
Event Interval Analysis: Why Do Processes Take Time?

Suriadi Suriadic,a,∗, Chun Ouyanga, Wil M. P. van der Aalstb,a, Arthur H. M. ter Hofstedea,b

aQueensland University of Technology, GPO Box 2434, Brisbane, Australia
bEindhoven University of Technology, Eindhoven, The Netherlands

cMassey University, Albany, New Zealand

Abstract

Through the application of process mining, valuable evidence-based insights can be obtained about business processes

in organisations. As a result, the field has seen an increased uptake in recent years as evidenced by success stories

and increased tool support. However, despite this impact, current performance analysis capabilities remain somewhat

limited in the context of information-poor event logs. For example, natural daily and weekly patterns are not considered

but they are vital for understanding the performance of processes and resources. In this paper, a new framework for

analysing event logs is defined. Our framework is based on the concept of event interval. The framework allows for a

systematic approach to sophisticated performance-related analysis beyond the capabilities of existing log-based analysis

techniques, even with information-poor event logs. The paper formalises a range of event interval types and then presents

an implementation as well as an evaluation of the proposed approach.

Keywords: process mining, ProM, data mining, business process management

1. Introduction

Process mining [21] aims to exploit the massive amount

of event data recorded by today’s information systems

to gain valuable insights into business processes by un-

earthing, among others, actual process behaviour, model

deviations, performance characteristics, and bottlenecks.

The use of process mining in practice is becoming more

and more widespread as confirmed by the growing number

of success stories of its application [17, 9, 14, 25] and the

increasing number of tools offering process mining capa-

bilities [8] (e.g. ProM [26], ARIS1, Fluxicon2, Bizclarity3).

∗Corresponding author

Email addresses: s.suriadi@massey.ac.nz, +64-9-414 0800

ext 43581 (Suriadi Suriadi), c.ouyang@qut.edu.au (Chun

Ouyang), w.m.p.v.d.aalst@tue.nl (Wil M. P. van der Aalst),

a.terhofstede@qut.edu.au (Arthur H. M. ter Hofstede)
1www.softwareag.com/corporate/products/aris_platform/

aris_controlling/aris_process_performance/overview/
2www.fluxicon.com/disco
3www.bizclarity.com.au

The practical application of process mining is often

hampered by the limited information available in events

logs, especially in those logs which are not generated by

process-aware information systems. A typical problem is

that not both start and complete times are recorded for

activities. This information is expected by current pro-

cess mining software, such as the performance analysis

with Petri nets and alignment-based performance analy-

sis plug-ins of the ProM environment [7, 20, 18, 2] and

the performance analysis component of Disco (a commer-

cial tool), in order to derive metrics such as waiting times

and case utilisation. The reliance on the existence of a

clean and simple process models to derive more detailed

performance information is also not very realistic as they

are often not realizable in practice. Furthermore, existing

approaches, such as the fuzzy-mining-based performance

analysis approaches [23, 1, 5, 6, 16], and the temporal

trace language approach [13], analyse process performance

Preprint submitted to Decision Support Systems July 17, 2015

separately from resource performance, thus preventing the

discovery of certain types of insight, such as idle periods

for processes and resources. Our approach proposed in

this article, on the other hand, is able to combine these

two perspective, thus allowing us to extract insights about

the idle periods of processes. Identifying idle periods of

processes is important as the ability to minimize them is

likely to lead to an increase in work throughput.

While existing data mining technology and spreadsheet

tools can, to a certain extent, derive performance metrics,

these tools and techniques do not take into account the

temporal and resource constraints that are inherent within

any type of process-based analysis (more details in Sec-

tion 2.1). The approach proposed in this article is specifi-

cally developed to extract performance insights that take

into account those constraints properly.

In summary, despite the proliferation of process min-

ing algorithms, especially in the area of process discovery,

emphasis in the field has been on comparatively basic per-

formance metrics (e.g. throughput times, working times,

and waiting times) and not so much on analysis of more

advanced performance-related behaviour of processes (e.g.

resource productivity trends, correlation of performance

with log variables, workload estimation, and discovery of

and comparison between working patterns of resources).

This paper proposes a novel performance analysis frame-

work based on the concept of event intervals. An event

interval is a time interval between two adjacent events

that fulfils certain conditions. By choosing the concept

of event interval as the building block of the approach and

by considering a variety of such intervals, problems with

varying degrees of information in logs (e.g. in relation to

time stamps) can be addressed in a systematic manner. A

range of different types of event intervals is distinguished

where the type is determined by attribute values of the

events for the case involved, the resource involved, and

the type of transaction (e.g. started, completed, sched-

uled). Depending on the kind of information available in

a log, some types of event intervals may or may not apply.

By taking into account both the case and the resource

perspectives, we are able to tackle more complex forms

of performance-related analysis, such as recurring work-

ing patterns of resources, waiting time distributions over

time, and resource performance comparison. In addition,

the framework allows the discovery of correlations between

event interval durations and attributes recorded in a log.

Equally important, our approach has been implemented

in the open-source process mining analysis tool ProM to

automate the various types of analyses just mentioned,

thus, delivering a dedicated framework, with tool-support,

for extracting sophisticated and refined process-related per-

formance information from information-poor logs.

This paper is structured as follows. Section 2 describes

and formalizes the event interval analysis approach, while

Section 3 describes an implementation of this approach as

a plug-in of ProM [24]. Section 4 details the evaluation of

the approach and Section 5 compares our approach with a

number of existing performance analysis approaches. Sec-

tion 6 summarises the paper and presents potential future

work.

2. Approach

We start this section with an introduction to process

mining which is the background knowledge necessary to

understand the approach we propose in the paper. This

is then followed by discussions about the rationale and

the main ideas behind our approach and finally detailed

explanation and formalization of the approach.

2.1. Background: Process Mining

The starting point of any process mining analysis is an

event log, a sample of which is shown at the top part of Fig-

ure 1. An event log consists of a set of events and each row

in an event log corresponds to a single event. For illustra-

tion purposes, the log in Fig. 1 captures the events related

to a purchase order process. A process can be interpreted

2

as the execution of a sequence of activities that follow a

certain order to achieve a particular goal, e.g. to handle a

purchase order or an insurance claim. A process definition

is often specified in the form of a process model using a

well-defined modelling language. For example, the process

shown in the middle-left part of Fig. 1 was described in

terms of a Petri net. A case refers to one particular exe-

cution (or instance) of a process, which has or is assigned

a unique identifier (‘caseID’). In the sample event log in

Fig. 1, we can see that there are three cases, each is made

up of 3-4 events. An event contains information concern-

ing the activity that is captured by the event, the resource

that performs an action which triggers the occurrence of

the event, the timestamp of the event, and the transaction

type of the event.

An event’s transaction type captures the ‘state’ of the

activity when the event occurred. Examples include ‘cre-

ate’ (when the activity becomes available to be executed),

‘assign’ (when the activity is given to a particular resource

to perform), ‘start’ (when the assigned resource starts the

execution of the activity), and ‘complete’ (when the re-

source completes the activity). The caseID, activity, re-

source, timestamp, and transaction type are often called

event attributes. Finally, an instance of a particular ac-

tivity that belongs to a particular case is referred to as a

work item, and a list of work items is known as a worklist

which is usually associated with a particular resource.

Process mining takes an event log to extract insights

about how the process was actually executed. With the

support of existing process mining techniques, an event

log can be used to extract temporal patterns formed by

the events in the log and thus to build (the structure of) a

process model (which is known as process discovery). For

example, the process model in Fig. 1 may be discovered

from an event log of which a short snippet is shown in this

figure. Performance analysis is another important area in

which process mining techniques have been proven to be

useful. An event log often contains information relating

to other perspectives such as the case, the time, and the

resource perspectives. Mining such information, in the

context of business process, can provide insight into the

understanding of different perspectives. For example, log

data such as timestamps and frequencies of activities can

be used to identify bottlenecks, throughput, and efficiency

of a process. Furthermore, data about activities being

carried out by certain resources can be used to analyse

working behaviour of resources.

A distinct characteristic of the problems addressed by

process mining, which differentiates the process mining

discipline from other types of data analysis, is the ex-

istence of concurrency and temporal constraints among

events, both from a case perspective and a resource per-

spective. The former restricts the types of work items that

can be executed at any given point in time (as they are

dependent on the completion of the preceding activities),

while the latter restricts the resources who can execute cer-

tain work items and the time at which the work items can

be executed, depending on task-resource assignment and

resource availability respectively. Consequently, each row

in an event log (i.e. an event) has temporal relationships

with other events, through resource and case constraints.

This is in contrast to other types of logs typically used

in traditional data analytics (such as data mining or even

basic spreadsheet analysis) whereby the concept of case or

resource temporal constraint does not exist or is not taken

into account.

2.2. Rationale: Reasoning about Time in Processes

In this paper we are interested in process performance

analysis using event logs. The existing process mining

techniques focus on the analysis of basic performance met-

rics (e.g. working time, waiting time, and cycle time/through-

put) and assume that an event log contains sufficient trans-

actional information, e.g. both ‘start’ and ‘complete’ infor-

mation, of activities. Basically, working time of an activity

ax is the time elapsed from the start to the completion of

3

the activity ax, waiting time of ax is the time elapsed from

the completion of the last activity that preceded ax to the

start of the activity ax, and cycle time of ax is comprised

of both the working time and waiting time of ax.

In reality an event log, however, often records limited

transactional information of an activity. For example, the

event log shown in Fig. 1 only contains information about

activity completion, and we cannot see when the activity

started. With the existing process mining techniques, we

can only extract, from such a log, the information of cycle

time (i.e. the time interval between the completion of two

subsequent activities) with little knowledge of the working

time and waiting time. This prevents us from carrying

out a range of typical performance-related analyses, such

as analysis of process (cycle time) efficiency and resource

utilisation. Hence, the following question arises:

• If an event log contains limited activity transactional

information, e.g. either ‘start’ or ‘complete’ infor-

mation only, is it still possible to extract rich and

meaningful insights about process performance from

the log?

Based on business process execution principles, we ex-

ploit an important observation that for a work item to

be executable in a case, two conditions must hold: 1) the

progress of the case must reach a state where the work

item itself is available for execution, and 2) the resource

responsible for carrying out the work item must be avail-

able. The former condition can be checked by focusing on

the case perspective, while the latter requires to take into

account the resource perspective.

Again, consider the example in Fig. 1. Let’s pick an

arbitrary timestamp, say 7 Jan 2014 at 14:30:00.4 On 7

Jan 2014 at 14:30:00, we can deduce that the work item

4Note that this timestamp is not among those listed in Figure 1

because it is a rather ‘random’ point in time. The log shown in

Figure 1 only shows timestamps of completed work items.

caseID activity Timestamp resource transaction type

c1 createPO (cPO) 2014-01-07 14:10:00 Alice (A) complete

approvePO (aPO) 2014-01-07 14:50:00 Bob (B) complete

terminatePO (tPO) 2014-01-07 15:30:00 Felix (F) complete

c2

createPO (cPO) 2014-01-07 12:30:00 Alice (A) complete

approvePO (aPO) 2014-01-07 13:25:00 Bob (B) complete

modifyPO (mPO) 2014-01-07 14:25:00 Donald (D) complete

confirmPO (coPO) 2014-01-07 15:10:00 Carol (C) complete

c3

createPO (cPO) 2014-01-07 11:35:00 Alice (A) complete

approvePO (aPO) 2014-01-07 12:45:00 Bob (B) complete

modifyPO (mPO) 2014-01-07 13:20:00 Donald (D) complete

confirmPO (coPO) 2014-01-07 14:35:00 Carol (C) complete

Resources’ Worklists at:
07/Jan/2014 14:30:00

A B C D F

[c1, cPO]

[c2, cPO]

[c3, cPO] [c3, aPO]

[c2, aPO]

[c1, aPO]

[c3, coPO]

[c2, coPO] [c2, mPO]

[c3, mPO]

cPOstart aPO

approve PO

end

A

A

BA

tPO

terminate PO

mPO

modify PO

confirm PO

coPO

create PO

D

C

M

[c1, aPO]

Workload trend (over time)Waiting time for process and

resources (weekly trend)

[c2, coPO]

[c3, coPO]

Process load (over time)

F

Process load at:
07/Jan/2014 14:30:00

“event log”

“event attributes”

“an event”

“process model”

[c1, cPO]

Legend

WI completed

[c2, coPO]

Resource

waiting for WI

WI waiting

for available

resource

[c1, tPO]

WI being

executed
[c1, aPO]

(WI – work item)

[c1, tPO]

[c1, tPO]

“a work item”

“a worklist (of a resource)”

N
o
.

o
f
e

v
e
n
t
in

t
e
rv

a
ls

N
o
.

o
f
e

v
e
n
t
in

t
e
rv

a
ls

A
v
e
ra

g
e
 I
n
te

rv
a
l
D

u
r
a
ti
o
n
 (

in
 m

in
u
te

s
)

Figure 1: Process mining: an example of event log, process model, resources’ worklists, and performance analysis

4

‘approvePO’ of case c1 (i.e. [c1, aPO]) is most likely being

executed because 1) it is available upon the completion of

the preceding work item ‘createPO’ ([c1, cPO]) at 14:10:00

and 2) the resource ‘Bob’ (B), who is responsible for ‘ap-

provePO’, is available upon the completion of ‘approvePO’

in case c2 ([c2, aPO]) at 13:25:00.

Now let us discuss a couple of scenarios where the case

and resource constraints apply. Firstly, since work item

[c1, aPO] is still in progress at 14:30:00, none of the sub-

sequent activities (i.e. ‘modifyPO’, ‘confirmPO’, or ‘ter-

minatePO’) can be executed in case c1. As a result, re-

source ‘Felix’ (F), who is responsible for ‘terminatePO’

and is free at 14:30:00, has to wait until the completion

of work item [c1, aPO] at 14:50:00 before he can exe-

cute work item [c1, tPO]. Resource ‘Carol’ (C), who is

responsible for ‘confirmPO’, is working on case c3 (on work

item [c3, coPO]) at 14:30:00 and thus is not available for

other cases. As a result, although work item ‘confirmPO’

of case c2 ([c2, coPO]) has been available for execution

since 14:25:00 (when the preceding activity ‘modifyPO’

was completed), it has to wait until ‘Carol’ completes work

item [c3, coPO] at 14:35:00. In summary, the first scenario

reveals that there is a waiting time of at least 20 minutes

for resource ‘Felix’ before he can execute [c1, tPO] due to

a case constraint, while the second scenario reveals that

there is a waiting time of at least 10 minutes in case c2

before work item [c2, coPO] can actually be executed due

to resource constraints.

What we can learn from the above scenarios is that

even in the absence of activity start (or complete) infor-

mation, it is still possible to derive meaningful insights

about the waiting time and working time of a resource

or a process activity by examining the various points of

time in the log data and the intervals between these time

points from both the case and resource perspectives. This

finding provides the underlying rationale for the proposal

of a new log data analysis approach that can be used to

extract important information about process performance

that is hidden in an (information-poor) event log. Fur-

thermore, we also hope to explore the potential of this ap-

proach for supporting sophisticated performance-related

analysis beyond the capabilities of current process mining

techniques. For example, by taking multiple ‘snapshots’

of both the process and resource load over time, we could

build a picture that describes the changes in the load of

the processes (see bottom-left graph in Fig. 1) and the

resources (bottom-right graph). Another example shown

in the bottom-middle graph of Fig. 1 shows how we can

observe the variation of process waiting time and the re-

source waiting time over a recurring period of time (such

as a day or week) to discover the daily or weekly pattern

of the waiting times for both processes and resources.

2.3. Approach: Described in More Detail

The central notion used in this paper is that of an event

interval. Event intervals can be calculated from event logs.

In essence, an event interval is a period of time between the

occurrences of two events that satisfy certain conditions,

e.g. same transaction type (e.g. ‘start’ or ‘complete’),

same case identifier, and/or same resource identifier. Dif-

ferent types of event intervals can be derived by imposing

different set of conditions. Furthermore, depending on the

conditions imposed, one can also derive meaningful inter-

pretation in terms of work performance by the collection

of event intervals that exist in an event log.

For example, one can define a type of event interval

where the events involved concern activities which are per-

formed by the same resource. This type of event interval

is referred to as a resource interval. As an illustration

consider the interval between events e1 and e2 in Fig. 2.

The figure depicts an elaboration of the second scenario

discussed in Section 2.2, where the relevant events are dis-

played in ascending order along a timeline. Events e1 and

e2 capture the completion of activity ‘confirmPO’ by re-

source ‘Carol’ in two different cases c3 and c2, respectively.

Note that there is no event involving ‘Carol’ that occurred

5

in between the occurrences of e1 and e2. Under the as-

sumption that a resource does not work on multiple activ-

ities at the same time, one can interpret the period repre-

sented by this event interval as the maximum time that it

could have taken ‘Carol’ to perform activity ‘confirmPO’

in case c2. This maximum would actually be realised if

‘Carol’ started to work on ‘confirmPO’ in case c2 immedi-

ately after completing the activity in case c3, i.e. immedi-

ately after the occurrence of event e1. The example further

illustrates that even in the context of an information-poor

event log (only the completions of activities are recorded)

one can still derive meaningful information about resource

performance using the notion of a specific type of event

interval.

The main driver behind our approach is that the ex-

istence of various types of intervals in an event log may

reveal important information about process performance.

In fact, by displaying various types of intervals unearthed

from an event log over a timeline, information can be in-

ferred that cannot be obtained through the application of

current process mining approaches. To illustrate this phe-

nomenon, consider another type of event interval where

the timestamps of the events involved indicate the com-

pletion of their activities and where these activities belong

to the same case. This type of event interval is referred to

as a case interval. Let’s revisit Fig. 2 where events e′1 (cap-

turing the completion of activity ‘modifyPO’ in case c2)

and e2 form a case interval as both events belong to the

same case, c2, and there are no intermediate events be-

longing to this case. Given that e′1 occurred before e1, it

can be inferred that the time difference between events e′1

and e1 corresponds to a waiting time for case c2. This

can be explained as follows. Immediately after the occur-

rence of event e′1, the next activity (‘confirmPO’) in case

c2 could start were it not for the fact that this activity is

to be performed by ‘Carol’ who is still occupied with case

c3. The completion of ‘confirmPO’ by ‘Carol’ in case c3 is

signalled by the occurrence of event e1, hence case c2 was

delayed after the occurrence of event e′1 till the occurrence

of event e1.

It should be noted that in the current version of event

interval analysis, as presented in this paper, we make a

couple of assumptions with regards to the way in which

work items are created and the way resources execute work

items. The analysis focuses on activities within a log that

have causal relationships, and considers resources work-

ing on one work item at any given time. In case that

these assumptions are violated, our event interval analysis

framework will still be able to deliver meaningful insights,

however, their interpretation would become more involved.

Having created an intuition behind the notion of event

interval and having made explicit our assumptions, we are

in a position to lay the formal foundation for event in-

terval analysis by providing definitions for the notion of

event log and for five basic types of event intervals, each

of which captures a different performance perspective. The

five types of event intervals form the basic building blocks

of our approach to performance analysis. More types of

e1 e2

timestampww:w2014-01-07w14:25:00

casewwwwwwwwwwwww:wc2

resourcewwwww:wDonald

activitywwwwwww:wmodifyPO

trans.wtypew:wcomplete

e'1

resourcewinterval

casewinterval

waiting

timestampw:w2014-01-07w14:35:00

casewwwwwwwwwwwww:wc3

resourcewwwww:wCarol

activitywwwwwwww:wconfirmPO

trans.wtypeww:wcomplete

timestampw:w2014-01-07w15:10:00

casewwwwwwwwwwwww:wc2

resourcewwwww:wCarol

activitywwwwwwww:wconfirmPO

trans.wtypeww:wcomplete

t

Figure 2: An illustrative example of event intervals (in the context of the event log shown in Fig. 1)

6

intervals can be defined for event logs that capture more

transaction types (e.g. create, assign) leading to richer

forms of analysis. The approach can thus be seen as a

framework providing a range of analysis techniques tai-

lored to the type of information present in a log.

2.3.1. Event Log

An event log (L) consists of a set of events. Each

event (e) is associated with a range of attributes captur-

ing the information of caseID (case(e)), activity (act(e)),

timestamp (time(e)), resource (res(e)), transaction type

(type(e)), etc.5 An event log can be partitioned into smaller

event logs based on an event attribute. For example, an

event-typed log (Ltp) is the result of partitioning the origi-

nal event log based on transaction type tp and hence it con-

sists of events that have the same transaction type. Also,

events are ordered by unique numbers, which are referred

to as event order identifiers, that are related to their times-

tamps, and numbers take precedence over timestamps where

two events occur concurrently. Below we formally define

event and event log to avoid any ambiguity that may arise

when introducing the relevant concepts.

Definition 1 (Event). Let Case be the set of case iden-

tifiers, Act the set of activity identifiers, Time the set of

possible timestamps, Res the set of resource identifiers and

Type the set of transaction types (e.g. create, assign, start

and complete).

E is the set of events.

For any e ∈ E : case(e) ∈ Case is the case identifier

of e, act(e) ∈ Act is the activity identifier of e, time(e) ∈

Time is the timestamp of e, res(e) ∈ Res is the resource

identifier of e and type(e) ∈ Type is the transaction type

of e. If an attribute is missing, a ⊥ value is returned,

e.g., res(e) = ⊥ means that no resource is associated with

event e. �

5An event can have more attributes but these are not considered

in this paper.

Definition 2 (Event Log). An event log L ⊆ E is a set

of events. �

Definition 3 (Event-typed Log). Let L ⊆ E be an event

log and let Type be the set of transaction types. Given

tp ∈ Type, Ltp = {e ∈ L | type(e) = tp} is an event-typed

log of transaction type tp. �

Definition 4 (Event Order Identifier). Given an event

log L ⊆ E , id : L → {1, ..., |L|} is a bijective function that

maps each event e ∈ L to a unique natural number where

∀e1, e2 ∈ L : id(e1) < id(e2) if time(e1) < time(e2) and

e1 ≤ e2 if and only if id(e1) ≤ id(e2). �

2.3.2. Event Intervals

The general notion of an event interval (e1, e2) (or in-

terval for short) refers to the interval between any two

events in a log. More specifically, we can identify five ba-

sic types of event intervals.

Case Interval (cg). This is an interval between two ad-

jacent events of the same transaction type in the same

case. Given an event e, the case interval cge captures the

maximum period the activity act(e) of case(e) becomes

available until it is completed.

Consider the example of a case interval in Fig. 3(a). At

the moment of time(e1), activity act(e1) of case c2 is com-

pleted and the subsequent activity act(e3) is available for

execution. The latest this remains in the case is the mo-

ment when act(e3) is completed, which is time(e3). Hence,

event interval (e1, e3) defines case interval cge3 .

A special scenario that should be considered is when

a case appears for the first time, i.e. the starting point

of the case, in an event log. This is when an initial case

interval is defined. For example, in Fig. 4, event e1 signals

the starting point of case c2, and the initial case interval

of c2, written cg i
e1 , is formed by a pair comprising event e1

and itself, i.e. (e1, e1). As another example, event interval

(e3, e3) defines the initial case interval of c3, written cg i
e3 .

Obviously, an initial interval has a zero time duration.

7

Resource Interval (rg). This is an interval between two

adjacent events of the same transaction type that involve

the same resource. Given an event e, the resource interval

rge captures the maximum period the resource res(e) is

available for performing the activity act(e) in case(e) un-

der the assumption that a resource does not work on more

than one activity at a time.

Consider the example of a resource interval in Fig. 3(a).

At the moment of time(e2) when resource r2 completes the

activity act(e2) of case c1, r2 is then ready to carry out

activity act(e3) of case c2. The latest this holds true is

the moment of time(e3), when r2 completed act(e3) in c2.

Hence, event interval (e2, e3) defines resource interval rge3 .

Similarly to case interval, an initial resource interval

is defined when a resource appears for the first time in

an event log. Again, consider the illustration in Fig. 4.

Event e1 indicates the first appearance of resource r2, and

the initial resource interval of r2, written rg i
e1 , is interval

(e1, e1); and for resource r1, the initial resource interval

rg i
e2 is interval (e2, e2).

Working Interval (wg). Given an event e, the working in-

terval wge captures the period the activity act(e) of case(e)

is performed by a specific resource res(e). It starts from

the moment when the activity and the resource are both

available for the execution of that activity, and finishes the

moment when the resource completes the activity.

A working interval is represented by either a case in-

terval or a resource interval depending on which becomes

available later, the activity or the resource. For example,

in Fig. 3(a), though activity act(e3) of case c2 is ready

to be performed at time(e1), resource r2 is not available

until later at time(e2). Hence, the event interval (e2, e3)

defines working interval wge3 as well as the corresponding

resource interval rge3 . In Fig. 3(b), on the other hand,

activity act(e3) of case c2 becomes available later than re-

source r2, and thus working interval wge3 is the same as

the corresponding case interval cge3 .

In the situation when only completions of activities

are recorded, a working interval provides us with 1) an

upper bound for the amount of time that the resource

(c2,r1) (c1,r2)

e2e1

wge3 -

e3

(c2,r2)
‘complete’ ‘complete’ ‘complete’

cge3 - case interval

rge3 -

cige1,e2 -

a b

(c1,r2) (c2,r1)

e2e1

wge3 -

e3

(c2,r2)
‘complete’ ‘complete’ ‘complete’

rge3 - resource interval

cge3 -

rige1,e2 -

c1, c2 ∈ Case; r1, r2 ∈ Res

case-waiting interval working interval working intervalresource-waiting interval

resource interval case interval

c1, c2 ∈ Case; r1, r2 ∈ Res

Figure 3: Illustration of five basic types of event intervals in two different scenarios (a) and (b)

(c2,r2) (c2,r1)

e2e1 e3

(c1,r2)
‘complete’ ‘complete’ ‘complete’

e1 is the first event for case c2 and resource r2
e2 is the first event for resource r1

rgie1

cgie3cgie1 rgie2
wge2

wge1

wge3

e3 is the first event for case c1

Figure 4: Illustration of initial case intervals, initial resource intervals, and the corresponding working intervals

8

worked on the activity (the maximum occurs when the re-

source starts to work on the activity immediately after the

recorded completion of the previous activity), and 2) an

upper bound for the amount of time that the resource is

idle, i.e. able to work on the activity but not actually doing

so (this maximum occurs when the resource started work-

ing on the activity just before its completion is recorded).

A special scenario is, when either a case interval or a

resource interval is an initial interval, the corresponding

working interval is specified by that initial interval. Ex-

amples can be seen as wge1 , wge2 , and wge3 in Fig. 4.

Case Waiting Interval (cig). This captures the period an

activity of a certain case that is ready to be performed

waits for the availability of the corresponding resource. It

starts from the moment when only the activity is ready

and ends the moment when the resource is also ready.

In Fig. 3(a) cige1,e2 is an example of a case waiting

interval during which activity act(e3) of case c2 waits for

resource r2 to become available (from case c1).

Resource Waiting Interval (rig). This captures the period

that an available resource waits for the corresponding ac-

tivity of an expected case to be ready for its performance.

It starts from the moment when only the resource is avail-

able and ends the moment when the activity in the corre-

sponding case also becomes available.

In Fig. 3(b) rige1,e2 is an example of a resource waiting

interval during which resource r2 waits for activity act(e3)

of case c2 to become available.

Finally, it is possible that both the activity of a cer-

tain case and the required resource become available at

the same time. In this situation, case interval, resource

interval, and working interval all correspond to the same

event interval, and both case waiting interval and resource

waiting interval have a zero time duration.

Formal Definitions. Below we formally define the five ba-

sic types of event intervals to avoid any ambiguity that

may arise in the above informal description.

Definition 5 (Event Interval). Let L ⊆ E be an event

log. Let e1, e2 ∈ L with e1 ≤ e2 : (e1, e2) is an event

interval. G = {(e1, e2) ∈ L × L | e1 ≤ e2} is the set of

all possible event intervals, and dur(e1 , e2) = time(e2) −

time(e1) is the (time) duration of interval (e1, e2). �

Definition 6 (Case Interval). Let L ⊆ E be an event

log and Ltp ⊆ L (where tp ∈ Type) be an event-typed log.

CG(Ltp) = CGn(Ltp) ∪ CGi(Ltp) is the set of case inter-

vals in L based on transaction type tp, where 1) CGn(Ltp) =

{(e1, e2) ∈ Ltp × Ltp | e1 < e2 ∧ case(e1) = case(e2) ∧

@e′∈Ltp (e1 < e′ ∧ e′ < e2 ∧ case(e ′) = case(e2))} are (nor-

mal) case intervals; and 2) CGi(Ltp) = {(e, e) ∈ Ltp ×Ltp

| @e′∈Ltp
(e′ < e ∧ case(e ′) = case(e))} are initial case

intervals (one for each case). �

We use the shorthand notation cge,tp to denote case

interval (e′, e) ∈ CG(Ltp), where e is the end event of the

case interval and tp specifies the transaction type of e. It is

sufficient to only use the end event (e.g. e) in the notation

to refer to a case interval since the start event (e.g. e′) can

easily be identified by the definition of a case interval. If

the transaction type (tp) is complete, the notation cge,tp

is further simplified to cge .

Definition 7 (Resource Interval). Let L ⊆ E be an

event log and Ltp ⊆ L (where tp ∈ Type) be an event-

typed log. RG(Ltp) = RGn(Ltp) ∪ RGi(Ltp) is the set of

resource intervals in L based on transaction type tp, where

1) RGn(Ltp) = {(e1, e2) ∈ Ltp×Ltp | e1 < e2 ∧ res(e1) =

res(e2) ∧ @e′∈Ltp (e1 < e′ ∧ e′ < e2 ∧ res(e ′) = res(e2))}

are (normal) resource interval; and 2) RGi(Ltp) = {(e, e) ∈

Ltp × Ltp | @e′∈Ltp
(e′ < e ∧ res(e ′) = res(e))} are initial

resource intervals (one for each resource). �

We use the shorthand notation rge,tp to denote resource

interval (e′, e) ∈ RG(Ltp), where e is the end event of the

resource interval and tp is the transaction type of e. Sim-

ilar to case intervals, the transaction type is dropped if it

is complete. This convention also applies to the remaining

types of event intervals.

9

Definition 8 (Working Interval). Given an event log

L ⊆ E and an event-typed log Ltp ⊆ L (where tp ∈ Type),

CG(Ltp) is the set of case intervals and RG(Ltp) is the

set of resource intervals that can be observed in L based

on transaction type tp. WG(Ltp) = {(e1, e2) ∈ CG(Ltp)∪

RG(Ltp) | @e3∈Ltp
(e1 < e3 ∧ e3 < e2 ∧ (res(e3) = res(e2)∨

case(e3) = case(e2))} is the set of working intervals. �

Similar to case intervals and resource intervals, we use

the shorthand notation wge,tp to denote working interval

(e′, e) ∈WG(Ltp), which can be further simplified to wge

if only the transaction type complete is present.

Definition 9 (Case Waiting Intervals). Let L ⊆ E be

an event log and Ltp ⊆ L (tp ∈ Type) be an event-typed

log. CIG(Ltp) = {(e1, e2) ∈ Ltp × Ltp | ∃e3∈Ltp (e2 ≤

e3 ∧ (e1, e3) ∈ CG(Ltp) ∧ (e2, e3) ∈ RG(Ltp))} is a set of

case waiting intervals. �

When only the transaction type complete is present,

we can use the shorthand notation cige′,e to denote case

waiting interval (e′, e) ∈ CIG(Ltp), where e′ is the starting

event of the corresponding case interval, e is the starting

event of the corresponding resource interval, and event e′

occurs no later than event e.

Definition 10 (Resource Waiting Intervals). Let L ⊆

E be an event log and Ltp ⊆ L (tp ∈ Type) be an event-

typed log. RIG(Ltp) = {(e1, e2) ∈ Ltp × Ltp | ∃e3∈Ltp
(e2

≤ e3 ∧ (e2, e3) ∈ CG(Ltp)∧ (e1, e3) ∈ RG(Ltp))} is the set

of case waiting intervals. �

When only the transaction type complete is present,

we can use the shorthand notation rige′,e to denote re-

source waiting interval (e′, e) ∈ RIG(Ltp), where e′ is the

starting event of the corresponding resource interval, e is

the starting event of the corresponding case interval, and

event e′ occurs no later than event e.

2.3.3. Operations on Event Intervals

Being able to identify the existence of various event in-

tervals is an important first step in enabling event interval-

based performance analysis. Now it is time to introduce

a number of operations that can be subsequently applied

in order to derive useful performance-related information

from the event intervals identified.

Grouping. It is obvious that an event interval on its own

only provides a micro-level view of the performance of a

process. In order to obtain a more complete and overall

understanding of a process’ performance, it is necessary to

gather together the event intervals that share common fea-

tures useful to address specific performance-related analy-

sis questions. This can be realised via group by operation.

Definition 11 (Group By). A set of event intervals G ⊆

G can be grouped by event attributes (e.g. case, resource,

activity). Let Attr be the set of values carried by a spe-

cific event attribute, G�Attr defines the collection of inter-

vals grouped by that event attribute. A special case is

G�⊥= {(⊥,G)}, where ⊥ represents the null attribute. �

The operation of grouping by event attributes supports

collecting individual event intervals into clusters of inter-

vals in a way that the intervals in each cluster carry the

same value in regard to a specific event attribute. For ex-

ample, G�Res represents the grouping of intervals by the

resource attribute of events. Given any resource r ∈ Res,

G�Res (r) = {(e1, e2) ∈ G | res(e2) = r} is the set of inter-

vals related to r. Hereafter we use G�xAttr as a more com-

pact notation for G�Attr (x), e.g. G�rRes means G�Res(r).

The group by operation can be applied to the various

types of event intervals. For example, grouping case inter-

vals by resource attribute yields clusters of case intervals,

where each cluster contains all the case intervals of which

the corresponding work items are executed by one partic-

ular resource. Given an event log L, CG(L) is the overall

set of case intervals in L. The above clusters of case in-

tervals can be specified as CG(L)�Res and the cluster for

each resource r ∈ Res as CG(L)�rRes .

Furthermore, the group by operation, when applied to a

specific value of an event attribute, yields a set of intervals

10

(e.g. G�rRes) and hence the operation can be applied again.

For example, this way one can obtain all intervals that

involve a certain resource r and a certain activity a, either

by writing (G �rRes) �aAct or (G �aAct) �
r
Res .

By choosing the right combination of an event interval

type and a group by event attribute, meaningful clusters

of event intervals can be derived for conducting analysis

operations which are to be introduced next.

Analysis Operations. Eventually, the goal of defining, iden-

tifying, and grouping event intervals is to enable the ex-

traction of useful (and hopefully, representative) perfor-

mance information from an event log. This can be achieved

by applying a number of performance analysis operations

on the clusters of event intervals obtained through applica-

tion of the group by operation. In this paper, we propose

three different analysis operations: metrics analysis, evo-

lution graph analysis, and decision tree analysis.

Firstly, we define metric functions that can be used

to compute performance measures, such as frequency and

time duration, of event intervals for metrics analysis.

Definition 12 (Metric Functions). Let G ⊆P(G) be

a set of grouped collections of event intervals where each

G ∈ G is a finite and non-empty set (e.g. G can be

a set of collections of event intervals obtained from the

group by operation in Definition 11). We introduce F as

a set of metric functions that have G as their domain, and

fmetric ∈ F refers to any metric function in F . Two con-

crete examples of fmetric , namely ffreq and fdur, are defined.

For any set of event intervals G ∈ G, ffreq : G → N com-

putes the number of the intervals in G, and fdur : G → R

computes the average duration of the intervals in G. �

We can apply a metrics analysis to, theoretically, any

cluster of event intervals. For example, given an event log

L and a resource r ∈ Res, fdur(WG(L)�rRes) returns the av-

erage working time of any work items involving resource r

in case only activity completions are recorded. Similarly,

for any case c ∈ Case, fdur(WG(L)�cCase) returns the aver-

age working time of any work items that belong to case c.

Next, we propose two different methods for counting

event intervals within a time window (i.e. a time interval).

The difference lies in the way how event intervals that span

across multiple time windows are counted. One is called

the Load (L) method in which intervals are counted as

long as they exist in a given time window. As a result, an

interval will be counted more than once if it spans across

multiple time windows. The other, namely the Unique

(U) method, only counts those intervals that appear for

the first time in a time window. As a result, each interval

will be counted exactly once.

Definition 13 (Count by Time). Let G ⊆ G be a set

of event intervals. Given t ∈ Time a point of time and

d ∈ TimeDuration a (non-zero) time duration, [t, t + d〉

defines a (valid) time window. The Load method counts

all the intervals, GLd (t) = {(e1, e2) ∈ G | (time(e1) < t +

d ∧ time(e2) > t) ∨ (time(e1) = time(e2) = t)}, that exist

in [t, t+d〉. The Unique method counts only the intervals,

GUd (t) = {(e1, e2) ∈ G | t ≤ time(e1) < t+ d}, that appear

in [t, t+ d〉 for the first time. �

Both methods are valid in counting the number of event

intervals and for certain analysis questions one suits bet-

ter than the other. For example, we consider the Load

method a more reasonable means to address the analy-

sis questions concerning case or resource occupancy, e.g.

how busy a resource is during a certain period, while the

Unique method provides a better approach to incremental

analysis of performance, e.g. how much new work emerges

during a time window.

While the metrics analysis supports the computation

of metric measures in a static manner, it is often more

interesting to understand how performance metrics evolve

over a period of time. The results are usually represented

and visualised in the form of evolution graphs for analysis.

We consider two styles of time progression. One is the

11

linear time progression which is quite common and often

used as a default style of time progression for analysis. The

other is the cyclic time progression which can be used to

exhibit the performance behaviour of a system in a period

relative to a recurring time window. For example, we may

be interested in what happens daily over a period of a

month or weekly over a period of a year.

Definition 14 (Evolution Graph Analysis). Let G ⊆

G be a set of event intervals, t ∈ Time a point of time, d ∈

TimeDuration a non-zero time duration, . ∈ {L,U} the

interval counting method, fmetric ∈ F a metric function for

computing a certain metric measure over a set of intervals.

Then, fmetric(G.d(t)) computes a certain metric measure

over the group of intervals within time window [t, t + d〉

over a linear time progression.

Let ω ∈ TimeDuration (where ω > d and ω modulo

d = 0) be the duration of a time cycle, t0 ∈ Time the initial

point of time of ω, {0, ..., n} a set of integers, and χ ∈

{χmean, χmedian, χmax, χmin, χsum} for calculating average,

median, maximal, minimal, or total value over a set of

values. Then, χ(fmetric(G.d(t̂ + i ∗ ω))), where t0 ≤ t̂ <

t0+ω and i ∈ {0, ..., n}, computes a certain metric measure

over the group of intervals within (recurring) time window

[t̂, t̂+ d〉 over a cyclic time progression. �

Let’s use an example to explain the evolution analysis

defined above. Given an event log L, we want to observe

how the number of new resource intervals for a particular

resource r, which exist in every time window [t, t + d〉 of

linear progression, evolves over a certain time period.

Firstly, the group by operation is applied to collect the

set of resource intervals for resource r, i.e. RG(L)�rRes .

Next, the Unique method is used to count the new re-

source intervals related to r that appear in each time win-

dow [t, t+d〉 of linear progression, resulting in (RG(L)�rRes

)Ud (t). As the last step, the ffreq metric function is applied

to compute the number of new resource intervals of r over

time t, thus ffreq(RG(L)�rRes)Ud (t). The result can be plot-

ted into an evolution graph shown in Fig. 5(a).

Alternatively, by considering a daily (i.e. ω = 1 day)

cyclic progression, we can obtain an aggregation of evo-

lution graphs of ffreq(RG(L)�rRes)Ud (t̂+ i ∗ ω) as Fig. 5(b)

shows, and then calculate the average number of new re-

after
hours

01/01/2011 01/01/2011 01/01/2011 01/01/2011 01/01/2011 01/01/2011
08:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00

7
6
5
4
3
2
1

02/01/2011 02/01/2011 02/01/2011 02/01/2011 02/01/2011 02/01/2011
08:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00

8
9

Day 1

7
6
5
4
3
2
1

8
9

7.5
8

08:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00

= 2 hours

= 1 day

Day 2

Day 2

08:00:00 10:00:00 12:00:00 14:00:00 16:00:00 18:00:00

7
6
5
4
3
2
1

8
9

Day 1

7

8
9

(a)

(b)
(c)

=0

=1
(Day 1)

(Day 2)

Figure 5: Examples of evolution graphs: (a) evolution over linear time progression, (b) aggregation of evolutions over cyclic time progression,

and (c) average of evolutions over cyclic time progression.

12

independent variables dependent variable︷ ︸︸ ︷ ︷ ︸︸ ︷
Case Id Activity Day of the Week Resource Duration Duration Category (RG)

102 createPO Wednesday felix 20 mins short

102 approvePO Thursday donald 3 mins short

84 createPO Monday carol 37 mins long

80 createPO Wednesday alice 18 mins long

79 approvePO Tuesday bob 4 mins short

102 modifyPO Friday bob 53 mins long

Table 1: An example of event data that can be used for conducting a decision tree analysis. The predictor variables are those attributes that

may explain the duration of intervals (which is, in turn, the response variable). The duration of the intervals is classified based on domain

knowledge. In the table above, we classify the duration of an event interval as ‘long’ if it lasts more than 30 minutes for activity ‘createPO’,

5 minutes for activity ‘approvePO’, and 25 minutes for activity ‘modifyPO’

.

source intervals for r at each moment of t̂ over cyclic time

progression, i.e. χmean(ffreq(RG(L)�rRes)Ud (t̂+ i ∗ω)). This

can be plotted into the graph shown in Fig. 5(c), which ex-

hibits a daily pattern how average number of new resource

intervals of r evolves, during a given time period.

Definition 15 (Decision Tree). Let G ⊆ G be a set of

event intervals. Then, dt(G) = {((case(e′), act(e′), time(e′),

res(e′), ...), durCategory(e, e′)) | (e, e′) ∈ G} defines a learn-

ing problem to identify the correlation between a set of

event attributes (including such as caseID, activity, times-

tamp, resource, and so on, which are known as independent

variables) and the time duration of event intervals (known

as dependent variable).

This analysis aims to discover the impact of certain

event attributes on interval duration through the applica-

tion of decision tree analysis or regression analysis. As the

dependent variable in this learning problem, durCategory

captures different categories of the intervals as a result of

classification of the intervals based on their duration. The

value of a dependent variable such as durCategory is al-

ways presented in a categorial (i.e. nominal) form.

Table 1 lists an example of event data that can be

used for conducting a decision tree analysis. It helps to

find out how each of the attributes, including the case

and the activity being executed, day of the week when a

particular activity being carried out, and the resource by

whom the activity being performed, affect the duration of

the resource intervals.

By now we have defined the concept of event inter-

vals and a new performance analysis framework that builds

upon various operations on the event intervals, which, as

currently proposed, include aggregation operation, met-

rics analysis, evolution of performance metrics over time

of linear or cyclic time progression, and decision tree anal-

ysis. Discussion about tool implementation to support this

framework follows in the next section.

3. Implementation

The approach detailed in Section 2 has been imple-

mented as a plug-in of the ProM Tool [24], an open-source

process mining environment.6 This section describes briefly

the implemented plug-in.

3.1. Interface

The input required by our plug-in is an XES/MXML [4,

22] log that satisfies the minimal requirements for process

mining analysis (i.e. the log contains activity information

6The name of the plug-in is Event interval Analysis and it can be

installed automatically via ProM Package Manager or manually by

following the instruction available from https://www.dropbox.com/

s/lddagfz8i9yzwp0/InstallationInstructions.pdf

13

related to a process, each activity can be linked to a pro-

cess instance, and the occurrences of the activities can be

ordered [19]). While the presence of resource information

in the log is essential, our approach is still applicable even

when such information is missing by, for example, assign-

ing a unique resource to each activity. Furthermore, each

event in the log may be tagged with its transaction type

(e.g. schedule, allocate, start, complete, and/or others) in

accordance with the XES/MXML specification [4, 22]. If

such information is missing, it is trivial to add that using

existing tools (e.g. the Disco tool can tag each event with

the event transaction type of ‘start’ or ‘complete’).

As shown in Figure 6 (left), the implemented plug-in

allows users to choose the time frame within which the

extracted event intervals are to be analysed. Furthermore,

given that our approach works with logs with a number of

different transaction types, users will have to specify the

transaction type that they would like to focus on in the

extraction of event intervals (see Definition 3). Finally,

we also allow users to specify the interval types that they

would like to consider in their analysis (as per Definition 6

to Definition 10 in Section 2.3.2).

Once a user has applied the necessary configuration

options, the plug-in will firstly extract all the applicable

event intervals that exist in the log. Then it will display

an interactive window that consists of a set of configura-

tion options on the left-hand side of the panel (for the

purposes of performing various analysis types as defined

in Section 2.3.3) and a result visualisation panel on the

right-hand side of the panel (see Fig. 6 - right). To make

the tool more usable, configuration options that are not

relevant for a particular analysis type are disabled. The

details of these panels are provided in the remainder of

this section.

3.2. Interval Analysis Interface

Figure 7 (left) shows a screenshot of the interactive

window through which users can conduct event interval

analyses interactively based on the extracted event inter-

vals. The configuration options panel allows users to spec-

ify a particular base analysis type, i.e. the combination of

an analysis type, interval type, and group by mechanism

(as per Section 2.3.3).

Decision Tree. If one chooses dt(G�Attr) as the base anal-

ysis type (see Definition 15), then the list of available at-

tributes that can be used as predictor variables, as present

in the log, is displayed in the drop-down box. Users then

need to choose one or more predictor variables - see Fig. 7

(right). The response variable in such an analysis is always

the duration of whichever interval type the user chooses.

Furthermore, based on the chosen predictor variables,

a number of drop-down boxes is also displayed in the result

Specify5a5specific
time5range5for

interval5analysis

Choose5a5specific

event5lifecycle:
schedule,5assign,5start,5complete

Select5the5type5of5event5
intervals5for5analysis:5

case5interval,5resource5interval,5
working5interval,5

case5waiting5interval,5

resource5waiting5interval

Option5Panel5

(detailed5in5Fig.555and5Fig.56)

Result

Panel

Interval Type

Resource Interval

Secondary Interval Types:

Figure 6: Event interval analysis plug-in - configuration panel and visualisation panel overview.

14

visualisation panel, one for each of the selected predictor

variables. These drop-down boxes allow users to specify

the data type for each of the selected predictor variables

(i.e. numeric, nominal, or string) - see Fig. 7 (right). The

users also need to choose if the response variable, that

is, the duration of the selected interval type, is to be dis-

cretized based on the values themselves (that is, classes

will be equally split based on the minimum and maxi-

mum values seen) or the distribution of values (that is,

classes will be equally split based on the distribution of the

values). The former technique may result in imbalanced

classes, while the latter ensures that classes are balanced.

Finally, users need to specify if the response variable is to

be discretized into two classes or into three.

The decision tree analysis type invokes the J.48 clas-

sification algorithm [15] from the WEKA library to pro-

duce one decision tree for each interval cluster (as deter-

mined by the group by parameter) to explain the correla-

tion between the selected predictor variables and the in-

terval duration. This analysis type produces two artifacts:

(1) the decision tree(s) with the corresponding ‘fitness’

results mined from the data (one tree for each interval

cluster), and (2) a set of WEKA data files (i.e. in arff-

compliant format) that users can directly use as input into

the WEKA tool for further data mining analysis (one file

for each interval cluster). The mined decision tree(s) and

the corresponding results are displayed in a text format

as per the output from the WEKA library. An example

of the result of a decision tree analysis can be seen in the

evaluation section of this article (Fig. 20 in Section 4.2.3).

Simple Metrics. If one chooses fmetric(G�Attr) as the base

analysis type (see Definition 12), then the only further

parameter to configure is whether the interval filter pa-

rameter should be set - see Fig. 8. By specifying a interval

filter, we remove any event intervals that are made up from

a pair of events whose timestamps do not share the same

date. Such a filter is sometimes needed to disregard in-

tervals that partially or wholly lay outside business hours.

The simple metrics base analysis type produces a bar graph

that displays the average, median, and standard deviation

metrics for each interval cluster. An example of the result

of a simple metric analysis is available in the evaluation

section of this article (Fig. 16 in Section 4.2.2).

Evolution. If one chooses fmetric(G�Attr).d(t) or

χ(fmetric(G�Attr).d(t̂+ i ∗ ω)) as the base analysis type (see

Definition 14), further parameters need to be specified.

Firstly, users may choose one or more ‘secondary’ interval

types to be used in the analysis (see Fig, 8), in addition to

the main interval type they have chosen earlier as part of

Selectfanfeventfintervalftype

(casefinterval,fresourcefinterval,fworkingfinterval,f

casefwaitingfinterval,fresourcefwaitingfinterval)

Selectfaf'GroupfBy'fmechanism

(case,fresource,factivity,fgroup,fall)

Selectfanf'AnalysisfType'

(decisionftree,fsimplefmetric,

evolutionfgraph)

Determinefthefdataftypeffor

fthefselectedfpredictorfvariables

(numeric,fnominal,fstring)

Determinefhowfinterval

durationfisftofbefdiscretized

(byfvaluesforfbyfdistribution)

Selectfthefnumberfof

classesfforfdecision

treefanalysisf(twoforfthree)

Iff'decisionftree'fanalysisfisf

selected,fthenfusersfneedfto

selectfrelevantfpredictorfvariables

Resource Interval

Secondary Interval Types:

Interval Type

Figure 7: Option panel to configure base analysis type (left) and to set decision tree analysis options (right).

15

the base analysis type. In any case, the resulting evolution

graph contains one series for each possible interval cluster,

i.e. if users choose n secondary interval types in addition to

the main interval type, and the chosen group by mechanism

has m interval clusters, then by default the resulting graph

has (n+ 1)×m series.

Other parameters (as defined in Section 2.3.3) to choose

include (see Fig. 8):

• count method: load or unique (as per Definition 13),

• graph type: duration (average interval duration) or

frequency (number of intervals) (i.e. fdur or ffreq met-

rics functions in Definition 12),

• window length: from 0.5 hour to 24 hours (i.e. the

value for parameter d in Definition 13),

• timeline: linear time progression or daily, weekly,

monthly, and year being the set of specific values of

cyclic time progression (i.e. the value for parameter

ω in Definition 14),

• isintervalFiltered: yes or no, and

• group by filter: no specific value (none) or a set

of chosen values (x1, ..., xn) of an event attribute,

that is, each of the chosen value xi (i ∈ {1, ..., n})

corresponds to a particular interval cluster (i.e. group

of intervals) G�xi

Attr , and if none is chosen, then all

values will be used, i.e. G�Attr .

Sample evolution graphs generated using two interval

types (case interval and resource interval), group by null,

using unique as the count method parameter, and dura-

tion as the graph type parameter are shown in Fig. 9.

4. Evaluation

To demonstrate the applicability of our approach, we

show that we can use event interval analysis framework

to answer a number of typical performance-related ques-

tions detailed in Section 2.2, such as the distribution of re-

sources’ workload over time, the pattern in which resources

carry on their tasks, the utilisation rate of resources, com-

parison of resources performances, and working time esti-

mation.

The evaluation of our approach is performed on both

synthetic logs and a real-life log: the former logs are used

to demonstrate the correctness of our approach, while the

latter is used to demonstrate its usefulness in extracting

performance information from a real event log.

The evaluation of our approach focuses on the evolu-

tion graph analysis (that is, the analysis defined in Def-

inition 14) as we find it to be quite powerful in gaining

insights into the performance of resources and processes.

The simple metrics analysis is used, when needed, to pro-

vide an overview of interval duration statistics. Evaluation

of the decision tree analysis is provided in Section 4.2.3

when we attempt to find correlations between duration of

intervals and other variables seen in the event logs used.

To simplify presentation, Table 2 shows a number of

configuration parameters and the corresponding short-hand

notations for evolution graph analyses that we use in the

remainder of this section.

4.1. Synthetic Log

Evaluating our approach with synthetic logs (which we

have generated ourselves) is needed to show that our ap-

proach can detect certain phenomena that we know exist

in the logs, which is essential to demonstrate the correct-

ness of our approach and the related implementation.

We have generated three synthetic logs7, each with a

distinctive trend in terms of resource working patterns and

process load:

• Log 1 - Cyclic: new cases arrive at a regular pace,

and resources working patterns also follow a regular

7These logs can be obtained from https://www.dropbox.com/s/

0d5trj1f5qqlyuj/artificialLogs.zip

16

trend dicated by the alternation between business-

hours and outside-hours cycle. This log is used to

represent a ‘normal’ process load and resource work-

ing patterns.

• Log 2 - Disturbance Load : new cases arrive at a reg-

ular pattern most of the time but with a sudden

distinctive increase in the arrival of new cases over

a short period of time, hence causing an increase in

the workload as well. This log also captures a dis-

turbance that occurred when half of the resources

were not available for a period of two weeks. This

log is used to capture a one-off phenomena, e.g. the

occurrence of a natural disaster that causes a sud-

den spike in the number of new insurance claims, or

the onset of a school holiday period that results in a

number of resources taking leave.

IfC'intervalCevolution'CanalysisCisCselected,CthenCusersCneedCto:
-CspecifyCtheC'windowClength'
-CspecifyCtheC'timeline'CstyleC(cyclicC-Cdaily,Cweekly,CetcCor
CCClinear)C
-CspecifyCtheC'count'CfunctionC(loadCvs.Cunique)CandC
CCC'graphCtype'CC(durationCvs.Cfrequency)

ChooseCifC'intervalCfilter'CisCtoCbeCappliedC
(forC`simpleCmetrics'CandC'evolutionCgraph'Canalyses)

ForC'evolutionCgraph'Canalysis,CusersCcanCchooseC
twoCorCmoreCintervalCtypesCtoCbeCdisplayedCinCtheCevolutionCgraph

SelectionCofC'groupCby'CvaluesCtoCconsider
asCseriesCinCtheCevolutionCgraph

Secondary Interval Types:

Figure 8: Option panel for evolution graph analysis configurations.

Y-axis
Duration8in8minutes

X-axis
Timeline

interval8types8888:8resource8interval8(red)8and8case8interval8(blue)
group8by888888888888:88null
count888888888888888888:8unique
graph8type88888888:8duration
window8length8:888hours
timeline8888888888888:8linear
isIntervalFiltered:8no
group8by8filter888:8none

Secondary Interval Types:

Interval Type

Resource Interval

Figure 9: A sample output of evolution graphs for two interval types: case interval and resource interval.

17

Ref. Expression of interval Group Count GraphWindowTimeline interval

Id Short Notation Type By Method Type size Prog. Filtered

EV1 ffreq(CG�⊥)L6hr (t) case null load freq. 6 hrs linear no

EV2 ffreq(RG�Res)
L
6hr (t) resource Res load freq. 6 hrs linear no

EV3 ffreq(CG�⊥)L8hr (t) case null load freq. 8 hrs linear no

EV4 ffreq(RG�Res)
L
8hr (t) resource Res load freq. 8 hrs linear no

EV5 χmean(fdur(CG�⊥)L1hr (t̂+ i ∗ 1w)) case null load dur. 1 hr weekly yes

χmean(fdur(RG�⊥)L1hr (t̂+ i ∗ 1w)) resource null load dur. 1 hr weekly yes

χmean(fdur(AG�⊥)L1hr (t̂+ i ∗ 1w)) activity null load dur. 1 hr weekly yes

EV6 ffreq(RG�⊥)L8hr (t) resource null load freq. 8 hrs linear yes

EV7 ffreq(RG�Res)
L
8hr (t) resource Res load freq. 8 hrs linear yes

EV8 χmean(ffreq(RG�Res)
L
1hr (t̂+ i ∗ 1d)) resource Res load freq. 1 hr daily yes

EV9 χmean(ffreq(RG�Res)
L
1hr (t̂+ i ∗ 1w)) resource Res load freq. 1 hr weekly yes

EV10 ffreq(CG�⊥)L8hr (t) case null load freq. 8 hrs linear yes

EV11 ffreq(CG�Res)
L
8hr (t) case Res load freq. 8 hrs linear yes

EV12 fdur(RG�⊥)U12hr (t) resource null unique dur. 12 hrs linear yes

EV13 fdur(RG�Res)
U
1hr (t) resource Res unique dur. 1 hr linear yes

EV14 χmean(fdur(RG�Res)
U
1hr (t̂+ i ∗ 1w)) resource Res unique dur. 1 hr weekly yes

EV15 fdur(CIG�⊥)U8hr (t) case waiting null unique dur. 8 hrs linear yes

fdur(RIG�⊥)U8hr (t) resource waiting null unique dur. 8 hrs linear yes

EV16 χmean(fdur(CIG�⊥)U3hr (t̂+ i ∗ 1w)) case waiting null unique dur. 3 hrs weekly yes

χmean(fdur(RIG�⊥)U3hr (t̂+ i ∗ 1w)) resource waiting null unique dur. 3 hrs weekly yes

Table 2: Configuration Parameters for Evolution Graph Analysis

• Log 3 - Gradually-incrementing Load : new cases ar-

rive at an increasing rate, causing a gradual increase

in the workload of resources as well. This log is used

to represent, e.g. a gradual take-up of a new insur-

ance product line.

All synthetic logs simulate cases that started within a

6-month period (that is, the starting date for all cases in

the log fall within a particular six-month period; however,

the total duration of the log is longer than six months as

some cases may take a few weeks to complete). There are

6 resources in the log and each of them can execute any

activity. Each new work item is allocated to the earliest-

available resource, estimated from workload distribution

of all resources at the time the work item is scheduled.

We have evaluated our approach using the three logs

described above. Our tool managed to detect the trends

that we have built into the logs. Furthermore, insights

related to resources’ workload and utilization can also be

extracted. In this section, we only show results from Log 2

(disturbance load) and Log 3 (gradually-incrementing load).

We do not show results from our evaluation with the cyclic

log simply because the real-life log that we used for the

second evaluation round (detailed in Section 4.2) already

contains such behaviour.

4.1.1. Disturbance Load

Log 2 has two disturbance features built-in: (1) a sud-

den spike in the number of new cases in the first-half period

of the log, and (2) the unavailability of half of the resources

18

in the second-half period of the log. Using our event in-

terval analysis approach, we expect these two phenomena

to be detected through the use of evolution graphs.

To capture process load, we can use ffreq(CG�⊥)Ld (t)

as the base analysis type (as per Definition 14). Recall

that a case interval is defined by the time period between

the time when an event for a particular case was recorded

to the immediate following event belonging to the same

case. Thus, by applying the above analysis, we can see,

for a given period of time, the total number of work items

in the process that will eventually become ‘active’ and

be completed. Furthermore, if we refine the analysis to

ffreq(CG�Res)Ld (t), then we essentially obtain the work-

load of each resource at any given point in time. Simi-

larly, to detect how ‘busy’ a resource has been, we can

use ffreq(RG�Res)Ld (t) as the base analysis type to obtain,

at any given point in time, the average number of inter-

vals (or, in this context, work items) performed by a given

resource.

Fig. 10 (top-left) shows an evolution graph generated

using configuration EV1 (see Table 2). The figure shows

that there is a sudden spike of new case intervals in the

first-half of the graph, thus demonstrating the ability of

our approach to make it easier for process analysts to dis-

cover the existence of such disturbance. Here, it is worth

emphasizing that such a trend is made evident by exploit-

ing the building block of our approach, i.e. event interval,

from which the load of a process, and how it changes over

time, can be estimated. We contend that the systematic

approach proposed in this article facilitates the extraction

of such knowledge which would have been easily ‘hidden’

in the data otherwise.

The top-right graph in Fig. 10 shows the result of a

similar evolution graph analysis using configuration EV2

with a focus on the resource ‘bob’ who, as we can see, is

not available for a particular period of time, thus we can

see that there is no resource interval at all for a period

of two weeks. Finally, Fig. 10 (bottom-right) shows the

same evolution graph analysis with EV2 configuration, but

with a focus on another resource ‘eliza’ who is available

throughout the whole period of the log. Interestingly, the

absence of some resources for that two week period has an

impact on those resources who are available: their resource

intervals increase during that time period. Furthermore,

for both resources ‘bob’ and ‘eliza’, they increase their

throughput as evidenced by an increase in the number of

case intervals during the spike period.

4.1.2. Gradual Increase of Load

Through the use of logs, we can demonstrate how our

approach and the related tool are able to detect a grad-

ual increase in the load of a process and of resources -

behaviours that are built into Log 3. Fig. 11 (left) shows

an evolution graph generated using configuration EV3 (see

Table 2). In that figure, which we can see a gradual in-

crease in the number of case intervals over the duration of

the log.

The behaviour of resources in Log 3 is such that they

attempt to increase the speed of their work as their work-

load increases. Such resource behaviour is captured in

Fig. 11 (right) whereby, through the use of an evolution

graph analysis based on configuration EV4 we can see a

gradual increase in the number of resource intervals. How-

ever, this figure also shows that the number of resource

intervals stabilizes towards the end of the graph - this can

be explained by the fact that a resource can only speed

up their work to the minimum amount of time required

to complete any work items - this forms the limit on the

number of maximum resource intervals that a resource can

possibly have within a period of time. In other words, at

full capacity, there is a limit on the maximum number of

work items that a resource can complete within a given

time period.

4.1.3. Estimating the Working Time

It is a challenge to obtain an estimate of task working

times when we only have an event log with one event trans-

19

A:sudden:spike:in:the:number:of:
new:cases.:Resources:increased:
the:speed:of:their:work:accordingly

The:absence:of:some:
resources:forced:other:
resources:to:work:harder.

Configuration:EV1

interval:type::::::::case:interval

group:by::::::::::::::null

count::::::::::::::::::::load

graph:type:::::::::::frequency

window:length::::6:hours

timeline::::::::::::::::linear

isIntervalFiltered::no

group:by:filter::::::none

Configuration:EV2

interval:type:::::::resource:interval

group:by::::::::::::::resource

count::::::::::::::::::::load

graph:type:::::::::::frequency

window:length::::6:hours

timeline::::::::::::::::linear

isIntervalFiltered::no

group:by:filter::::::BBobB

Configuration:EV2

intervaltype::::::::resource:interval

group:by::::::::::::::resource

count::::::::::::::::::::load

graph:type:::::::::::frequency

window:length::::6:hours

timeline::::::::::::::::linear

isIntervalFiltered::no

group:by:filter::::::BElizaB

Figure 10: Evolution graphs to detect disturbances in both process load and resource workload.

Configuration4EV3

interval4types44444444:4case4interval

group4by4444444444444444:4null

count444444444444444444444:4load

graph4type4444444444444:4frequency

window4length4444444:484hours

timeline444444444444444444:4linear

isIntervalFiltered444:4no

group4by4filter44444444:4none

Configuration4EV4

interval4types4444444:4resource4interval

group4by4444444444444444:4resource

count444444444444444444444:4load

graph4type4444444444444:4frequency

window4length4444444:484hours

timeline444444444444444444:4linear

isIntervalFiltered444:4no

group4by4filter44444444:4'Eliza'

Figure 11: Evolution graphs to detect a gradual increase in process load and resource workload.

action type (e.g. complete). Existing approaches (such as

the Basic Performance Analysis [7]) attempt to do so by

calculating the duration between two events according to

our case interval definition. However, such an estimation

is most of the time too coarse, e.g. a work item related to a

case may be left untouched for an extended period due to

a variety of reasons (e.g. low importance or unavailability

of resources). By just using case intervals, the estimated

working time will also include the shelf-time of those work

items.

Our approach attempts to arrive at a better estimate

of working time through the introduction of the concept

of working interval. By combining both case and resource

perspective (as captured by the definition of working in-

terval), we can get a more accurate estimation of working

time even though we are still working with an information-

poor log. In particular, by reasoning about the earliest

time a work item is available and the earliest point in time

when a resource could possibly work on the work item,

we can increase the accuracy of our working time esti-

mate. This approach links back to our earlier discussion

(see Section 2.2) about the uniqueness of process analysis

and, by extension, the event interval approach proposed

in this article.

Fig. 12 shows an evolution graph derived from config-

uration EV5 which shows the weekly trend of the inter-

20

CasewInterval

WorkingwInterval

ActualwWorking
Time

ConfigurationwEV5

intervalwtypewwww:wcasewintervalw(green),

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwworkingwintervalw(blue),

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwactualwworkingwtimew(red)

groupwbywwwwwwwwwww:wnull

countwwwwwwwwwwwwwwww:wload

graphwtypewwwwwww:wduration

windowwlength:w1whour

timelinewwwwwwwwwwww:wweekly

isIntervalFIlteredw:wyes

groupwbywfilterww:wnone

wwwwwwwwwwwwwwwwwwwwwww

Figure 12: Comparison of case interval duration and working interval duration with actual working time duration.

val duration of case intervals and working intervals, and

compares them with the actual working time of the cor-

responding work items.8 As we can see, the distance be-

tween the working interval graph and the actual working

time graph is, on average, always lower than the distance

between the case interval graph and the actual working

time graph. This figure therefore demonstrates that we

can indeed obtain a more accurate picture of the working

time of variuos work items by exploiting the concept of

working interval.

Furthermore, Table 3 shows that the distance in the

interval duration is larger between the actual working du-

ration and the case interval duration than between the ac-

tual working duration and the working interval duration.

4.2. Logs from Industry

Given that we have demonstrated that our tool behaves

as expected, we can now evaluate the tool using a real-

life event log. To this end, we use a log from Suncorp,

8Because we used a synthetic log that also contained start times-

tamp for each work item, we could obtain the actual working times

of all work items seen in the log (calculated as the duration between

the start of a work item to its completion), and use this to evaluate

the quality of our estimates.

one of the largest insurance organizations in Australia. In

particular, given the relatively long time-span of the data

(there are events from as early as 2008 to as late as August

2012 in the log), we only use events from the months of

January 2012 to April 2012. Furthermore, we only use the

complete event transaction type in the evaluation.

4.2.1. Workload

We can apply the same analysis to gauge the work-

load of resources by using the concept of resource interval.

Fig. 13 (top) (generated using the configuration EV6 shows

typical resource behaviour over a number of weeks where

we can see that the workload of resources (as captured by

the total number of intervals within any 8-hour window)

reached their peaks about 5 times a week (i.e. one peak

per day). It is also interesting to note that we can clearly

see the impact of public holidays on resources’ productiv-

ity from the graph as well, e.g. during New Year’s Day,

Australia Day, and Easter holidays there were hardly any

activities detected.

Fig. 13 (bottom) shows another evolution graph de-

rived from configuration EV7 (for a particular resource RB

only). This graph shows the peculiarity of the resource’s

working pattern, e.g. we can see that RB had two periods

of leave, and that there were a number of weeks where this

21

Log Type Avg. Duration Std. Dev

Act. Work Time Case interval Work. interval Act. Work Time Case interval Work interval

Log 1 1036 8223 4662 9633 26571 20996

Log 2 1247 18946 4842 11329 47850 21325

Log 3 534 130559 4682 6930 197491 21224

Table 3: Average and standard deviation of actual working time duration vs. case interval and working interval durations.

ConfigurationxEVR

intervalxtypexxxxxxxxxx:xresourcexinterval

groupxbyxxxxxxxxxxxxxxxxx:xnull

countxxxxxxxxxxxxxxxxxxxxxxx:xload

graphxtypexxxxxxxxxxxxxx:xfrequency

windowxlengthxxxxxxx:x7xhours

timelinexxxxxxxxxxxxxxxxxxx:xlinear

isIntervalFilteredxxx:xyes

groupxbyxfilterxxxxxxxx:xnone

ExamplesxofxLnormalLxweeklyxpeaksx-SxworkingxdaysDweek2

LongxweekendxNx

EasterxAMJA

Wxpeaksxinxaxweekxduexto

publicxholidays:

NxNewxYearxDayxNxMonxAxJanxAMJA

NxAustraliaxDayxNxThursxARxJanxAMJA

WorkingxonxSaturday

-Rxweeklyxlocalxpeaks2

Resourcexonxleavex-?2

ResourcexonxleavexN

coincidingxwithxEaster

holidays

ConfigurationxEV?

intervalxtypexxxxxxxxxxx:xresourcexinterval

groupxbyxxxxxxxxxxxxxxxxx:xresource

countxxxxxxxxxxxxxxxxxxxxxxx:xload

graphxtypexxxxxxxxxxxxxx:xfrequency

windowxlengthxxxxxxx:x7xhours

timelinexxxxxxxxxxxxxxxxxxx:xlinear

isIntervalFilteredxxxxxxxxxx:xyes

groupxbyxfilterxxxxxxxx:xResourcexB

Figure 13: Workload estimation using resource intervals.

resource also worked on Saturday.

Despite the occasional variations in the way resources

worked, we can ‘average out’ the variations to obtain daily

and weekly patterns to extract long-term trends of re-

sources’ working patterns. For example, from the daily

evolution graph analysis shown in Fig. 14 (top) which is

derived from applying configuration EV8 it is quite evident

that Resource A (RA - identified with colour ‘blue’) had a

lot more resource intervals at any given period of time,

which means that this ‘blue’ resource completed many

22

ResourcemBResourcemA ResourcemC

ResourcemB

ResourcemA

ResourcemC

ConfigurationmEV8
intervalmtypemmmmmmm:mresourceminterval
groupmbymmmmmmmmmmmmm:mresource
countmmmmmmmmmmmmmmmmmm:mload
graphmtypemmmmmmmmmm:mfrequency
windowmlengthmmmm:m1mhour
timelinemmmmmmmmmmmmmmm:mdaily
isIntervalFiltered:myes
groupmbymfiltermmmmmm:mResourcemA,
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmResourcemB,
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmResourcemC

ConfigurationmEV9
intervalmtypemmmmmmm:mresourceminterval
groupmbymmmmmmmmmmmmm:mresource
countmmmmmmmmmmmmmmmmmm:mload
graphmtypemmmmmmmmmm:mfrequency
windowmlengthmmmm:m1mhour
timelinemmmmmmmmmmmmmmm:mweekly
isIntervalFilteredm:myes
groupmbymfiltermmmmmm:mResourcemA,
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmResourcemB,
mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmResourcemC

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Figure 14: Daily (top) and weekly (bottom) resource interval evolution graph analysis for Resource A (black), Resource B (red), and Resource

C (yellow).

work items. In contrast, Resource B (RB - identified with

colour ‘red’) had the fewest resource intervals at any given

period of time. Of course, a straightforward interpretation

would be to say that, assuming that all work items required

similar amount of efforts to complete, RA was considerably

more productive than RB . However, the lower number of

resource intervals for RB may also be explained by the

fact that RB worked on more difficult work items than

RA, hence, we see fewer work items being completed by

RB .

Additionally, we can see that RA, on average, started

work much earlier than any other resource (the first non-

zero interval was recorded between 6 am and 7 am daily).

In contrast, Resource C (RC) was the last one to start

his/her working day (the first non-zero interval was recorded

between 10 am and 11 am daily), although RC also finished

the latest among the three (between 6 pm and 7 pm).

However, if we look at the weekly pattern shown on

Fig. 14 (bottom) which is derived by applying configura-

tion EV9 we can obtain more detailed insights. While RA

23

April

April

ConfigurationFEV10

intervalFtypeFFFFFFFF:FcaseFinterval

groupFbyFFFFFFFFFFFFFFF:Fnull

countFFFFFFFFFFFFFFFFFFFF:Fload

graphFtypeFFFFFFFFFFF:Ffrequency

windowFlengthFFF:F8Fhours

timelineFFFFFFFFFFFFFFF:Flinear

isIntervalFiltered:Fyes

groupFbyFfilterFFFFF:Fnone

ConfigurationFEV11

intervalFtypeFFFFFFFF:FcaseFinterval

groupFbyFFFFFFFFFFFFFFF:Fresource

countFFFFFFFFFFFFFFFFFFFF:Fload

graphFtypeFFFFFFFFFFF:Ffrequency

windowFlengthFFF:F8Fhours

timelineFFFFFFFFFFFFFFF:Flinear

isIntervalFiltered:Fyes

groupFbyFfilterFFFFF:FResourceFA

Figure 15: The case interval evolution graph analysis for the process (top) and for Resource A (bottom).

still maintained a high number of resource intervals, RC

seemed to have more intervals than RA between Tuesday

to Thursday; however, the productivity of RC seemed to

dip on Friday. Furthermore, we can also see that both RA

and RB conducted work on Saturday, while this was not

the case for RC .

Fig. 15 depicts the workload of resources seen in the

Suncorp log. The top part of this figure shows the aggre-

gate workload of all resources (obtained by applying evolu-

tion graph analysis using configuration EV10 Fig. 15 (bot-

tom), derived from configuration EV11, shows the case in-

terval evolution for Resource A. The shape of both graphs

shows that on average, the overall workload of the system

remains more or less constant, except towards the month

of April whereby there is a noticeable dip in the workload

for both the overall process and for Resource A.

4.2.2. Resource Utilization

Similar to workload analysis, we can apply a number

of event interval analyses to gauge the utilization of re-

24

sources. For an overview, we can always start with a sim-

ple metric analysis, such as fmetric(RG�Res) (see Fig. 16)

to get a sense of the amount of time taken by resources to

complete a work item. This figure shows that the longest

median resource interval duration was roughly 205 minutes

and it was performed by a particular Resource X. Further-

more, one can roughly say that 30 minutes seems to be a

good median for resource interval duration in general.

Of course, to get a more detailed view, we can also

apply our evolution graph analysis. Fig. 17(a) shows an

evolution graph derived from configuration EV12 whereby

we can see that on average, resources did not take too long

to complete a work item (as captured by the relatively

low resource interval duration for all resources - about 15

minutes).

We can also focus closer on a number of resources to

compare their speed in completing work items. Fig. 18(a)

shows the evolution graph (derived from configuration EV13)

for two resources: Resource A and Resource D. As can be

seen, on average, Resource D took longer to complete work

items.

To check if it is true that Resource D took longer to

complete work items, we can of course use a similar evo-

lution graph analysis, however this time, by using weekly

graph configuration (as derived by applying configuration

EV14 as shown in Fig. 17(b). In this figure, the average

peak interval duration for Resource A was around 10 min-

utes (with the exception of, interestingly, Friday whereby

the average duration was higher on average). Neverthe-

less, when we compare Resource A and Resource D, we can

see that on most days, notably Mondays, Tuesdays, and

Wednesdays, Resource A performed quicker than Resource

D. The exceptions to this observation are for Wednesdays

and Fridays.

There is a very simple explantion to the phenomenon

just observed. Fig. 18(b) shows a zoomed-in picture of

Fig. 18(a) (the section bounded in a red-rectangle). From

this figure, if we look closely, we can see that Resource D

actually worked part-time and he/she often took Wednes-

day as a non-working day (we can conclude this due to

the fact that there was no resource interval at all for many

Wednesdays for Resource D), thus, lowering the average

resource interval duration for Wednesdays for Resource D.

The phenomenon seen on Fridays requires further investi-

gation and consultation with domain experts to be able to

explain it properly.

Another aspect of utilization is the duration and fre-

quency of ‘waiting times’ that both resources and cases

need to endure (higher waiting times often signal sub-

optimal scheduling and/or deployment of resources). We

can use both resource waiting interval (RIG) and case

waiting interval (CIG) to gauge resources and cases wait-

ing times respectively. Fig. 19 (top) shows an evolution

graph derived by applying configuration EV15. This fig-

ure shows that, most of the time, the case waiting times

(as deduced from case waiting interval) were longer than

resource waiting times (from resource waiting interval).

Such a difference becomes evident when we look at the

weekly pattern of the case- and resource- waiting times as

shown in Fig. 19 (bottom) which was derived from con-

figuration EV16. One possible interpretation of this phe-

nomenon is that the system was under-resourced, hence,

more often than not, cases needed to wait for resources to

be available.

4.2.3. Explaining the Interval Duration

Decision tree analysis is useful when we want to extract

factors that may influence the length of the duration of

intervals. For example, we may want to find out if the

combination of certain activity types and resources may

influence the working time of work items (i.e. the duration

of working intervals).

Using the same log as the one used in Section 4.2.1

and Section 4.2.2, we applied our decision tree analysis

(using activity types and resources as the predictor vari-

ables) to understand the impact of the predictor variables

25

Median
(blue)

Average
(red)

Standard Deviation
 (green)

R
es. X

R
es. Y

30 minutes

Figure 16: Simple metrics analysis fmetric(RG�Res).

on the length of the working interval durations.The work-

ing intervals used in this analysis were grouped by all (i.e.

WG�⊥). The data types for both the predictor variables

were set to nominal. Furthermore, we also used the tool

to automatically label the intervals in the data into two

classes (‘long’ and ‘short’) based on the distribution of the

durations (that is, those intervals with durations shorter

than the median interval duration are labelled as ‘short’,

and vice versa). An example of the labelled data produced

by the tool is provided in Table 4.

Using the labelled data, the tool performed a decision

tree analysis to check if the duration of working intervals

can be explained by activities and/or resources. The result

of the analysis is shown in Fig. 20. In this case, the deci-

sion tree managed to correctly classify about three quar-

ters of all the working interval durations seen in the log

with the Kappa statistics [3] of 0.5 (which is commonly in-

terpreted as having a ‘moderate’ agreement that the clas-

sification result is not the result of pure chance). With-

out domain knowledge, it is quite difficult to interpret if

this classification is ‘good’ or ‘bad’; however, the interest-

ing point from this analysis is that we can extract insight

about the correlation between duration of event interval

with other factors, including the activity type and the re-

sources who executed them. For example, we can see that

activities ‘Follow up requested information’ and ‘Contact

Assessor ’ were likely to have relatively ‘short’ interval du-

rations, while other activities, such as ‘Re-issue document ’

and ‘Follow-up stakeholders (decline)’, were likely to have

‘long’ interval durations. For other activities, such as Con-

sider closing claim, the working interval durations were de-

pendent on the resources who executed the activity. For

example, as shown in Fig. 21, when Resource K executed

the activity, the interval durations were likely to be ‘short’,

however, when Resource L or Resource M executed the ac-

tivity, the durations were likely to be ‘long’.

By applying a decision tree analysis on event interval

durations, we can thus gain preliminary insights into those

26

15hminutes

10hminutes

Fri

Wed

ConfigurationhEV12

intervalhtypehhhhhhh:hresourcehinterval

grouphbyhhhhhhhhhhhhhh:hnull

counthhhhhhhhhhhhhhhhhhh:hunique

graphhtypehhhhhhhhhh:hduration

windowhlengthhhh:h12hhours

timelinehhhhhhhhhhhhhhh:hlinear

isIntervalFiltered:hyes

grouphbyhfilterhhhh:hnone

ConfigurationhEV14

intervalhtypehhhhhhh:hresourcehinterval

grouphbyhhhhhhhhhhhhhh:hresource

counthhhhhhhhhhhhhhhhhhh:hunique

graphhtypehhhhhhhhhh:hduration

windowhlengthhhh:h1hhour

timelinehhhhhhhhhhhhhhh:hweekly

isIntervalFiltered:hyes

grouphbyhfilterhhhh:hResourcehAh)blueD

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhResourcehDh)redD

(a)

(b)

Figure 17: Resource interval duration for all resources (a), and weekly resource interval duration (b) for Resource A and Resource D.

Resource Activity Label

Resource J Note received Short

Resource P Follow up from repairer Long

Resource O Review and approve new payment Long

Resource C Follow up insured Short

.....

Table 4: An example of labelled data produced from the event interval analysis tool.

factors that influence the working or waiting times of var-

ious work items.

4.3. Summary

As demonstrated, the event interval analysis proposed

in this article can be used to answer a variety of performance-

related questions about resources as well as processes us-

ing event logs containing minimal information. Using syn-

thetic logs that were built with particular characteristics

in mind, we have shown that the implementation of the

event interval analysis is correct in that expected insights

about process-related performance could be extracted suc-

27

ConfigurationREV13
intervalRtypeRRRRRRR:RresourceRinterval
groupRbyRRRRRRRRRRRRRR:Rresource
countRRRRRRRRRRRRRRRRRRR:Runique
graphRtypeRRRRRRRRRR:Rduration
windowRlengthRRR:R1Rhour
timelineRRRRRRRRRRRRRRR:Rlinear
isIntervalFiltered:Ryes
groupRbyRfilterRRRR:RResourceRAR(blue)
RRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRRResourceRDR(red)

(a)

ResourceRDRdidRnotRhave

anyRactivitiesRonRoneRorRmore

daysRinRaRweekR(oftenRWed

butRnotRalways)

(b)

Figure 18: Resource interval duration for Resource A and Resource D (a), and the corresponding zoomed-in region (b).

cessfully. More importantly, by applying our event inter-

val analysis on a real-world information-poor event log, we

have shown that our tool is able to extract interesting in-

sights into the performance of an insurance organisation’s

processes and their resources. In other words, we have

shown that the proposed event interval analysis is fit for

the purpose of answering typical questions related to pro-

cess performance.

In particular, we have shown how the concept of work-

ing interval, which takes into account both the case and

resource perspectives, can be used to arrive at a more pre-

cise estimation of working time. Through the use of evo-

lution graph analysis, we can compare the throughput of

different resources over the same period of time, as well

as compare trends related to the way in which resources

carry out their tasks. Through the use of resource- and

case-waiting intervals, we can discover idle periods in both

resources and processes. Finally, we have shown that our

analysis approach allows one to learn correlation between

the duration of event intervals and other attributes that

exist in event logs.

28

Resource5Waiting5Interval
8Red6

Case5Waiting5Interval
8Blue6

305minutes

Resource5Waiting5Interval
8Red6

Case5Waiting5Interval
8Blue6245minutes

25minutes

Configuration5EV15
interval5type5555555555555:5case5waiting5interval58blue6
55555555555555555555555555555555555555resource5waiting5interval58red6
group5by55555555555555555555:5null
count5555555555555555555555555:5unique
graph5type55555555555555555:5duration
window5length55555555555:585hours
timeline555555555555555555555:5linear
isIntervalReset5555555555:5yes
group5by5filter555555555555:5none

Configuration5EV16
interval5type55555555555555:5case5waiting5interval58blue6
555555555555555555555555555555555555555resource5waiting5interval58red6
group5by55555555555555555555:5null
count5555555555555555555555555:5unique
graph5type55555555555555555:5duration
window5length5555555555:535hours
timeline555555555555555555555:5weekly
isIntervalFiltered555555:5yes
group5by5filter555555555555:5none

Figure 19: Case and resource waiting times using case waiting intervals (CIG) and resource waiting intervals (RIG).

5. Related Work

In the domain of process mining, there have been a

number of research approaches that look at extracting per-

formance information from event logs. One of the earliest

pieces of work in this space includes the performance anal-

ysis with Petri nets apprach by van der Aalst and van Don-

gen [20], later extended by Hornix [7]. This work looks at

how one can replay an event log on a process model (ex-

pressed as a Petri net) to extract performance information,

such as sojourn time, waiting time, and working time of

the work items related to the process. Essentially, the un-

derlying technique applied by this approach is similar to

the concept of case interval defined in this paper. Fur-

thermore, this approach uses process models to compute

performance information; however, it is often impossible to

discover good process models due to infrequent behaviours

and/or incomplete log. Our event interval analysis ap-

proach attempts to overcome this issue by not relying on

the existence of a process model in order to extract more

refined performance information.

29

Results2for2Interval2Pnalysis_HJwL:L_none
SSSSSSSSSSSSSS

Correctly2Classified2Instances2222222hhhhH222222222222222JhN<LhH2M
Incorrectly2Classified2Instances22222|-<-<222222222222222|LN/hLH2M
Kappa2statistic22222222222222222222222222<NH|<J
Mean2absolute2error2222222222222222222222<NL||2
Root2mean2squared2error222222222222222222<Nw<w|
Relative2absolute2error22222222222222222hwNw-/w2M
Root2relative2squared2error2222222222222:<N:w|H2M
Coverage2of2cases2q<N/H2levelg2222222222//NH:h22M
Mean2relN2region2size2q<N/H2levelg222222/hNJhJh2M
Total2Number2of2Instances222222222222:JhJH22222
SSS2Confusion2Matrix2SSS

22222a22222b222XTT2classified2as
2LLJw<2-<:Lh2|22222a2S2Low
2-<-Jw2L|/|H2|22222b2S2High
Jw:2pruned2tree
TTTTTTTTTTTTTTTTTT

activity2S2CI2T2Contact2assessorF2Low2q--N<xHN<g
activity2S2CI2T2Follow2up2stakeholders2qdeclinegF2High2qwN<x-N<g
activity2S2XS2OutstandingF2Low2qL-JN<x//N<g
activity2S2Review2PssignmentF2High2qLN<x-N<g
activity2S2CI2T2Pppoint2assessorF2Low2qwN<x|N<g
activity2S2CI2T2Follow2up2requested2informationF2Low2qJ-hN<x-L<N<g
activity2S2Pssessment2Report2ReceivedF2High2qHN<x-N<g
activity2S2CI2T2ReTissue2documentF2High2q--N<g
NNN
NNN
activity2S2Confirm2interested2party2intentions2on2major2lossF2High2q-N<g
activity2S2SUP2CO2UpdateF2Low2qwN<x|N<g
activity2S2CI2T2Contact2third2party2x2insurerF2Low2q-N<g
activity2S2Consider2closing2claim
|222resource2S2Resource2KF2Low2q|N<x-N<g
|222resource2S2Resoure2LF2High2q<N<g
|222resource2S2Resource2MF2High2q<N<g
|222NNN
|222NNN
|222resource2S2Resource2ZF2High2q<N<g
SSS

222a22222222b2222XTT2classified2as
2LLJw<2-<:Lh2|22222a2S2Low
2-<-Jw2L|/|H2|22222b2S2High

a2S2short2duration2qbottom2H<Mg
b2S2long2duration2qtop2H<Mg

JhM2correctly2classified
|wM2incorrectly2classified

Contact2assessor

Follow2up2stakeholders2qdeclineg

Follow2up2requested2information

ReTissue2document

Figure 20: Decision tree analysis result detailing the correlation between working interval duration and activity types/resources.

activity

Low High High

resource

Contact

Assessor

Follo
w-up-

sta
ke

holders

(declin
e)

F
ollow

-up

requested-

inform
ation

R
e-

is
su

e-
do

cu
m

en
tLow

Consider-closing

claim

Low High High

R
es

ou
rc

e-
K

R
esource-L

R
esource-M

Figure 21: Graphical representation of the decision tree

Moreover, the performance analysis with Petri nets ap-

proach does not exploit the concept of resource interval.

One can argue that the concept of resource interval can al-

ways be supported by the performance analysis with Petri

nets approach by ‘re-tagging’ the resource identifier at-

tribute in an event log as the case identifier. While this

may be the case, the performance analysis with Petri nets

approach still does not support the consideration of both

the case and the resource perspectives simultaneously in

the manner proposed in this article. As a result, estima-

tion of waiting times can only be performed if the log con-

tains at least two event transaction types (either ‘sched-

30

ule’/‘start’ or ‘start’/‘complete’).9

Other approaches to performance analysis within the

domain of process mining exploit the ‘fuzzy mining’ con-

cept [23, 1, 5, 6, 16]. These fuzzy-based approaches tend

to be rather intuitive as they use graphical cues to convey

performance information (e.g. the use of thicker edges to

represent highly-traversed paths and the use of colours to

reprsent high/low/medium throughput times). Further-

more, the projection of performance information onto pro-

cess models improves the intuitiveness and understandabil-

ity of the performance information extracted. However,

these fuzzy-based approaches only consider case intervals,

and the interplay between proces and resource perspectives

is not supported.

Popova and Sharpanskykh [13] propose the use of Tem-

poral Trace Language to extract various process-related

properties (including conformance and performance met-

rics) from event logs. Upon a closer look at the approach,

we can also see that this approach extracts performance

information strictly from the case perspective only.

Adriansyah [18, 2] proposes a robust performance anal-

ysis approach by removing ‘deviant’ events that cannot

be paired to form a proper ‘interval’ for the purpose of

counting interval duration. This is achieved by ‘aligning’

a known process model with the events seen in the cor-

responding log. Such an approach provides rather reli-

able performance information, assuming the existence of

the corresponding process model. Nevertheless, similar to

other approaches discussed before, the use of alignment for

performance analysis only considers performance from the

case perspective and not in combination with the resource

perspective.

9The authors argued that their approach can estimate the upper

bound value for waiting times, sojourn times, and execution times

even when the log only contains one event transaction type, namely

‘start’ [7]. Nevertheless, as stated in the documentation of this plug-

in in the ProM 5.1 tool, the calculation of waiting times, sojourn

times, and execution times will overlap, thus we do not consider

such an approach to allow proper waiting time estimations.

The work by Nakatumba [12, 11] is the closest to the

event interval analysis framework proposed in this article.

This work extracts performance information from both the

case and resource perspectives. Concepts equivalent to the

various types of intervals defined in this paper (e.g. case

interval, resource interval, and working interval) are de-

fined and manipulated to obtain deeper insights into not

only process performance, but also performance-related

behaviour (such as resources availability analysis). While

the base concepts applied in this work are similar to our

event interval analysis framework, our work diverges in

terms of how the concept of intervals can be used. In the

work of Nakatumba, the concept of event intervals is ap-

plied to extract resource availability, as well as to repair

logs that miss certain event transaction timestamps. In

our work, however, we generalized the concept of event

intervals, and built a flexible framework that allows the

manipulation of event intervals (through various group by

mechanisms and analysis types) such that wider ranges of

insights can be extracted. Moreoever, we are not aware

of any process mining techniques that extract daily and

weekly patterns of process behaviours.

Finally, questions often arise regarding the difference

between our approach and other forms of data analyt-

ics, including data mining and spreadsheet analysis. We

highlight here that the key distinguishing feature of our

approach boils down to the very nature of the event log

data and the type of problems that we address which re-

quire the application of process perspective to solve. In

Section 2.1, we have elaborated the distinguishing feature

of an event log whereby there exists temporal constraints

between events in the log allowing the notion of a process

to be captured and analysed. Here, we would also like to

argue the type of questions that our approach attempts

to address are process-related whereby different perspec-

tives (such as case and resource perspectives) need to be

considered. For example, to address questions such as the

changes in resources’ workload over time, or the seasonal

31

pattern of process loads, one needs to engage in a rather

elaborate data analysis to provide an accurate answer.

Most importantly, such analysis is not readily support,

nor is it typically performed, by traditional data mining

or spreadsheet analysis.

6. Conclusions and Future Work

In this article, we have proposed, formalised, imple-

mented, and evaluated a new framework for extracting

performance information from information-poor event logs.

In particular, we have shown how we can uncover various

types of event intervals from such a log and apply them in

various ways to extract useful insights about performance-

related behaviours from the perspectives of both process

and resources involved. As detailed in Section 2.1, we

have highlighted the temporal constraints that one needs

to tackle in addressing process-related problems. Exist-

ing data analytics (including data mining and spreadsheet

analysis) cannot extract the required insights from event

data.

The application of our framework to a real-life event

log (from Suncorp) has demonstrated that our framework

can indeed extract interesting and useful insights that have

thus far previously difficult to extract. Our analysis shows

that extracting cyclical process behaviours (e.g. daily or

weekly) provides us with interesting and valuable insights

about seasonal behaviours of resources as well as process

loads; yet this is rarely investigated because the majority

of current process mining techniques tend to focus on the

control-flow perspective. More importantly, the insights

obtained from the use of our event interval analysis are

invaluable for the purpose of making well-informed deci-

sions. For example, by understanding the weekly varia-

tions in employees’ workload (obtained through the evo-

lution graph analysis), one can better manage employee’s

working hours, especially those part-time workers. Fur-

thermore, through decision tree analysis, one may gain

insights into the factors influencing the existence of large

chunks of idle periods for resources, thus, allowing one to

implement well-targeted remedial actions.

A key limitation of our framework is the assumption

that, within a case, all work items occurred sequentially.

This assumption has the unwanted effect of including inter-

vals with pairs of events that actually occurred in parallel.

For example, assume that the completion of an event ea in

a case ca triggers a parallel execution of two events eb and

ec within the same case. As recorded in the log, we see

the following ordering of events: ea < eb < ec. Possible

case intervals that can be extracted from such a sequence

of events include (ea, eb) and (eb, ec). As a result, the in-

terpretation of the time period between those intervals as

the maximum sojourn times for the corresponding work

items is misleading. Obviously, the ‘correct’ case intervals

in this scenario are (ea, eb) and (ea, ec).

We argue that the above limitation is surmountable by

refining our definition of a interval with an additional re-

striction: any two events e0 and e1 (e0 < e1) can only form

a interval if e0 and e1 have a direct causal relationship.

Such relationships can be derived through the analysis of

input and output data as conducted by Lu [10]. We can

also discover direct causal relationships by applying well-

established algorithms in the field of process mining, such

as the alpha algorithm [20].

Finally, our tool currently relies on human users to

identify interesting patterns in the analysis results (which

are often displayed as graphs). As part of the future work,

we plan to extend the tool to be able to automatically

highlight regions in the graphs that may capture inter-

esting process performance-related phenomenon (e.g. a

change in a user’s throughput).

Acknowledgement.. This work was supported by the

Australian Research Council Discovery Project entitled

Risk-aware Business Process Management (DP110100091).

[1] Arya Adriansyah. Performance analysis of business processes

from event logs and given process models. Master’s thesis, Eind-

hoven University of Technology, 2009.

32

[2] Arya Adriansyah. Aligning Observed and Model Behavior. PhD

thesis, Eindhoven University of Technology, 2014.

[3] Jean Carletta. Assessing agreement on classification tasks: The

kappa statistic. Comput. Linguist., 22(2):249–254, June 1996.

[4] Technische Universiteit Eindhoven. XES Standard Definition,

1.4 edition, October 2012.

[5] Christian W. Günther. Process Mining in Flexible Environ-

ments. PhD thesis, Eindhoven University of Technology, 2008.

[6] Christian W. Günther and Wil M.P. van der Aalst. Fuzzy

mining- adaptive process simplification based on multi-

perspective metrics. In Gustavo Alonso, Peter Dadam, and

Michael Rosemann, editors, Business Process Management, vol-

ume 4714 of LNCS, pages 328–343. Springer, 2007.

[7] Peter T.G Hornix. Performance analysis of business processes

through process mining. Master’s thesis, Technische Universiteit

Eindhoven, 2007.

[8] Teresa Jones. Identify abpd’s business benefits and understand

vendor strengths. Gartner, (G00247367), May 2013.

[9] Ruth Liew. Suncorp banks on data mining to slash claims.

Australian Financial Review, 2013.

[10] Xixi Lu. Artifact-centric log extraction and process dis-

covery. Master’s thesis, Eindhoven University of Technol-

ogy, 2013. http://www.processmining.org/_media/blogs/

pub2013/finalthesis_-_lu.pdf.

[11] Joyce Nakatumba. Resource-aware business process manage-

ment: analysis and support. PhD thesis, Eindhoven University

of Technology, 2013.

[12] Joyce Nakatumba and Wil M. P. van der Aalst. Analyzing

resource behavior using process mining. In Stefanie Rinderle-

Ma et al., editor, Business Process Management Workshops,

volume 43 of LNBIP, pages 69–80. Springer, 2009.

[13] Viara Popova and Alexei Sharpanskykh. Formal analysis of

executions of organizational scenarios based on process-oriented

specifications. Applied Intelligence, 34(2):226–244, 2011.

[14] QPR Software. From opportunity to delivery, end-to-

end process transparency for ruukki. 2013. http:

//www.win.tue.nl/ieeetfpm/lib/exe/fetch.php?media=:

casestudies:processmining_casestudy_ruukki_qpr.pdf. Last

accessed 26 March 2014.

[15] John R. Quinlan. C4.5: programs for machine learning. Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA, 1993.

[16] Anne Rozinat. Disco User’s Guide. Fluxicon, 2012. https://

fluxicon.com/disco/files/Disco-User-Guide.pdf. Last ac-

cessed 28 March 2014.

[17] Suriadi Suriadi, Moe T. Wynn, Chun Ouyang, Arthur H. M.

ter Hofstede, and Nienke J. van Dijk. Understanding process

behaviours in a large insurance company in australia: A case

study. In Camille Salinesi, Moira C. Norrie, and Oscar Pas-

tor, editors, Advanced Information Systems Engineering, vol-

ume 7908 of LNCS, pages 449–464. Springer, 2013.

[18] Wil M. P. van der Aalst, Arya Adriansyah, and Boudewijn F.

van Dongen. Replaying history on process models for con-

formance checking and performance analysis. Wiley Interdis-

ciplinary Reviews: Data Mining and Knowledge Discovery,

2(2):182–192, 2012.

[19] Wil M. P. van der Aalst et al. Process mining manifesto. In

Florian Daniel, Kamel Barkaoui, and Schahram Dustdar, edi-

tors, Business Process Management Workshops, volume 99 of

LNBIP, pages 169–194. Springer, 2011.

[20] Wil M. P. van der Aalst and Boudewijn F. van Dongen. Discov-

ering workflow performance models from timed logs. In Yanbo

Han, Stefan Tai, and Dietmar Wikarski, editors, Engineering

and Deployment of Cooperative Information Systems, volume

2480 of LNCS, pages 45–63. Springer, 2002.

[21] Wil M.P. van der Aalst. Process Mining - Discovery, Con-

formance and Enhancement of Business Processes. Springer,

2011.

[22] Boudewijn van Dongen. MXML - a meta model

for process mining data. Presentation at Enterprise

Modelling and Ontologies for Interoperability Workshop

2005, June 2005. http://www.processmining.org/_media/

presentations/miningmetamodelimoa2005.ppt - Last accessed

27 Feb 2014.

[23] Boudewijn F. van Dongen and Arya Adriansyah. Process min-

ing: Fuzzy clustering and performance visualization. In Busi-

ness Process Management Workshops, volume 43 of LNBIP,

pages 158–169. Springer, 2009.

[24] Boudewijn F. van Dongen, Ana K.A. De Medeiros, H.M.W.

Verbeek, A.J.M.M Weijters, and Wil M. P. van der Aalst. The

ProM framework: A new era in process mining tool support.

In Gianfranco Ciardo and Philippe Darondeau, editors, Appli-

cations and Theory of Petri Nets, volume 3536 of LNCS, pages

444–454. Springer, 2005.

[25] Bram Vanschoenwinkel. Case study - process min-

ing: Package delivery. 2012. http://www.win.tue.

nl/ieeetfpm/lib/exe/fetch.php?media=:casestudies:

ae_case_process_mining.pdf. Last accessed 26 March 2014.

[26] H.M.W. Verbeek, J.C.A.M. Buijs, B.F. van Dongen, and

W.M.P. van der Aalst. XES, XESame, and ProM 6. In Infor-

mation Systems Evolution, volume 72 of LNBIP, pages 60–75.

Springer, 2011.

33

