
Discovering Queues from Event Logs with
Varying Levels of Information

Arik Senderovich2, Sander J.J. Leemans1, Shahar Harel2, Avigdor Gal2,
Avishai Mandelbaum2, and Wil M.P. van der Aalst1

1Eindhoven University of Technology, the Netherlands; 2Technion, Haifa, Israel

Abstract. Detecting and measuring resource queues is central to busi-
ness process optimization. Queue mining techniques allow for the iden-
tification of bottlenecks and other process inefficiencies, based on event
data. This work focuses on the discovery of resource queues. In par-
ticular, we investigate the impact of available information in an event
log on the ability to accurately discover queue lengths, i.e. the number
of cases waiting for an activity. Full queueing information, i.e. times-
tamps of enqueueing and exiting the queue, makes queue discovery triv-
ial. However, often we see only the completions of activities. Therefore,
we focus our analysis on logs with partial information, such as missing
enqueueing times or missing both enqueueing and service start times.
The proposed discovery algorithms handle concurrency and make use
of statistical methods for discovering queues under this uncertainty. We
evaluate the techniques using real-life event logs. A thorough analysis of
the empirical results provides insights into the influence of information
levels in the log on the accuracy of the measurements.

1 Introduction

Detecting and measuring resource queues is central to business processes. Re-
source queues reveal bottlenecks and violations of service-level agreements. More-
over, sojourn times and delays are basic Key Performance Indicators (KPI) that
cannot be accurately calculated without queueing measurements. Process min-
ing is a research field which aims to extract such performance information from
event logs [1]. Queue mining can be seen as a particular class of process mining
techniques focusing on the use of queueing theory to characterize queues from
data and facilitate performance analytics [2]. Existing queue mining approaches
consider event logs in which full queueing-related information is readily avail-
able. Such information includes timestamps of enqueue and service start events.
However, for real-life processes, queueing information is often unavailable in the
event log. Thus, previous work on the analysis of resource behavior discovered
queueing information from logs with missing start timestamps, with the use of
extensive resource information [3]. Moreover, both [2, 3] did not consider complex
process models with parallelism, but rather worked at the perfectly-ordered log
level. And in [4], missing timestamps were imputed by using a class of stochas-
tic Petri nets. However, they consider a single timestamp per activity, without
differentiating activity times from queues.



In this paper, we explore the influence of available information in the log
on the accuracy of the aforementioned queue mining techniques. The event logs
that we consider are general and accommodate a life cycle of three stages per
activity: (1) in transition, (2) in queue, and (3) in service. To measure queues,
even in case of missing timestamps for enqueueing/service start information, we
assume that a process model containing the control flow of the process is given.
Such a model can be discovered from the event log using a process discovery
algorithm, e.g. in the form of a process tree [5] and subsequently extend the
control-flow perspective with queueing measurements. The discovered model en-
ables the extraction of a queue log, which (ideally) contains activity instances
with the corresponding enqueue, start, and end timestamps.

Our methodology for measuring queue lengths, i.e. the number of work items
in queue at a given point in time, starts with a queue log. First, we cluster
the log according to durations (e.g. sojourn time), and get clusters with similar
durations, and therefore loads. Then, we use these loads to fit a phase type
distribution to life cycle durations with the use of Bayesian inference. For the
evaluation of our proposed approach we applied our techniques to three real-
life event logs: two call center logs and a hospital log. The results show that the
queue length can be estimated using only partial information from the event log.
Furthermore, the accuracy of our techniques depends on the amount of available
information, and on the parameters of our techniques.

The remainder of this paper is organized as follows. Section 2 defines the
event log, the role of process models in queue discovery, and the levels of available
information that we assume on our event logs. Moreover, the section states the
main problem that we solve in this paper. Section 3 presents our methodology for
queue length discovery. Section 4 presents our experiments and discusses their
results. Section 5 concludes the paper.

2 Information Levels in Event Logs & Process Models

In this section we define event logs and an activity life-cycle model. We then
offer a classification of the levels of information that we consider in the event
logs, and state the main problem that we solve in this paper.

2.1 Event Logs

An event log L is a multi-set of traces, where a trace represents a single case, e.g.,
a customer or a patient visiting a hospital. A trace consists of several activity
instances, which represent pieces of work performed for the trace. Consider the
process model presented in Figure 1. A trace for a patient in this process may
include blood draw and doctor examination:

〈. . . blood draw11:27
start,blood draw11:29

complete, exam11:45
enqueue, exam12:02

start, exam12:15
complete . . .〉.

Each of the above events contains a timestamp at which the event occurred, and
the life-cycle transition, which denotes a change of state for the activity instance.



R
e

g
is

tr
a

ti
o

n
N

u
rs

e
P

h
y

si
ci

a
n

Check-In

Exam

Check-Out

Blood Draw Get ResultsAND AND

Fig. 1. An examination process in an outpatient hospital; activity life-cycle

The life-cycle transitions of the last three events, belonging to the activity in-
stance ‘exam’ is as follows: the patient reports at the waiting room and enters a
queue (enqueue); after a while she is invited into the examination room (start);
and finally her examination finishes (complete). At the bottom of Figure 1 the
activity life-cycle is illustrated. We assume that the transition initiate is not
available explicitly in the event log, but that it coincides with the last completed
activity instance. In our example, at 11:29, after blood draw completion, the
examination was initiated and the patient started transit (she walked towards
the examination room). In this paper, we aim to estimate performance measures
if not all timestamps are present.

2.2 Process Models

To infer the initiate life-cycle transition, we assume it coincides with the last
completed activity instance. However, this is not necessarily the activity instance
of which the completion time is the closest. For instance, in our example, a lab
test is processed for results in parallel with the examination activity. This would
obviously have no influence on the transit time of the patient, as she has to walk
from the laboratory to the examination room. Even though the lab results are
ready before she reaches the room, it does not imply that she started walking
later. Therefore, knowledge of the control-flow of the process is required, i.e. the
initiation time of an activity is the last completed non-parallel activity instance.
In our experiments, we used process trees [6] because there are powerful discovery
techniques available for this class of models, and the models are guaranteed to be
deadlock and livelock free. Process trees provide information whether activities
are parallel by their structure. Other formalisms such as Petri nets and BPMN
might provide this information as well.

Our approach assumes the presence of a process model to infer initiation
events, to identify activity instances and to deal with deviations [7]. We do not
assume that the event log describes activity instances. Therefore, in Section 3.1,



we introduce a method to obtain activity instances from an event log and a
process model, and show how we handle with process deviations.

2.3 Levels of Information

Not all event logs encountered in practice contain timestamps for all life-cycle
transitions. Throughout the paper, we investigate the ability to measure queues
lengths, as a function of the available information. More formally, let I = {e, s, c}
be the event types that an event log may contain with e, s, c corresponding to
enqueue, start and complete events, respectively. The level of information that
is available in a given event log can be described by I ⊆ I. We consider the
following three levels of information:

– {c} Activities and completion timestamps; e.g., 〈a11:38complete〉.
– {s,c} Activities, start and completion timestamps; e.g., 〈a11:35start, a

11:38
complete〉.

– {e,s,c} Activities, enqueue, start, and completion timestamps; e.g.,
〈a11:30enqueue, a

11:35
start, a

11:38
complete〉.

For the latter level of information ({e, s, c}), queues in front of activities can
simply be computed when a suitable process model is at hand. In the remainder
of the section we state the main problem that we solve in the paper.

2.4 Problem Statement

In business processes, cases queue waiting for resources rather than for activities.
However, in this work, we assume not to have enough data to describe the
resource perspective completely. Therefore, we aim at measuring queues in front
of activities, which is, in a sense, a more informative view than the one that
would be provided by the resource perspective, since we also incorporate the
notion of control-flow.

Let M be a process model with AM being the set of activities present in
the model and the log. Denote LI the event log with information level I, and
let [0, T ] be the time interval such that 0 is set to be the time of the first
measured activity in the log and T being the time of the last measured activity
(we use a continuous notation for simplicity). For simplicity we shall assume
that the exogenous arrival time of each case is known. The queue measurement
- activities (QMA) problem receives a model M , and a log, LI . The solution to
the problem is a quantifier for queue lengths (exact or approximated) for each
activity in the model at any point in time, namely Q̃A(t), A ∈ AM , t ∈ [0, T ].
For example, in [2], this problem is solved by trivially deriving the queue length
from a full information log ({e, s, c}).

3 Methodology and Algorithms

This section describes our methodology and algorithms for solving the QMA
problem. The approach is shown in Figure 2: the first step in the methodology



Extract Queue Logs

Event Log

Clustering-Based 

Load Inference (CLI)

Phase-Type Fitting 

(PHF)

Model

Fig. 2. A methodology for queue measurement in logs with partial information

is to extract a queue log per activity, containing the execution information for
that activity. The queue log then serves as an input to a clustering step, which
in turn is used both for load inference, and for a first-attempt measurement
of the queue length. The result of the clustering algorithm is the input for our
statistical method, namely, the phase type fitting method, which fits a stochastic
model to the event log via Bayesian inference. Below, we present the technique
for extraction of a queue log, define queueing quantification, and present our
techniques for measuring queue lengths.

3.1 Extracting Queue Logs

The first step is to split the event log, LI , into several activity queue logs, LA,
one for each activity, A ∈ AM . An activity queue log describes the execution
information for all activity instances of that activity, namely for each execution
of A in the event log, a queue log contains all activity instances of A that were
recorded in the event log [2]. For simplicity, we assume that each activity is
performed by a single resource type, and the resource type performs a single
activity. Therefore, we may consider a queue log per each activity separately.

Obtaining queue logs requires a few steps. First, deviations between the event
log, LI , and model, M , should be removed. Then, activity instances should
be derived from the events in LI . This step yields the timestamps of enqueue,
start and complete. Subsequently, activity instances are be mapped to activities,
according toM . Last, the initiate timestamps should be derived from the activity
instances and M . In this step, knowledge of concurrent activities is necessary.
We perform the first three steps by computing an optimal alignment, cf. [7]. The
last step is performed by inspection of M , and detection of parallel activities.
Note that the relation between traces and activity instances does not exist in
the resulting queue log, and therefore we regard each activity instance as an
independent queueing entity.

3.2 Notation and Queue Quantification

In this part, we present notation that we use when describing our methods and
algorithms. Then, we provide a quantification framework for Q̃A(t), which is the
log-based solution to the QMA problem.



Let T A
j be a random function that maps activity instances from log

LA to timestamps of the jth element of the life-cycle denoted j ∈
{init, enqu, start, comp}. When a timestamp for element j is available, the ran-
dom functions becomes deterministic, denoted τAj : LA → TS. Note that for
the considered information levels, τcomp is assumed to be know, while τinit is
obtained during the extraction of the queue log.

We denote XA
n (t), t ∈ [0, T ] the stochastic process that corresponds to the

cumulative time that the nth activity instance spends in A at time t, namely
XA

n (t) = t− T A
init(n). The realization of XA

n (t), denoted xAn (t), can be obtained
by the value t− τAinit(n), i.e. the time spent between initiation and t.

An activity instance n is in queue for A at time t whenever the follow-
ing probabilistic event holds: qAn (t) = {T A

enqu(n) ≤ t ≤ T A
start(n)}. Denote

1qAn (t)|XA
n (t) > xAn (t), the random variable that indicates whether activity in-

stance n is enqueued in A at time t, conditioned on a cumulative length of stay
of xAn (t). Clearly, when the log contains the enqueue timestamp the indicator is
constant (either zero or one), since the values of τAenqu(n), τAstart(n) are known.

For the general case, of various levels of information, we define the following
quantity to measure queue-lengths:

Q̃A(t) =
∑

n∈LA

E[1qAn (t)|XA
n (t) > xAn (t)], (1)

for every activity and time in the log, with E being the expectation of a random
variable. In other words, we quantify the queue length in-front of activity as the
sum of expected values of the indicator. The quantifier for queue length, Q̃A(t),
can be written as follows:

E[1qAn (t)|XA
n (t) > xAn (t)] = P (qAn (t)|XA

n (t) > xAn (t)). (2)

For each n ∈ LA, the right-hand side part of Equation (2) is quantified in the
techniques that follow.

3.3 Clustering-Based Load Inference

The idea behind the clustering step is to categorize each trace of the activity
queue log, LA, according to the observed total durations, i.e. τAcomp(n) −τAinit(n),
∀n ∈ LA. For the completes only information level ({c}) total durations are
sojourn times, while for the {s, c} the total durations are time in transit and in
queue. The main assumption of this method is that one of the resulting clusters
contains traces of LA for which queue size in-front of activity A was 0. In other
words, we assume that the resources are not working 100% of the time for the
entire time period recorded in the queue log. All other clusters are expected to
contain traces that were enqueued during their stay.

We are now ready to present our Clustering-based Load Inference (CLI) algo-
rithm, with clustering being performed on the feature: observed total durations.
Denote 1, ...,K the cluster indexes with K being a predefined number of clusters.



As a first step, a K-Means algorithm runs to partition the traces in the log, LA,
into sub-logs Lk

A (see [8] for references on clustering techniques). Following the
aforementioned assumption, L1

A contains only non-queueing cases. Other clus-
ters, k = 2, ...,K, are assumed to contain traces that were enqueued, with time
in queue increasing as k approaches K. The clusters represent K variants of
system load, which we then pass on to the next two methods of Figure 2. Note
that the selection of K is process dependent, e.g. in call centers, the load is often
partitioned into 4 clusters: no load, typical load, moderate load, heavy load [2].

The result of clustering can already be used to construct a first-attempt
quantifier for the queue length. Specifically, we obtain the probability for an
activity instance to be in queue by applying Bayes’ Theorem to Equation (2):

P (qAn (t) | XA
n (t) > xAn (t)) =

(1− π(n ∈ L1
A)) P (XA

n (t) > xAn (t) | qAn (t))

P (XA
n (t) > xAn (t))

,

(3)
with π(n ∈ L1

A) being the prior probability of a case belonging to the non-
queueing cluster, P (XA

n (t) > xAn (t) | qAn (t)) being the probability for the current
time in activity being longer than xAn (t) given that an activity instance, n, is in
queue, and P (XA

n (t) > xAn (t)) being the probability for total time being longer
than xAn (t)). The three components of Equation (3) can be easily estimated by
using the corresponding Maximum Likelihood Estimates (MLE). The results
serve an input to the next phase of our methodology, namely the phase type
fitting algorithm.

3.4 Phase Type Fitting

In this part, we assume that each step of the activity life-cycle has an expo-
nential duration, with a rate that changes per each cluster (depends on system
load). Moreover, we assume that the times a case spends in each step are inde-
pendent. The assumption that the time in transit and in service is exponential
is quite common in queueing literature [10, 11]. However, waiting times in queue
were shown to be exponential only for several specific queueing models; e.g., the
time in queue for M/M/n queues, conditioned that a case waits, is exponen-
tial. Another example in which waiting times are exponentially distributed is for
queues in heavy-traffic [12]. Nevertheless, since we allow the rate of the expo-
nential distribution per each component of the life-cycle to vary among clusters,
we assume, as an approximation, that the time in queue is indeed exponential.

Under these assumptions, the suitable model for our life-cycle is that of a
continuous-time Markov-chain (CTMC) that has S = 3 states in sequence. The
chain absorbs after going through the three stages (transit, queue, service) when
the activity terminates. The total time that it takes for a case to go through the
life-cycle (i.e. the sojourn time) has a phase type distribution [9]. The phase type
distribution is characterized by two parameters: (1) a vector of initial states, η,
of size S (e.g. for the {c} level of information all traces start in the first phase,
and thus η = (1, 0, 0)), and (2) a transition-rate matrix G that describes the
rates with which the CTMC moves between states.



Several techniques were suggested to fit a phase type distribution to data,
when the available measurements include total time in process [13]. In our work,
we use a Bayesian approach that relies on a Markov-Chain Monte-Carlo method,
which we refer to as K-Phase Type Fitting (K-PHF) [14]. The K in the algorithm
comes from the number of clusters that it receives from CLI. The algorithm is
based on the structure of the phase type process, the initial state η, and prior
distributions for the transition rates. The output is the matrix Ĝ, estimated
based on the data. In this work, we used priors that assume that the total time
is uniformly divided among the stages of the life-cycle. For example, consider
the completes only information level ({c}), a case spends 1/3 of the total time
in each of the stages: transit, queue, and service. Thus, 1/3 serves as the prior
to our K-PHF method.

The output of the K-PHF algorithm is used to estimate the probability from
Equation 2, for each trace individually. It is well-known that the probability for
the phase type process to be in state s with i = 1, ..., S, given that the elapsed
time in process is x is given by η exp(xG)s. The expression exp(xG)s is the
s column of the matrix exponential for the original transition-rate matrix, G,
multiplied by x. Thus, for every point in time t ∈ [0, T ]:

P (qAn (t) | XA
n (t) > xAn (t)) = η exp(xAn (t)G)s, (4)

with the right-hand side expression easily obtained from the K-PHF algorithm.
We fit a phase type distribution to each of the clusters, namely k = 1, ...,K, and
consequently get a corresponding transition matrix Gk per cluster. Last, we use
the latter to calculate the expression in Equation (4).

4 Evaluation

Finally, in order to evaluate our approach and illustrate the influence of different
log information levels, we perform experiments using three real-life event logs
with full information ({e, s, c}). We removed events from these logs (resulting
in {s, c} and {c}) to test how close the techniques described in this paper come
to the actual queue length. The first two logs (L1 and L2) originate from a call
center of an Israeli bank, while the third log (L3) comes from an outpatient
hospital.

4.1 Datasets

Logs L1 and L2 both contain a process in which customers call the bank and
are initially answered by a computer system, namely the Voice Response Unit
(VRU), which is designed to handle basic questions and requests. If the customer
requires further service beyond the VRU, she can choose to join the queue.
Customers can abandon at any moment while they are in queue, and can also
leave the VRU without reaching the queue. However, we filter these customers
out of the original log, since they do not match our assumption on activity life-
cycle Section 2. None of our techniques directly uses the dependency between the



customers in queue, and therefore this filtering does not reduce the validity of
our experiments. The queue that we measure in this paper is the queue in-front
of the human agents. The entire time in VRU is considered transit. Log L2 is
derived from L1 by setting the transit time to 0.

To highlight the parallelism-handling capabilities of our approach, log L3

originates from a process that contains parallelism: patients being examined and
undergo several concurrent procedures. Of this process, the activity ‘exam’ was
selected for queue measurement, as it is the most constrained activity in the
process.

4.2 Experimental Setup

We start with one of the event logs, L1, L2 or L3, and derive the corresponding
queue log LA of each activity A by using the method described in Section 3.1.
Then, a model is discovered by Inductive Miner - infrequent [15] using default
settings. Subsequently, we apply CLI and K-PHF to LA in order to quantify
Q̃A(t) (using a milisecond resolution). Similarly, the real queue length, QA(t),
is computed, using the enqueue and start timestamps. To evaluate the accuracy
of the techniques, we consider the root mean squared error and the bias. First,
the root mean squared error (RMSE) is computed per activity:√√√√ 1

T
·

∑
t∈[0,T ]

(Q̃A(t)−QA(t))2.

As a second measure, we consider the bias, which can indicate systemic error in
our techniques:

1

T
·

∑
t∈[0,T ]

(Q̃A(t)−QA(t)).

This procedure is applied to all methods that we described in Section 3, all levels
of information, and the three event logs. In addition, we provide two baselines
for comparison. First, we added the Busy Periods method (BP), which is based
on [10, 3]. For time t ∈ [0, T ], BP simply counts the number of cases that are
currently in the activity. BP assumes the following: (1) full knowledge of busy
periods, namely times in which all resources are busy, (2) the number of resources
are constant and known, and (3) in busy periods, resources are work-conserving
(non-idling). We provide the algorithm with an approximation to busy periods
per activity A ∈ AM , since we consider times in which QA(t) > 0 (a busy period
can start with an empty queue, and all resources busy).

As a second baseline, we considered the Uniform Prior method (UP), which
divides the number of cases in the activity at timestamp t by the number of un-
known time intervals. For example, if the log contains the initiate and completion
timestamps, UP divides the total time spent in the activity by 3, similarly to
the prior that we consider for K-PHF. In case that all information is known
({e, s, c}), UP counts the precise number of cases in queue.



Table 1. Queue length evaluation.

BP UP 1-PHF CLI 4-PHF
RMSE bias RMSE bias RMSE bias RMSE bias RMSE bias

L
1 {c} 21.18 11.91 8.11 -5.12 10.68 -7.76 25.96 -21.34 6.20 -1.63

{s, c} ” ” 4.63 0.83 8.08 4.04 4.22 -3.17 8.45 4.81

L
2 {c} 13.05 6.18 5.99 -2.40 13.85 8.97 20.98 -16.99 6.53 1.56

{s, c} ” ” 7.34 4.87 9.23 5.77 2.63 2.00 11.93 7.96

L
3 {c} 21.38 -17.51 4.08 1.20 6.84 5.32 10.69 7.25 8.58 6.98

{s, c} ” ” 4.86 3.22 10.37 8.62 10.80 8.31 12.48 10.47

For our clustering-based methods that we present in Section 3, i.e. CLI and
K-PHF, we have selected K to be 4, which is a standard selection for call center
data [2]. For K-PHF we also consider K = 1, to test the impact of load knowledge
on the goodness-of-fit for the phase type distribution. To investigate the influence
of K on the clustering-based methods, the procedure was repeated for CLI with
various values of K.

4.3 Results and Discussion

Table 1 shows the results for different combinations of event logs, information
levels and techniques. Figure 3 shows the influence of K on CLI, tested on L1.
Last, Figure 4 shows the queue length obtained by 1-PHF, and 4-PHF (best
algorithm for complete only information) as function of time, compared to the
real queue length.

Considering log L2, our experiments show the sensitivity of BP in case as-
sumptions (2) and (3) do not hold: for L2, with no transit time and known busy
periods, BP overestimates the log considerably (L2 RMSE 13.05; bias 6.18). This
is hardly surprising when considering resource dynamics in real-life settings: re-
sources go on breaks, and start/end their shifts during the day. Surprisingly, UP
is superior in all {c} scenarios, except for 4-PHF.

We notice that CLI performs poorly for the {c} level of information. A sensi-
tivity analysis revealed that indeed K = 4 is not optimal for CLI with completes
only, and it can be improved by selecting K = 2 (Figure 3). However, for the
{s, c} scenarios and the two call center logs (L1, L2), the results are superior to
all methods.

Across our experiments, 1-PHF performs mediocre on performance, since it
neglects differences in system load. When changes in the load are considered, we
indeed see an improvement, and 4-PHF is indeed the superior algorithm across
the {c} information level. Intuitively, one would expect that methods perform
better when given more information. However, 4-PHF performs best when given
only completion timestamps; when given more information, i.e. start events,
4-PHF performs worse. We suspect that our choice of K in CLI might be of
influence here.

Inspecting only averaged results can be misleading. Thus, we turn our at-
tention to Figure 4, and observe the behavior of queue lengths of two methods:



1 2 3 4 5 6 7

0
10

20
30

40

k

R
M

S
E

c sc esc

Fig. 3. Influence of K on CLI with L1.

0

10

20

30

40

50

7:00 8:40 10:20 12:00 13:40 15:20 17:00 18:40 20:20 22:00

R
M
S
E

4-PH 1-PH Real

Fig. 4. Queue length for 1-PHF, 4-PHF and real with L1; the x-axis represents time
(one day).

1-PHF and 4-PHF, under knowledge of completion timestamps. We observe that
1-PHF is able to capture the first peak of the day. However, it misses the re-
mainder of the day by overestimating the queue length, especially for the peak
period. In contrast, 4-PHF captures much of the behavior, except for sudden
changes in queue lengths.

5 Conclusion

In this paper, we showed how to discover queue lengths for activities in opera-
tional processes. Specifically, queue lengths were quantified for event logs with
varying levels of information. In particular, we proposed a comprehensive ap-
proach, which includes the use of a process model and recorded event data to
derive a queue log. The queue log then feeds a sequence of two techniques for
measuring the queue length. The first technique is based on K-Means clustering,
while the second technique is based on phase type fitting. We performed a thor-
ough evaluation of our methods against baselines and presented the deviations



from the real measurements. We tested the methodology on three real-life logs:
two call centers logs, and one log of an outpatient hospital. The results show
that our methods are able to discover queue lengths with various levels of accu-
racy. This accuracy is sensitive to the level of information, and to the K of the
clustering algorithm.

In future work, we intend to take the resource perspective into account, since
cases wait for resources and not for activities. We aim at utilizing the information
on the matching between activities and the corresponding resources that is often
available in event logs to improve the accuracy of our methods. Furthermore, we
aim to consider the dependencies between queued cases in a more rigor way, by
discovering queueing models that correspond to the resources involved.

References

1. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

2. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining for delay
prediction in multi-class service processes. Technical report, Tech. rep (2014)

3. Nakatumba, J.: Resource-Aware Business Process Management: Analysis and Sup-
port. PhD thesis, Eindhoven University of Technology (2013)

4. Rogge-Solti, A., Mans, R., van der Aalst, W.M.P., Weske, M.: Repairing event
logs using timed process models. (2013) 705–708

5. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - A constructive approach. In Colom, J.M., Desel,
J., eds.: Application and Theory of Petri Nets and Concurrency - 34th International
Conference, PETRI NETS 2013, Milan, Italy, June 24-28, 2013.

6. Buijs, J., van Dongen, B., van der Aalst, W.: A genetic algorithm for discovering
process trees. In: IEEE Congress on Evolutionary Computation, IEEE (2012) 1–8

7. Adriansyah, A.: Aligning Observed and Modeled Behavior. PhD thesis, Eindhoven
University of Technology (2014)

8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York, NY, USA (2001)

9. Neuts, M.F.: Renewal processes of phase type. Naval Research Logistics Quarterly
25(3) (1978) 445–454

10. Mandelbaum, A., Zeltyn, S.: Estimating characteristics of queueing networks using
transactional data. Queueing systems 29(1) (1998) 75–127

11. Mandelbaum, A., Zeltyn, S.: Service engineering in action: the Palm/Erlang-A
queue, with applications to call centers. In: Advances in services innovations.
Springer (2007) 17–45

12. Kingman, J.: On queues in heavy traffic. Journal of the Royal Statistical Society.
Series B (Methodological) (1962) 383–392

13. Asmussen, S.: Phase-type distributions and related point processes: Fitting and
recent advances. In: International Conference on Matrix-Analytic Methods in
Stochastic Models. (1996) 137–149

14. Aslett, L.J., Wilson, S.P.: Markov chain monte carlo for inference on phasetype
models. ISI (2011)

15. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs containing infrequent behaviour. In Volume 171 of
Lecture Notes in Business Information Processing., Springer (2013) 66–78


