
Decision Mining Revisited - Discovering
Overlapping Rules

Felix Mannhardt1,2(B), Massimiliano de Leoni1, Hajo A. Reijers1,3,
and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{f.mannhardt,m.d.leoni,h.a.reijers,w.m.p.v.d.aalst}@tue.nl

2 Lexmark Enterprise Software, Naarden, The Netherlands
3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Abstract. Decision mining enriches process models with rules underlying deci-
sions in processes using historical process execution data. Choices between mul-
tiple activities are specified through rules defined over process data. Existing
decision mining methods focus on discovering mutually-exclusive rules, which
only allow one out of multiple activities to be performed. These methods assume
that decision making is fully deterministic, and all factors influencing decisions
are recorded. In case the underlying decision rules are overlapping due to non-
determinism or incomplete information, the rules returned by existing methods
do not fit the recorded data well. This paper proposes a new technique to discover
overlapping decision rules, which fit the recorded data better at the expense of
precision, using decision tree learning techniques. An evaluation of the method on
two real-life data sets confirms this trade off. Moreover, it shows that the method
returns rules with better fitness and precision in under certain conditions.
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1 Introduction

Organizations use process models representing their business processes for multiple
reasons. Process models are used, for example, to document, specify, and analyze
processes [1]. Generally, process models depict activities (i.e., units of work) and their
dependencies in a graph representation, which specifies the order of activities in the
process execution. During the execution of non-trivial processes, next to the order-
ing of activities, decisions between multiple alternative activities needs to be made.
Those choices are explicitly modeled in process models as so-called decision points.
A decision point specifies the alternatives available. An important challenge when using
process models is to understand the decision that need to be made in a process, and
the conditions under which certain alternative activities are performed. Awareness that
modeling and analyzing decisions is key in process management is increasing. See for
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Fig. 1. Fragment of a process model taken from a road traffic fine management process with
overlapping rules governing an exclusive choice based on the payment of the fine.

example the interest in the Decision Model and Notation (DMN) standard [2] supported
by vendors such as Signavio and Camunda.

Process mining methods are able to discover process models with decision points by
using event logs. Event logs contain information on performed activities (i.e., sequences
of events) and are available in today’s information systems [1]. Decision mining aims
to discover the rules that are underlying those decisions. Those rules are determined
using data recorded by information systems that support the process [3,4]. Events in
event logs used for decision mining need to contain process data, which was available
when the activity was performed (i.e., attributes). Take, for instance, the process model
fragment depicted in Fig. 1, which shows a simplified fragment of a road-traffic fine
management process [5]. After creating a fine notice (Create Fine) and recording
the amount (amount), an exclusive choice between three alternatives has to be made.
Either a payment is received (Payment), possibly in multiple installments, the fine is
closed (Close Fine), or the police sends a fine notice (Send Fine) and the process
continues with further management of the fine. Please note, that only one out of these
three alternatives can be taken, which is different to an inclusive choice that allows
the execution of multiple alternatives. The rules depicted in Fig. 1 drive this choice.
Activity Close Fine can only be executed if the value of attribute status is paid.
Thus, the process can only finish directly if the fine has been paid in a timely manner.
Rules defined over the process data are an integral part of this process. Traditionally,
decision mining methods [3,4,6] use decision tree learning techniques such as C4.5 [7]
to determine rules governing the process execution based on event logs. For example,
attribute values recorded for status and amount are used as feature, while the choice
between Payment, Send Fine, Close Fine is used as target class. Then, mutually
exclusive rules for each activity are built using the obtained decision tree, thus, the
choice at the decision point is completely determined by the values of status and
amount.

Existing decision mining techniques for exclusive choices rely on the strong
assumption that the rules attached to the alternative activities of a exclusive choice need
to be mutually exclusive. However, business rules are often non-deterministic and this
“cannot be solved until the business rule is instantiated in a particular situation” [8].
This ambiguity can occur due to conflicting rules or missing contextual information [8].
For example, decisions taken by process workers may depend on contextual factors,
which are not encoded in the system and, thus, not available in event logs. Moreover,
even if those factors are encoded in the system event logs are often incomplete [9].
Without complete information in the event log the mutually exclusive rules underlying
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decision-making cannot be discovered. Hence, this assumption is typically not met in
reality. For example, the process model shown in Fig. 1, which is taken from a real-
life process, contains overlapping rules for an exclusive choice. This means that on a
decision point more than one of multiple activities may be executed under the same con-
dition, i.e., when the same attribute values have been observed beforehand. In case the
payment status is unpaid, the choice between Payment and Send Fine is deferred,
i.e., an unpaid fine can be either paid directly or a notification is sent to the offender.
The actual decision between either of those activities is not specified. It might depend
on an unavailable contextual factor, e.g., some fines can be paid on-the-spot depending
on the context. Please note that an exclusive choice with overlapping rules is different
to an inclusive choice, which, for certain process executions, prescribes multiple alter-
natives activities to be executed. For example, in case of an inclusive choice, if status
is unpaid, both payment and send fine are prescribed to occur. State of the art tech-
niques [3,4,6] only use decision trees, and, hence, cannot discover overlapping rules on
exclusive choices. For instance, current techniques fail to discover the rule in Fig. 1.

This paper proposes a technique that discovers overlapping rules in those cases that
the underlying observations are characterized better by such rules. The technique is able
to deliberately trade the precision of mutually-exclusive rules, i.e., only one alternative
is possible, against fitness, i.e., the overlapping rules that are less often violated. In
short, as in [3,4,6], our technique builds an initial decision tree based on observations
from the event log. Then, for each decision tree leaf, the wrongly classified instances
are used to learn a new decision tree leading to new rules. These new rules are used in
disjunction with the initial rules yielding overlapping rules of the form rule1∨rule2. We
evaluate our technique on two real-life data sets: an event log taken from a road traffic
fine management process and an event log with pathways of patients in a hospital. The
evaluation shows that our technique discovers overlapping rules in real-life data, and
that those rules provide a better balance in terms of fitness and precision. For example,
our technique discovers overlapping rules similar to the ones depicted in Fig. 1, whereas
traditional method fail, e.g., to discover a rule for activity Payment.

As to the structure of this paper, we introduce necessary formalisms for process
models and event logs (Sect. 2). Then, we present our discovery technique for process
models with overlapping rules (Sect. 3). We evaluate our technique based on real-life
event logs (Sect. 4). We discuss related work (Sect. 5), and conclude with a summary
and sketched future work (Sect. 6).

2 Background

We present necessary preliminaries such as the formalism we use to represent process
models and event logs, and criteria used to determine the quality of decision rules.

2.1 Process Model

Generally, our decision mining technique is independent of the formalism used to model
the process, e.g., BPMN, UML-activity diagrams, EPCs or YAWL. We choose Data
Petri Nets (DPN) [4] as modeling language because it has simple and clear semantics.
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A DPN is a Petri net [10] that is extended with variables (i.e., data attributes). A Petri
net consists of a set of places, a set of transitions and the flow relations that describe
the bipartite graph between places and transitions. Transitions correspond to activities
in the process. The state of a Petri net is defined by its marking. The marking of a
Petri net assigns a number of tokens to each place. Executing a transition consumes one
token from each of its input places and produces one token on each of its output places.
We denote with output transitions of a place the set of transitions for which there is a
directed edge from the place to those transitions. A transition can only can be executed
(fired) when there is at least one token in every input place.

A DPN is a Petri net with additional components: a set of variables defined
over a universe of possible values; a set of write operations for each transition; a
guard expression (guard) for each transition. Transitions update the values of vari-
ables through write operations. Furthermore, guards defined over the variables of the
DPN further constrain when transitions may be executed. A transition in a DPN can be
executed only if all its input places contain at least one token and the guard is satisfied
by the current variable assignment. Unless specified otherwise we assume the guard
true for each transition, i.e., the transition can fire regardless of the current variable
assignment. The state of a DPN is defined by both the marking and the current values
of all its variables. The behavior of a DPN corresponds to all sequences of transition
firings starting from an initial state to any final state. The initial state is made of the
initial marking, i.e., the initial number of tokens in each place and an empty set of vari-
able values. Final states are all final markings. For sake of space we refer to [5] for a
comprehensive introduction to DPNs.

Example 1. Figure 1 shows a simplified process in the DPN notation. The process starts
with executing transition Create Fine, which writes attribute status. When execut-
ing transition Create Fine a token is removed from the place source and a new token
is put in place p1. Now, a choice between the output transitions of p1, Payment, Send
Fine, and Close Fine, has to be made. Therefore, place p1 is called decision point.
As there are guards placed on all three transitions their enablement depends on the
current assignment of attribute status. For example, both transitions Send Fine and
Payment can only be executed when status is unpaid. As the guards of Send Fine
and Payment overlap, the choice between both transitions is non-deterministic. Assum-
ing transition Create Fine assigned the value paid to status, i.e., the fine has been
paid directly, then, only transition Close Fine can be executed and the process ends
by reaching the final marking of the DPN.

2.2 Event Log

An event log stores information about the executed activities in a process [1]. Given a
set of transitions, variables, and variable values, we define an event log E as a collection
of unique events [1,11]. Each event e ∈ E is associated with a set values(e) containing
the latest values of all attributes recorded before the event occurred starting with an
initial value. Moreover, each event refers to the execution of a transition trans(e) and
the set of variables that are written by event e is obtained by writes(e). Table 1 shows
an event log for the process model introduced in Fig. 1. Each row represents a unique
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Table 1. Event Log E with data attributes status and amount

Id Case Activity Status Amount

e1 1 30
e2 1 -
e3 1 - -

e4 2 30
e5 2 - -

e6 3 30
e7 3 -
e8 3 - -

. . . . . . . . . . . .

recorded activity execution (i.e., event) together with the produced data (i.e., attributes).
Special attributes like an id, the case identifier case, and the activity name activity are
recorded for each event. The location of an event in the case, i.e., the order in which the
events occurred, is uniquely identified through the id attribute.

Example 2. For the example event log in Table 1 we can determine the transition cor-
responding to event e2 as trans(e2) = Payment. Moreover, we can obtain the value of
all attributes at the moment when e2 occurred as values(e2) = ((status = unpaid),
(amount= 30)). Finally, the variables written by e2 are writes(e2) = {status}.

2.3 Quality Criteria - Fitness and Precision

We use two criteria to determine the quality of the guards defined on the output transi-
tions of place p of a DPN given an event log E : place fitness and place precision. We
denote the set of events for transitions in the output transition of a place p with Ep, i.e.,
e ∈ E iff trans(e) is an output transition of p. We define the place fitness of a place
based on the number of events in Ep for which the guard is violated:

fitnessE ,p = 1−
∣
∣{e ∈ Ep | Guard of trans(e) is violated}∣∣

∣
∣Ep

∣
∣

The place fitness linearly decreases with an increase of the fraction of output transi-
tions that fire violating the respective guard. The place precision of a place p is defined
as is based on the possible behavior at p defined by the DPN, and actual behavior
observed in Ep. We use functions posp : E → N and obsp : E → N returning the pos-
sible and observed executions of output transitions of place p before event e occurred.
Work [12] describes how to obtain values for posp and obsp given an event log and a
DPN. Using posp and obsp, we define the place precision as:

precisionE ,p =
∑e∈Ep

∣
∣obsp(e)

∣
∣

∑e∈Ep

∣
∣posp(e)

∣
∣

Given a data set that allows for precise disjunctive guards, the place precision gets
lower when guards on the output transitions are more overlapping.
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3 Discovery of DPN with Overlapping Decision Rules

Given an event log containing information about process executions and a process
model, the problem of decision mining can be regarded as that of discovering a DPN
that characterizes the process: given a Petri net, we aim to discover the variables, write
operations and guards of a DPN. Without loss of generality, we assume that event log
E is defined over the same transitions, variables and universe of values as the DPN.

Furthermore, we make four assumptions on the input event log E . First, we assume
that ignoring the variables, all recorded process instances are compliant with regard
to the process represented by the Petri net. Second, for each event e ∈ E the executed
transition can be uniquely determined, i.e., there are no unobservable transitions and
each event can be uniquely mapped onto a single transition of the model. Third, we
assume that events write attributes consistently, i.e., if an event writes an attribute v
then all other events corresponding to the same transition also write attribute v. Fourth,
we assume an initial value for each attribute. We show later in Sect. 3.3 that any event
log can be transformed to an event log fulfilling these assumptions.

We discover the write operations of the DPN as follows. For each transition t of the
Petri net, variable v is written by transition t if there exists an event e ∈ E : trans(e) = t
that assigns a value to variable v (i.e., v ∈ writes(e)). We discover the guards for each
transition t as described the next Sect. 3.1.

3.1 Overall Discovery Procedure

For each decision point p (i.e., places with more than two output transitions) we con-
struct a set of observation instances related to p to be used to discover the guards. Given
a set X , we denote the set of all multi-sets over a set X with B(X). Moreover, we use
notation X = [a2,b] as short-hand notation to denote the multi-set X = [a,a,b]. Finally,
we use

⊎
to denote the sum of two multi-sets, i.e., X

⊎
[b,c] = [a2,b2,c].

Definition 1 (Observation Instances). Let V be a set of variables and let U be a uni-
verse of possible values. Let P be the set of places of a Petri net and let p ∈ P be a
decision point. We denote with p• = {t1, . . . , tm} the output transitions of p. Function
I ∈ P → B((V → U)×T ) returns the multi-set of observation instances for p:

I(p) =
⊎

e∈E ,trans(e)∈p•
[(values(e), trans(e))]

For each event e ∈ E that refers to an output transition of p, i.e., trans(e) ∈ p•, the
set of observation instances of p contains an instance (x, t) ∈ I(p), with x ∈ (V → U)
being the observed values of the attributes, and t the observed transition. The values of
x are obtained by taking the latest observed value for the attributes in preceding events.

Example 3. Given the process model introduced in Example 1 and the event log E
introduced in Example 2 the multiset of observation instances for place p1 is I(p1) =
[((status = unpaid,amount = 30),Payment)2,((status = unpaid,amount = 30),
Send Fine)2,((status= paid,amount= 30),Close Fine)].
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Algorithm 1. discoverGuards
Input: Petri net (Places P, Transitions T ), Compliant Event Log (E ), Minimum Instances (ν), Merge Ratio (ε)
Result: Guards of the DPN G)

1 foreach p ∈ P s.t. |p•| > 1 do ψp ← buildEstimator(p, I,ν · |I(p)| ,ε)
2 foreach t ∈ T do
3 G(t) ← true
4 foreach p ∈ •t do G(t) ← G(t)∧ψp(t)
5 end
6 return G

Algorithm 1 describes the overall discovery method for the entire Petri net. Using
the observation instances Ip, we build the guard function ψp for each decision point
p ∈ P through function buildEstimator. Having obtained the guard function, we
assign each transition the conjunction of all rules obtained from their input places [4].
Function buildEstimator is described in the next Sect. 3.2.

3.2 Discovering Overlapping Rules

Whereas the construction of the observation instances I(p) and the overall discovery
procedure share similarities with the previous work [4], our technique considerably
differs in how the actual rules are obtained through function buildEstimator. Our
contribution is a new algorithm that discovers guards that may be partially overlapping,
i.e., two or more transitions may be enabled for some state reachable in the DPN. We
now describe how to compute function buildEstimator, which discovers overlapping
guards for place p given the observation instances I(p) and two user-defined parame-
ters, the minimum number of instances n and the merge ratio ε . As our approach makes
use of decision trees, we introduce the concept of decision tree builder.

Definition 2 (C4.5 Decision Tree Builder). Let T be a set of transitions. Let O =
B((V → U)×T ) be a multi-set of observation instances over a set V of variables with
values U. Let n ∈ N be the minimum number of instances on a leaf for the splitting
criterion in the decision tree induction. Let F (V ) be the universe of formulas over
variable V . Function buildTreen(O) ∈ 2F (V )×T returns the leaves of a C4.5 decision
tree built using the supplied set of instances. A leaf (expr, t)∈ buildTreen(O) predicts
transition t ∈ T under condition expr ∈ F (V ).

The rule for a leaf of the decision tree is obtained by taking the conjunction of all
conditions represented by those nodes that are encountered on a path from the leaf
up to the root node [4]. As in [4], a base decision tree baseTree = buildTreen(I(p))
is first built. We obtain the initial guard of transition t by taking the disjunction of all
rules predicting t:

ψ(t) ←
{∨

(expr,t)∈baseTree(expr) if ∃ expr′ s.t. (expr′, t) ∈ baseTree
false otherwise

For each leaf l = (expr, t) of the base decision tree, we extract those instances Īl

that have been wrongly classified by the base classifier: Īl contains all those instances
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(x, t ′) ∈ I(p) such that the predicted transition t ′ is different from the transition t in
leaf l, i.e., t ′ 	= t. Next, we build an new decision tree subTree based on Īl for each
leaf, i.e., subTree = buildTreen′(Īl). Since the size of Īl can be significantly smaller
than that of I, we scale down the parameter n to n′ = n · |Īl |/ |I|. The idea is that the
second decision tree subTreel can further discriminate between the observed transitions
among the wrongly classified instances, thus, possibly introducing partial overlap with
the existing rule. There are two possible cases:

1. a decision tree with more than one leaf is found: |subTreel | > 1;
2. a single-node decision tree with a single leaf (true, t ′): subTreel = (true, t ′)

In the first case, we build rules for each leaf l′ = (subExpr, t ′) ∈ subTreel by taking
the conjunction of the rule expr from leaf l of tree baseTree and the newly discovered
rule subExpr. We obtain the new guard of transitions t ′ by adding newly discovered
rules in disjunction to the existing ones:

ψ(t ′) ← ψ(t ′)∨
∨

(subExpr,t ′)∈subTreel

(expr ∧ subExpr).

In the second case the decision tree represents a majority vote, i.e., the transition
that was most often observed within the wrong instances is predicted. In this case we
add rule expr to the existing guard ψ(t ′), i.e., ψ(t ′) ← ψ(t ′)∨ (expr), but only if two
conditions are met that avoid overfitting the data. First, |Īl |> n, and, second, the fraction
of observation instance in Īl referring to t ′ is larger than the user-specified merge ratio
ε . Finally, we assume that all transitions for which no rule could be found are always
enabled. For a formal discussion of our algorithm refer to the technical report [13].

Fig. 2. Two decision trees that are discovered on the example data set. The number of instances
is written in the root node (rectangle). The number of wrongly and correctly predicted instances
is written next to leaf nodes (circle)

Example 4. Given the multi-set of observations for place p1 obtained from the events
given in Table 1, we build the guard estimation functions for each output transition of
p1. First an initial decision tree is built. Assume that this initial decision tree consists of
two leafs l1 = (status= paid,Close Fine) and l2 = (status= unpaid,Send Fine)
as shown in Fig. 2. Ten of the 30 instances classified as Close Fine are wrongly clas-
sified. In all those instances transition Payment was observed. Those wrongly classi-
fied instances give evidence that also transition Payment is performed when status
is unpaid. As depicted on the right-hand side of Fig. 2 an additional decision tree is
built for those 10 instances. As the set of wrong observation instances Īl2 only contains
instances for transition Payment, the additional decision tree only consists of one leaf
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that always predicts transition Payment by majority vote. If the user-defined thresh-
old n is below the number of wrongly classified instances

∣
∣Īl2

∣
∣= 10, then, the condition

status = unpaid will be added to the guard function of Payment. The same rule as
shown in Fig. 1 is then discovered. Please note that this example is deliberately simpli-
fied. In a real-life setting event logs contain more than two attribute and, therefore, the
additional decision would consist of multiple leafs.

3.3 Dealing with Real-Life Event Logs

In Sect. 3 we have made several assumptions to explain the key idea: the event log fits
the Petri net perfectly, the set of attributes written by an event is consistent throughout
the log, and every attribute value is initialized in the event corresponding to the first
transition. Generally, real-life event logs do not satisfy this requirement. However, we
can deal with these issues as shown next.

Non-compliant Event Log and Duplicate Transitions. An event log might contain
events that cannot be matched reliably to a single transition in the DPN (e.g., in pres-
ence of noise or duplicate transitions). Similarly, for some transitions that are required
according to the model no event has been recorded (e.g., when the recording is incom-
plete or for invisible routing transitions). Therefore, it might not be possible to deter-
mine trans(e) for every event e ∈ E . Using alignment-based techniques such as [5,11]
we can determine a closest corresponding process trace, i.e., the sequence of transition
executions leading to a final state of the DPN, for each log trace. Work [4] uses the
same technique to deal with non-compliant event logs and shows that for reasonably
compliant event logs the error introduced by such an alignment is negligible.

Inconsistent Attributes. In Sect. 3, we restricted the set of write operations for a transi-
tion to those variables that are consistently given a value by every event e in trans(e). In
real-life logs attribute values can be missing due to temporary recording errors leading
to an inconsistent recording of attributes for some transitions. Moreover, the alignment-
based techniques might need to introduce artificial events with missing attribute values.
Therefore we introduce a user-defined threshold K like in [4], but add a way to deal with
missing values to it. A variable v is added to the set of write operations of a transition
t when the variable is observed to be given a value by K% of the events e of t (i.e.,
trans(e) = t). As a result, attributes might be missing from the set of attributes written
for an event e ∈ E . Every time an event e does not assign a value to variable v even
though it should, we assume its value values(e)(v) to be 
. Symbol 
 indicates that the
value is missing. The C4.5 algorithm can deal with such missing values.

Unassigned Attributes. Decision trees cannot deal with uninitialized attributes (similar
to NULL values in databases). In real-life event logs, attributes might be uninitialized if
some of the first events of the log’s traces do not assign a value to all attributes. This
issue can be mitigated by defining default values that are used when attribute have not
taken on values yet. As an example, let us assume an attribute APPROVAL with two
literal values assigned by events: No and Yes. As default value, we can introduce a third
possible value Unknown, make it possible to discover rules APPROVAL= Unknown.
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4 Evaluation

We evaluate our technique using two real-life data sets, and compare the obtained results
to standard methods like decision tree induction algorithms. An implementation of our
technique is available in the MultiPerspectiveExplorer [14] package of the open-source
process mining framework ProM.

4.1 Evaluation Setup

Approaches. We compared the performance of our approach expressed in terms of
place fitness and place precision with three other methods. We choose two methods at
the extreme ends of the respective measure, and one method that naı̈vely introduces
overlap. In total, we compared the following four approaches:

WO. The model without rules, i.e., the guard true is used for all transitions. This
results in a perfect place fitness, no guard is violated.

DTF. The model with rules discovered by a decision tree as in work [4] using false
as guard for transitions that are not observed in the tree. This method will always
result in a perfect place precision as there is only one enabled transition.

DTT. The model with rules discovered by a decision tree as in work [4] using true
as guard for transitions not observed in the tree. This method naı̈vely introduces
overlap by enabling all those transitions.

DTO. The model with rules discovered by the approach reported on in this paper as
described in Sect. 3.1.

The DTF and WO methods are at the extreme ends of the respective measures. Our
approach aims at providing better place fitness (i.e., less violated guards) at the expense
of some place precision (i.e., multiple enabled transitions). Therefore, our approach
should provide better place fitness than the DTF method together with better place
precision than the a model without rules (WO). Method DTT is included to investigate
whether our approach improves over a naı̈ve method to introduce overlap.

Event Logs and Process Models. We used two anonymized real-life data sets: road
fines and sepsis. The road fines event log was taken from an information system han-
dling road-traffic fines by an Italian local police force [15]. The road fines log contains
more than 150,000 cases with approximately 500,000 events. There are 9 data attributes
recorded including the fine amount and the payment amount. The sepsis event log con-
tains events about the pathways of patients within a hospital that have a suspicion for
sepsis, a life threatening condition typically caused by an infection. This event log con-
tains data recorded during a full year resulting in 1056 cases with about 15,000 events.
There are 39 data attributes recorded, e.g., the results of blood tests and information
about the patient from checklists filled in by nurses. For both event logs, we obtained
a normative process model of the control-flow, thus, without any guards. We used the
control-flow of the process model presented in [5] for the road fines data set. For the
sepsis data set, we created a model with help of domain experts from the hospital. Both
models allow for most the behavior observed in the logs, but are lacking precision.
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We checked this using the fitness measure defined for DPNs in work [5] (road fines:
99.7%, sepsis: 98.6%) and the precision measure for DPNs proposed by [12] (road
fines: 63.9% , sepsis: 16.5%). Therefore, both models are good candidates for adding
precision through discovered rules.

Experimental Design. We performed experiments for every decision point for the road-
fines and sepsis models, with the exception of four decision points of the sepsis model
for which no technique was able to discover rules. We use the C4.5 implementation
of the WEKA toolkit with the pruning feature activated; the merge ratio ε was set to
0.5 in all experiments. For each technique, we used 10 different values of minimum
number of instances (minInstances) parameter that were equally distributed within
a certain interval, which is determined as follows. The smallest value of the interval
was chosen such that the discovered guards were not composed by more than 7 atoms.
This choice was based on the assumption that guards with more than 7 atoms are too
complex and humanly unreadable and, hence, of no business value. The upper bound
of the interval was the smallest value that could still return a rule, i.e. larger values
would return no rules. In fact, a too large value of the minInstances parameter would
constrain the decision tree to be representative of so many instances that no reliable rule
can be returned. It is worth observing that the interval potentially changed with varying
the decision point and the technique (DTO, DTT and DTF) being considered.

4.2 Results and Discussion

We conducted the experiments and recorded the obtained place fitness and place preci-
sion for 15 places and 10 parameter settings1. The boxplot in Fig. 3 shows the results.
In the following paragraphs, we compare our method to the three other approaches.

Fig. 3. Place fitness and local precision achieved by the proposed method (DTO) compared to the
standard decision tree classifier (DTF), and the model without guards (WO)

1 The data used for the evaluation is available under http://purl.tue.nl/844997340832257. For
confidentiality reasons we cannot share the sepsis event log.

http://purl.tue.nl/844997340832257
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DTO vs. WO. Compared to WO, the results from our experiment (Fig. 3(b)) show
clearly that DTO provides rules that increase the place precision against the process
model without guards. The large spread of the obtained place precision indicates that,
for some decision points and some parameter settings, our approach deliberately trades
precision to obtain better fitting guards. This result is in line with the expectation that
our approach returns overlapping rules that lose some precision for a better fitness.

DTO vs. DTF. The experimental results show that DTO discovers decision rules that
lead to a better place fitness than the rules discovered by DTF (Fig. 3(a)) with, on aver-
age, a limited trade-off for lower precision. The outliers for DTO in Fig. 3(a) deserve
some discussion. We inspected them and found that for some combinations of parame-
ter settings and places, our approach failed to discover overlapping guards. It discovers
the exact same rules as returned by DTT. Mostly, this happens for decision points with
only two outgoing transitions and high settings of the minInstances parameter. This
can be expected, as for decision trees with instances from two classes {A,B} the wrong
instances on a leaf l = (expr,A) predicting transition A can only belong to the other
transition B. Therefore, our approach will not discover a second decision tree with leafs
predicting B, but rather use rule expr from leaf l for the majority vote transition B.
Our approach only allows this if the number of instances for B is above the setting of
the minInstances parameter. Therefore, for high settings of minInstances and deci-
sion points with two outgoing transitions our approach is unlikely to improve over the
normal decision tree classifier approach.

DTO vs. DTT. We also compare DTO against DTT, which naı̈vely assumes the guard
true for transitions that are not predicted by the decision tree. For this comparison,
we compare the results for decision points with more than two outgoing transitions,
|p•| > 2, as the results obtained through DTT differ from the results of DTF only for
those decision points. Figure 4(b) shows the fitness and precision for those places aver-
aged over 10 parameter settings as discussed in Sect. 4.1. Each place is given a name for
reference. The results in Fig. 4(b) show that DTO is able to discover overlapping guards
that fit the observations better: for all of the considered decision points, the decision

Fig. 4. Average place fitness and place precision achieved by the DTO method compared to the
DTT method. Only decision points with more than two choices are shown.
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rules returned by our approach increase the place fitness against those rules returned
by DTT. Furthermore, the results show that for all except one decision point our app-
roach discovers rules with higher place precision. In other words, it discovers more
precise guards without loosing fitness. In fact, for decision point S-p31 our approach
obtained an average place precision of 0.58 whereas the rule returned by the DTT app-
roach scores only 0.26. Our approach discovers guards for all six outgoing transitions
whereas DTT only discovers guards for three transitions. On the remaining three DTT
uses true as a guard, i.e., always enabled. The only decision point for which DTO
obtains a worse precision score than DTT is S-p15. Our approach discovers guards that
correspond to true for all three alternatives. However, this is not necessarily a bad rep-
resentation of the observed data. In fact, the guards discovered by DTT cause the lowest
place fitness in our experiment 0.65, i.e., the discovered guards are wrong in one third
of the cases.

Example. Figure 5 shows a part of the DPN that we used for the sepsis data set.
Table 2 shows the guards discovered by DTF, DTT and DTO, the approach presented
in this paper, for the three alternative activities on decision point S-p5. All rules are
based on two attributes: Lactate (L) and Hypotensie (H). DTF discovers the rule
that patients with a lactate measurement (i.e., L > 0) are generally admitted to normal
care and patients without lactate measurement (L ≤ 0) leave the hospital. The guard for
the admission to intensive care is returned as false. This leads to the situation where
patients are never admitted to intensive care even if it is part of the model and observed.
Obviously, this cannot be correct. DTF is unable to find a mutually-exclusive rule that
includes this alternative activity given the information recorded in the event log. DTT
discovers the same rules but naı̈vely assumes the guard true for admission to inten-
sive care. Clearly, the DTT results are not satisfying as DTT would convey no rules
about the admission of patients to intensive care. Our approach - DTO - discovers that
patients with a lactate measurement (L> 0) can always be admitted to normal care. As
an alternative to normal care, if attribute H= true then patients can also be admitted to
intensive care; otherwise, if H = false patients leave the hospital. The guards for the
activities overlap and the final decision is likely to be made on the basis of contextual
factors, which are not encoded in the event log.

Fig. 5. Fragment of the process model used for the sepsis data set. After a triage form is filled,
infusions are given and blood tests are taken patients are admitted to normal care, intensive care,
or not admitted (skip). Two relevant attributes are recorded: Lactat (L) and Hypotensie (H).

Limitations and Threats to Validity. The results show that our technique is successful
in uncovering overlapping rules in processes from event logs, and that these rules pro-
vide in some cases a much better characterization of the observed behavior. Still, the
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Table 2. Guards discovered by the compared approaches at decision point S-p5

Approach Normale care Intensive care Not admitted

DTF L> 0 false L ≤ 0

DTT L> 0 true L ≤ 0

DTO L> 0 L> 0∧H= true (L> 0∧H= false)∨L ≤ 0

proposed technique has some limitations and we evaluated our technique using only
two real-life event logs. More experimental validation using event logs from different
settings is required. An inherent limitation of our approach is that it can only use the
majority vote to introduce overlapping guards for a decision point with two output tran-
sitions. This might cause the guard of one transition to be turned into the rule true,
e.g. when the initial guards were based on a single condition. Our approach tends to
discover guards that are more complex: Guard may become unreadable if algorithm’s
parameters are not carefully chosen.

5 Related Work

There are several approaches for decision mining given an event log with historical
data about the process [1,3,4,6,16–21]. In all of these approaches, the decision-mining
problem is translated into a classification problem, and solved using classification analy-
sis techniques such as C4.5 [7]. However, every approach only discovers mutually-
exclusive rules. Most related from the traditional classification field to our approach
is work about multi-label classification [22,23]. In a multi-label classification problem
classes are not mutually exclusive, instances can be labeled with multiple classes, and
the goal is to find the correct set of classes for unseen instances. Our setting is still differ-
ent as we deal with instances that are only associated with one class, i.e., the executed
transition. So, there is no work about discovering overlapping rules in the context of
process models. Classifier chains methods are the closest to our work. They decompose
the problem into multiple binary classification problems, one for each label [24]. This
method assumes that instances are labeled with multiple classes. Also related to our
work are methods for association rule mining [25]. The main problem of association-
rule mining is that a potentially large set of rules is usually returned, failing to provide
insights that are easy to interpret.

6 Conclusion

We propose a new technique for the discovery of overlapping rules in process models
using event data. Existing techniques only return rules that assume completely deter-
ministic decisions. This assumption rarely holds in reality. Our technique is the first
proposal of a discovery technique that introduces overlapping rules. The technique aims
to create process models that trade the precision of mutually-exclusive rules for the fit-
ness of overlapping rules when the observed behavior gives evidence to such rules.
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The evaluation using several real data sets shows that our technique is able to produce
models with overlapping rules that fit the observed behavior better without loosing too
much precision. For some decision points, with more than 2 alternative activities, our
technique returns rules that are both more fitting and more precise than the existing
method [4]. As future work, we aim to investigate the application of other machine-
learning techniques to decision mining. Moreover, we want to address limitations of
decision mining techniques for data sets with imbalanced distributions of classes. We
found that our technique helps to reveal rules when one transition is only observed for
a small fraction of the cases, but a more thorough investigation of this phenomenon is
needed.
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