in the input event log. Thus, the newly presented tech-
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used for porcess model discovery.

4One exception for SEF with cc = 1
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, where replay fitness equals 0.99515.
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niques allow us to successfully apply filtering whilst using ILP-based process discovery
as a basis.

7 Conclusion

The work presented in this paper is motivated by the observation that the existing ILP-
based process discovery algorithm is unable to cope with exceptional behavior in event
logs. ILP-based process discovery has several advantages, but the inability to abstract
from infrequent exceptional behavior makes it unusable in real-life settings. We pre-
sented the sequence encoding filtering technique which enables us to apply filtering
exceptional behavior within the ILP-based process discovery algorithm. The technique
allows us to find models with acceptable trade-offs w.r.t. replay fitness and precision.
We showed that the technique enables us to find Petri net structures in data consisting
of exceptional behavior, using ILP-based process discovery as an underlying technique.
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