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Abstract. Process mining combines model-based process analysis with
data-driven analysis techniques. The role of process mining is to extract
knowledge and gain insights from event logs. Most existing techniques
focus on process discovery (the automated extraction of process models)
and conformance checking (aligning observed and modeled behavior).
Relatively little research has been performed on the analysis of busi-
ness process performance. Cooperative business processes often exhibit
a high degree of variability and depend on many factors. Finding root
causes for inefficiencies such as delays and long waiting times in such flex-
ible processes remains an interesting challenge. This paper introduces a
novel approach to analyze key process performance indicators by consid-
ering the process context. A generic context-aware analysis framework is
presented that analyzes performance characteristics from multiple per-
spectives. A statistical approach is then utilized to evaluate and find
significant differences in the results. Insights obtained can be used for
finding high-impact points for optimization, prediction, and monitoring.
The practical relevance of the approach is shown in a case study using
real-life data.

Keywords: Process mining · Performance analysis · Context-aware ·
Root cause analysis

1 Introduction

Process mining is an emerging discipline that deals with extracting knowledge
and non-trivial insights from event data recorded by information systems. Such
event logs capture the different steps (activities) recorded for cases (customers,
patients, etc.) that follow a process. Usually, information is stored about what
activity was performed by whom and at what time. Additionally, information
about the involved resources or process-specific data attributes such as the cus-
tomer type or the age of a patient may be recorded as well. Existing process
mining techniques have focused on three main areas: process discovery, confor-
mance checking and process enrichment. Process discovery can be defined as the
automated extraction of process models from event logs. Insights can be gained
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on the order of activities, parallel parts, alternative flows or iterative steps in a
process. Conformance checking compares the observed and modeled behavior by
aligning the cases in the event log with the process described in a model. This
way, process compliance can be analyzed and skipped activities, improper execu-
tion orders or deviations from protocols can be discovered. Process enhancement
deals with the extension or improvement of an existing a-priori process model
with information about the actual process recorded in the log. Models can for
example be extended to show performance information or conformance issues.

Typically, discovering process models for flexible processes results in models
that are difficult to interpret, as most cases exhibit unique behavior. Often, no a-
priori model is present, making conformance checking and process enhancement
challenging tasks. As a result, gaining an understanding of the underlying process
and finding points for optimization is far from trivial.

From most real-life event logs, we can gain information about different perfor-
mance characteristics. Typically, we are interested in characteristics such as wait-
ing times, throughput times, and utilization rates. Existing process performance
analysis techniques, however, are limited to describing the overall behavior, such
as mean waiting times and durations. By looking at the frequency distributions
of these measures, we can see that these typically do not follow a single dis-
tribution curve. Rather, density plots give the impression of being composed of
multiple components, as depicted in Fig. 1. The ideas presented in this paper aim
to discover such underlying components. Often times, performance characteris-
tics of a specific activity, case, or entire process highly depend on the context.
For example, preceding tasks, involved resources and their workload, or even the
weather can have a big effect on performance. In Business Intelligence tools and
techniques, data is sliced and diced to view key performance information from
different perspectives. The idea is that contextual properties of process entities
such as cases and resources form the underlying components in the frequency

Fig. 1. Frequency distributions are composed of multiple components. We aim to dis-
cover the underlying contextual properties that lead to these components.
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distributions mentioned above, and are considered as the analysis perspectives.
In this paper, we introduce a context-aware process performance analysis app-
roach that can be used to analyze event logs in a similar way. Process entities
are labeled with their context and their performance is calculated. Hypothesis
testing is used to automatically discover significant differences in performance
measures for different contexts.

The remainder of the paper is structured as follows. Section 2 introduces pre-
liminary definitions. The notion of process context and performance is introduced
in Sect. 3. How to automatically find significant differences in performance using
hypothesis testing is explained in Sect. 4. In Sect. 5, the practical relevance of the
approach is shown using a case study on a real-life dataset. The paper is posi-
tioned and related work is outlined in Sect. 6. In Sect. 7 the paper is concluded
and ideas for possible future work are given.

2 Preliminaries

The executed events of multiple cases of a process are recorded in an event
log. Event logs serve as input for any process mining technique. An event is a
particular execution of an activity for a case, potentially having additional data
attributes such as a timestamp or the responsible resource. A trace is a finite
sequence of events, and describes one specific instance (i.e. a case) of the process
at hand in terms of the executed activities. A case can also have additional (case-
level) attributes such as a birthdate or customer type. Definitions for events and
cases used here are based on those in [2].

Definition 1 (Event, attribute). Let E be the event universe, i.e. the set of
all possible event identifiers. Events may be characterized by various attributes.
Let N be a set of attribute names. For any event e ∈ E and attribute name
n ∈ N : n(e) is the value of attribute n for event e. If event e does not have an
attribute named n, then n(e) =⊥ (null value).

Typically, the following attributes are present for all events: activity(e) is
the activity associated to event e, time(e) is the timestamp of e, resource(e) is
the resource associated to e, and trans(e) is the transaction type of e. Possible

Fig. 2. Standard transactional life-cycle model.
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transaction types are scheduled, assigned, suspended, etc. as depicted in the
standard transactional life-cycle model in Fig. 2. Each event is associated with a
state transition for a single activity instance. These states are used to calculate
performance information such as duration and waiting times for the activity.
An example event log (L1) can be found in Table 1. Here, next to the standard
attributes, cases have the data attributes ‘Age’ and ‘Type’, and events have
attribute ‘Cost’. Note that case 4 has no value for the attribute ‘Age’.

Definition 2 (Case, trace, event log). Let C be the case universe, i.e. the
set of all possible case identifiers. Cases, like events, have attributes. For any
case c ∈ C and attribute name n ∈ N : n(c) is the value of attribute n for case c
(n(c) =⊥ if c has no attribute named n). Each case has a mandatory attribute
‘trace’: trace(c) ∈ E∗. ĉ = trace(c) is a shorthand notation for referring to the
trace of a case. A trace is a finite sequence of events σ ∈ E∗, such that each
event appears only once, i.e. for 1 ≤ i < j ≤ |σ|: σi �= σj. For any sequence
s = 〈s1, s2, . . . , sn〉, set(s) = {s1, s2, . . . , sn} converts a sequence into a set, e.g.
set(〈a, b, c, b, c, d〉) = {a, b, c, d}. An event log is a set of cases L ⊆ C such that
each event appears at most once in the entire log, i.e. for any c, c′ ∈ L such that
c �= c′: set(ĉ) ∩ set(ĉ′) = ∅.

Table 1. Example event log L1.

Case id Case attributes Event id Event attributes

Age Type Time Activity Transition Resource Cost

1 33 Premium 1 2016-1-4 8:00 A Start John 10

2 2016-1-4 9:15 A Complete John 0

3 2016-1-4 10:12 B Complete Bob 20

4 2016-1-4 14:00 C Schedule Sue 0

5 2016-1-4 14:05 C Start Sue 15

2 27 Basic 6 2016-1-6 10:43 A Start Bob 15

7 2016-1-6 11:00 A Complete Bob 0

8 2016-1-7 09:33 B Complete John 30

9 2016-1-7 09:35 C Schedule Sue 30

3 18 Basic 10 2016-1-7 9:27 A Start John 15

11 2016-1-7 10:40 A Complete John 0

12 2016-1-7 15:03 B Complete Bob 30

4 ⊥ Premium 13 2016-1-7 12:10 A Start Bob 10

14 2016-1-7 12:24 A Complete Bob 0

15 2016-1-8 08:47 B Complete John 30

5 41 Basic 16 2016-1-8 15:32 A Start Bob 15

17 2016-1-8 15:51 A Complete Bob 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .
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3 Context-Aware Performance Analysis

Performance correlates with contextual information. As explained in Sect. 1, this
information is lost in a single distribution. Hence, a distribution per context may
be more precise, as shown in Fig. 1. Note that a composed distribution without
context has limited value. For example, it could be that an activity for which
one of two resources is involved, on average has a waiting time of one week. One
resource might be overbooked, leading to waiting times of several weeks, while
the other resource might be able to perform the task in a few hours. Clearly,
which resource is assigned to perform the task for a certain case will determine
the waiting time for that specific case. The average waiting time for all cases will
not accurately represent the waiting time for either resource. Typically, multiple
contextual properties having many possible values are in play. Our aim is to
find, given the distribution of performance measures, which, if any, contextual
properties compose this distribution. Such insights can lead to better predictions,
help in monitoring for change, aid in optimizing scheduling, etc.

In this section, the concept of context-aware performance analysis is intro-
duced. Subsection 3.1 describes process entities and the process context, and
typical examples of contextual properties are given. Subsection 3.2 explains the
concept of performance. The interrelation between context and performance is
explained in Subsect. 3.3.

3.1 Process Entities and Context

Process entities have a type and represent a collection of events. The default
process entity types are case, activity instance, event, and resource. Resources
are process entities as an event log can be seen as a collection of resources, each
of which is performing a set of events. This list can be extended with additional
entity types depending on the information that is available in the event log at
hand. Formally, process entities are defined as follows.

Definition 3 (Process entity). Let T be the universe of process entity types,
and D the universe of entity identifiers. Let I = D × P(E)1 denote the universe
of process entities. It denotes the set of process entities of type t ∈ T . Function
Φ : P(C) × T → P(I) maps an event log to a set of entities of a given entity type.

For example, applying Φ to event log L1 and the resource, activity, and case
entity types we obtain:

Φ(L1, resource) ={ (Bob, {3, 6, 7, 12, 13, 14}), (Sue, {4, 5, 9}),
(John, {1, 2, 8, 10, 11, 15}) }

Φ(L1, activity) ={ (A, {1, 2, 6, 7, 10, 11, 13, 14, 16, 17}), (B, {3, 8, 12, 15}),
(C, {4, 5, 9}) }

Φ(L1, case) ={ (1, {1, 2, 3, 4, 5}), (2, {6, 7, 8, 9}), (3, {10, 11, 12}),
(4, {13, 14, 15}), (5, {16, 17}) }

1 P(E) denotes the powerset over E , i.e. all possible subsets of E .
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Table 2. Example context functions.

Context function Applicable to entity type

Number of cases Process

Number of previous events Case

Prefix Activity instance, Event

Suffix Activity instance, Event

Number of occurrences Activity instance

Utilization rate of resource Event

Number of concurrent events Event

Resource ID Event

. . . . . .

Typically, entities are related to other entities. For example, activity instances
are made of one or more events (representing a certain life-cycle transition,
mentioned in Sect. 2) and, at the same time, are part of a trace of a case.

The contextual properties of a process entity are obtained by applying a
context function to that entity. A context function maps a process entity to a
context label (descriptive value) that aims to describe the entity’s context. For
example, taking activity instances as entities and the executing resource as the
context, we can see how different resources affect activity KPIs such as waiting
time, duration, etc. Context functions are defined only for certain types of process
entities. For example, cases typically do not have one resource associated with
them, but events do. Context can be explicit (i.e. attribute values such as the
involved resource or customer type) or implicit (i.e. calculated values such as
the number of days spent in the hospital or the cost-profit ratio of a customer).
Formally, context functions are defined as follows.

Definition 4 (Context function). Let I be the universe of process entities
and T the universe of entity types. Let V be the universe of contexts. A context
function Υ : It → V maps a process entity of type t ∈ T to a context.

For example, we can define the case-type context function of case entities as
type : Icase → V. Consequently, {type(i)|i ∈ Φ(L1, case)} = {Basic, Premium}.
Other examples of context functions can be found in Table 2. Note that additional
context functions can be defined based on the data available in the event log at
hand. After mapping each process entity of a certain type to its context with one
or more applicable context functions, performance characteristics are calculated.

3.2 Performance

Process performance analysis aims to improve processes with respect to time,
cost, and/or quality [2]. In traditional Business Intelligence methods, key perfor-
mance indicators are typically used to discover and monitor bottlenecks, devi-
ations from protocol, violations of regulations, service level agreements, etc. In
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process mining, measures such as throughput times of activity instances or cases,
sojourn times, waiting times, frequencies, time between activities, etc. are calcu-
lated based on the data stored in event logs. Metrics such as utilization rates and
case load or the cost to gain new customers are derived from these measures.
Both measures and metrics can be KPIs, depending on their business value.
Performance can be seen as the result or score of a certain entity on a certain
performance function. Performance functions are formally defined as follows.

Definition 5 (Performance function). Let I be the universe of process enti-
ties and T the universe of entity types. A performance function Λ : It → R maps
a process entity of type t ∈ T to a KPI result.

We let the result of performance functions be numeric (continuous) val-
ues. For example, we can define the duration of activity instance entities as
duration : Iactivity → R. Consequently, {duration(i)|i ∈ Φ(L1, activity)} =
{75, 0, 0, 17, 0, 0, 73, 0, 14, 0, 19} (in minutes). Note that only activities that have
start and complete events have a duration. Otherwise a duration of 0 is recorded.

In order to calculate these KPIs, information from the events related to the
entity is necessary. Typically, information about when events (activity transi-
tions) were performed is required. Sometimes information from events related
to related process entities is necessary as well. For example, the duration of an
activity is calculated as the time difference between the start and completion
of the activity. These time values are stored in two separate events represent-
ing the respective life-cycle transitions of the activity. After calculating KPIs,
performance characteristics are related to contextual properties of the process
entities.

3.3 Context-Aware Performance

By splitting performance measurements for a specific entity over the differ-
ent context labels assigned to it, we obtain context-aware performance results.
Relating the performance characteristics of process entities to their contextual
properties shows whether and where correlations exist. From these results, we
can see if (and how) contextual properties influence the performance of the
process. For example, we can analyze the duration of activity A from L1.
The resource involved in executing the activity is taken as the context. For-
mally, we take all entities from Φ(L1, activity) that are related to activity A
and compute their duration. These durations are then linked to the context by
grouping them based on the context label assigned to the specific activity, i.e.
resource(Φ(L1, activity)). As activity A can only be performed by either John or
Bob, this leads to two groups of measurements. The specific values are: John {75,
73} averaging 74 min, and Bob {17, 14, 19}, averaging 16.7 min. Clearly, using
the overall average of 39.6 min as an estimation for the duration of activity A in
calculations, prediction and planning is imprecise, while using the context-aware
averages gives a much better estimation.

Manually analyzing every possible combination of performance and context
function is a tedious and error-prone task. Therefore, we propose an automated
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Fig. 3. A graphical overview of the approach. Performance measurements for process
entities are related to their context. Hypothesis testing is used to automatically find
statistically significant differences.

approach to test for significant differences between contexts for all entities and
applicable context and performance functions. This analysis is done by means
of statistical hypothesis testing, and will be explained in Sect. 4.

4 Statistical Hypothesis Testing

As explained in Subsect. 3.3, context-aware performance results are used to find
correlations between contextual properties of process entities and process perfor-
mance. However, the number of combinations and therefore possible correlations
is often quite high, complicating manual analysis. In order to automate the analy-
sis of significance of differences between context results, we follow a statistical
approach. A graphical overview can be seen in Fig. 3.

Performance results for different contexts are seen as different samples. For
these samples, the variance is analyzed. The null hypothesis is that no significant
differences exists between the samples, and therefore, that the chosen context
function does not have a significant effect on the performance results. Hence, if
the null hypothesis is rejected, a possible cause for performance differences is
found. By automating these analyses, many combinations of context and per-
formance functions can be tested, and possible points for performance improve-
ment can be rapidly discovered. Nonetheless, this automated technique has some
drawbacks, which are discussed in Subsect. 4.4.

In the automated approach, the samples are first tested for normality, i.e. it
is tested whether the values are sampled from a normally distributed population.
If so, the one-way analysis of variance test is used. If not, a power transformation
is applied in an attempt to make the data follow a normal distribution. When
the data cannot be transformed, a non-parametric analysis of variance test is
used (Subsect. 4.1). In case the null hypothesis is rejected, post-hoc analysis
is performed using a multiple comparison procedure (Subsect. 4.2), in order to
identify which samples are significantly different from each other, as the analysis
of variance only indicates the existence of such a difference in a set of samples, but
not the location. In other words, by applying our approach, those contexts that
lead to significantly different performance results are discovered (Subsect. 4.3).
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Besides relating individual contextual properties to performance results, con-
texts can be grouped to find combined correlations. For example, the involved
resource or the previous activities might not influence an activity’s waiting time
individually, but the combination might. The analysis of combined contexts is
analogous to that of a single context. However, it should be noted that this
analysis significantly increases the search space.

4.1 Hypothesis Testing

Statistical models can be used to analyze the difference (variance) between
groups. Analysis of variance (ANOVA) provides a statistical test of whether
or not the means of several groups have the same standard deviation. The one-
way (single-factor) ANOVA tests whether a single factor leads to a significant
difference in the groups [16]. Hence, it generalizes the t-test to more than two
groups. In our case, it is used to test whether different contexts lead to significant
differences in KPI results for a given process entity and context function.

As explained, ANOVA is based on a hypothesis test where the null hypothesis
is that the means of all groups are equal. A critical value (or p-value) is used
as a number that the test statistic must exceed to reject the null hypothesis.
Typically, a value of 0.05 is used. Multiple variants of the ANOVA have been
proposed in literature and are widely used [16,17,21]. The basic assumptions are
independence of observations, homogeneous variances, and population normality.
The former two will be discussed in Subsect. 4.4.

In order to be able to perform an analysis of variance test on the performance
results, first, the samples are tested for normality by a goodness-of-fit test. The
Shapiro-Wilk test [25] was found to have the best power for a given significance
in several studies [23]. In case the null hypothesis is accepted, i.e. the data come
from a normally distributed population, we can proceed with the analysis of
variance. In case the null hypothesis is rejected, i.e. the data do not follow a nor-
mal distribution, we attempt to transform the data to make it follow a normal
distribution by applying the Box-Cox power transformation [8]. If the data does
not come from a normally distributed population and cannot be transformed,
we apply a non-parametric analysis of variance test. These types of tests, known
as ANOVA on ranks, are less powerful but are designed for situations where nor-
mality cannot be assumed. We use the Kruskal-Wallis test [17] in case normality
cannot be assumed for the KPI values for the different contexts.

In order to evaluate the effect of a combination of contexts, we can either
create combined context functions or use a multiple-factor analysis of variance
procedure.

4.2 Post Hoc Analysis

In case the analysis of variance’s null hypothesis is rejected for a given context
and performance function, we know for which entity the context function can
explain differences in performance. However, we do not know yet how these dif-
ferences can be explained, as the analysis of variance tests indicate the existence
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of differences, but not their location. For example, the ANOVA can indicate
that the resource responsible for executing an activity has an effect on its dura-
tion, but not which resources stand out. Post hoc analyses are typically used
to perform multiple comparisons with the aim of finding which samples can be
considered as distinct.

We use Tukey’s range test [26], which compares the means of every sam-
ple to the means of every other sample. It identifies any difference between
two means that is greater than the expected standard error. Like the single-
factor ANOVA described in Subsect. 4.1, Tukey’s range test assumes normality.
As a non-parametric alternative (i.e. after applying the Kruskall-Wallis test)
Nemenyi’s distribution-free multiple comparison test (also known as Nemenyi-
Damico-Wolfe-Dunn test) is used as a post hoc test [17]. Both tests do not require
sample sizes to be balanced and correct for the multiple comparison problem [17].

Note that it is possible that the null hypothesis for the analysis of variance is
rejected, but the post hoc test fails to reject all pairwise tests for a given critical
value (e.g. because of the multiple comparison correction). In other words, across
all samples there can be a significant difference in means, while between every
pair of samples there is not. In this case, further automated or manual inspec-
tion is necessary. However, when this is the case, the discovered differences in
performance are generally of low impact to the business process being analyzed.

4.3 Analysis of Results

After the automated context-aware process performance analysis has been per-
formed, the results need to be interpreted. By showing the entities and context
functions for which the most significant differences in performance have been
found, we obtain a list of possible optimization points. However, statistical sig-
nificance does not equal real-world impact. It might be the case that even though
the means of two or more contexts are very different, their absolute values differ
little. For example, consider a process with two activities: make scan (machine
activity) and read scan (human activity). Some scanners are faster than others,
and some people read faster than others. It is possible that the significance in
differences between scanners is much higher than that between readers, even
though usually, bulk of the time will be spent in reading a scan rather than
making it. Thus, the importance of a performance difference is not determined
only by its significance. It is important to determine the impact of a discov-
ered difference. This can be done by implementing an impact formula that for
example multiplies the significance of the difference with the absolute variance.

Once significant and impactful differences are discovered they can be trans-
formed into performance insights in natural language or by visual representations
such as those in Sect. 5. For example, sentences such as “activity X takes three
times longer when resource R is involved in the preceding activity” or “cases
often violate the maximum throughput SLA if the caseload is higher than 80%
at the time of activity X” can be constructed. Since the impact provides a nat-
ural ordering it is possible to, for example, only show the top 10 most impactful
context-dependent performance differences.
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4.4 Assumptions and Drawbacks

Automating the analysis of variance between different samples has some draw-
backs. The existence of outliers can affect the test for normality. Filtering out
outliers first can restore normality. Depending on the desired results of the
context-aware performance analysis, outliers may need to be removed before
testing for significant differences in performance for different contexts.

Besides outliers, sample sizes are most critical in determining the value of
the automated test. This is related to the homogeneity of variance assumption of
the analysis of variance tests. Since normality tests have little power with small
data sets and can be too sensitive with large data sets, an automated approach
might give false confidence of normality, and consequently the assumptions of
the chosen analysis of variance test might be violated [16]. For example, this
assumption is violated when sample sizes are very unbalanced. In this case, the
null hypothesis is at risk of being falsely rejected. In other words, in case a certain
context is very infrequent and/or there are big differences in the frequencies of
different contexts, the results might falsely indicate (in)significant differences
in performance. As such, the quality of the results depend on the size of the
samples that are tested. The F-statistic used by this test is considered robust to
the homogeneity of variance assumption when sample sizes are balanced [16].

Analysis of variance also assumes independence of observations. However,
there might exist some relation between performance characteristics of different
process entities. For example, it might be the case that a machine takes an
extra 10 min every 100th task, or the duration of the task alternates between
two values every 50 times. This however has no effect on the results of our
hypothesis tests. In fact, the analysis of variance tests whether the samples are
drawn from the same distribution. If the context function does not explain any
difference in results, the test statistic will not be significant. In other words,
taking the two examples mentioned before, each 100th task performed by the
machine or the different durations will randomly reside in any of the samples,
in case the context function does not describe those problems.

In conclusion, results of the automated approach need to be carefully inter-
preted before using them as basis for process performance statements. This can
for example be done by visual comparison of the performance results. Nonethe-
less, the results provide a powerful basis for context-aware process performance
analysis, and can provide important insights into root causes for performance
problems such as bottlenecks or deviations from protocol and can be used for
better scheduling of resources.

5 Case Study

The context-aware performance analysis approach described above has been
implemented as an extensible analysis framework in the process mining tool
ProM2. New process entities or context and performance functions can be easily

2 See http://promtools.org.

http://promtools.org
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added in order to analyze their effect on performance. We evaluate our technique
on a publicly available, real-life event log. This event log was used so that results
can be reproduced and compared. The aim is to demonstrate our approach rather
than to exhaustively analyze the process recorded in this log. The dataset stems
from a loan application process from a Dutch bank, and was originally used in
the Business Processing Intelligence Challenge (BPIC) in 2012 [11]. The log con-
tains 13,087 cases of a loan application process, for which in total 262,200 events
have been recorded. There are 36 distinct activities and 69 different resources
are involved in this process. There are 4,366 different control-flow variants.

In order to test our approach, we analyze the duration of activities with
respect to their context. This is done by measuring the time between the events
that represent the start and complete transitions for an activity. We look at
the measurements from two different perspectives: the resource involved in the
activity and the activities preceding the activity (prefix of the trace). In other
words, one performance function and two context functions are used. Of course,
other functions potentially leading to additional insights can be applied as well.

Applying the technique as described in Sect. 3 for both context functions and
all 36 activities, results in 72 sets of measurements. Here, each measurement set
represents the duration of a specific activity when analyzed for a specific context
function, i.e. each set contains multiple samples of duration values representing
a specific context (label). For each set, we analyze the variance between the set
of samples using the statistical approach described in Sect. 4. The post hoc tests
are used to discover exactly which context stands out.

For the prefix context function, the length-2 prefix of activities in their trace
is taken. The result is abstracted to a set. In this way, we look at whether the
last two activities (in any order) have an affect on the duration. Significant
differences are found for two activities: “w afhandelen leads” and “w beoordelen
fraude”. These results are shown in Figs. 4 and 5 respectively. For “w afhandelen
leads”, it can be seen that if the activity is performed three times in a row,
the duration is significantly higher than when it is preceded by “w beoordelen
fraude” or “w completeren aanvraag”. Similarly, in Fig. 5, we can see that when
“w beoordelen fraude” is preceded by “w completeren aanvraag” and itself, it
takes significantly more time. From these results we might conclude that rework
leads to an increase in duration. However, note that even though the differences
in duration are significant, the impact in this case is limited to maximally several
minutes difference, and as a result the differences might be negligible for the
process owner.

Using the resource context function, we check whether the resource involved
in the execution of an activity has an effect on its duration. A significant dif-
ference in duration is found for the activity “w completeren aanvraag”, as can
be seen in Fig. 6. We can see that two resources (11079 and 11254) take consid-
erably more time to perform the activity. In Fig. 7, we can see that the other
resources generally take up to half an hour. In this case, the differences span
several hours. This big difference might be due to the fact that the two resources
handle difficult cases or that the activities they perform span multiple days.
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Fig. 4. Duration for the activity “W afhandelen leads” for different prefix-sets of length
2. The third consecutive execution of the activity is found to take significantly more
time. The impact is in the order of several minutes.

Fig. 5. Duration for the activity “W beoordelen fraude” for different prefix-sets of
length 2. When the activity is preceded by “w completeren aanvraag” and itself, it
takes significantly longer. The impact of the discovered differences is limited to several
seconds.

Fig. 6. Duration for the activity “W completeren aanvraag” for different resources.
Two resources are found to take significantly more time. An impact of several hours
can be seen.
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Fig. 7. Figure 6 zoomed in to show differences between resources. Most other resources
take a comparable time to execute “W completeren aanvraag”.

6 Related Work

As mentioned, relatively little work has been done in automatically analyzing
process performance characteristics. In general, related work can be divided in
the following groups: research on performance characteristic calculation, which
aims at proposing new performance measurements and metrics, analysis, which
aims to find root causes for performance issues, and prediction, which tries to
predict remaining waiting times, cycle times, etc.

In [15], the authors approximate the cycle time of processes based on queuing
theory, using expected times and process structure. However, no context is used
in the prediction process. Techniques as [5,13,14] focus on context-aware perfor-
mance predictions by applying a clustering approach, where different context-
related scenarios relate to separate prediction models. Different clusters of behav-
ior can be discovered for which different prediction models are created. New cases
can then be compared to all clusters, and predictions can be obtained from the
most closely related cluster. However, in these techniques, the context is limited
to a representation of the features (attributes) of cases or events. Also, no rules
or descriptions are given as to what differences exist between the clusters. In [14],
the prediction is restricted to predicates that can be evaluated over completed
cases.

Different techniques have been proposed to predict the remaining running
time of processes [4,6,20,22,24]. For example, [24] uses stochastic Petri nets with
arbitrary firing delays as a basis for prediction. In [22], a technique to learn a
prediction model is proposed that can predict performance characteristics such
as remaining waiting time, but also the following activity or resource can be
predicted. Though having their merits and specific use cases, these approaches
heavily rely on a process model to be present. In flexible process environments,
these models are difficult to obtain and change continuously, restricting the use
of these techniques.

Simulation can be used to analyze process performance characteristics. In [1],
the authors highlight possibilities. The downsides of simulation is that it is often
difficult to mimic the steady-state behavior in flexible processes. As a result,
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analyzing the effects of changes becomes infeasible. Also, contextual properties
of process characteristics underlying performance differences are not discovered.

In [19], the authors aim to predict behavior based on classification of event-
and case attributes using decision trees. Though contextual properties can be
used, the user needs to specify the dependent and independent variables in order
to perform a single analysis. The interpretation of the significance of the result
is left to the user as well. As a result, multiple analyses need to be performed
and interpreted to find root causes for performance issues.

Most related to the technique used in this paper is the approach proposed
in [12], where non-parametric regression is used to predict remaining cycle time,
activity durations or attribute values. Here, however, contextual properties of
process entities are not considered yet. As such, no definite description of what
is causing performance differences can be given.

In our technique, performance differences are explained by the contextual
information underlying those differences. Furthermore, our approach does not
depend on a process model, and thus can be applied to both structured as well
as flexible processes where no process description is present. We purposely utilize
broad definitions for context and performance functions in order to generalize
our analysis approach. However, more detailed formalizations can be found in lit-
erature and can be used to further clarify, formally define, and represent context
and performance functions. For example, in [9], the authors provide an approach
to characterize the context of a process in a given domain through conceptual
models structured in layers. Here, both internal and external context is included
and the relationship between entities is formalized. In [10] a meta-model is pro-
posed that can be used to unambiguously define process performance indicators
that are amenable to automated analysis. Techniques such as these can be used
in conjunction with our approach to further automate the analysis of process
performance.

7 Conclusion

Most existing process mining techniques focus on process discovery and confor-
mance checking. Relatively little research has been performed on the analysis
of business process performance. Performance characteristics of process entities
such as events, activities, cases, resources, or entire processes typically highly
depend on their context. This paper has introduced a novel approach to analyze
key process performance indicators by considering the process context. We have
introduced a generic framework that aids in discovering significant differences
in performance results and their causes. Process entities are assigned descriptive
context labels by applying context functions to them. Statistical hypothesis test-
ing is used to verify whether a context label explains a significant difference in
performance. In other words, using this technique, the effect of any context on
KPIs can be automatically analyzed. Insights can be gained on which contextual
properties of process entities have an effect on the key performance indicators
of business processes. As such, root causes for delays, bottlenecks, deviations to
protocol and violations of service level agreements, etc. can be discovered.



A Generic Framework for Context-Aware Process Performance Analysis 315

Even though a generic framework was introduced, often specific context func-
tions need to be created to analyze real-life processes. To this end, several context
functions have been mentioned. Sometimes, however, the contexts underlying
performance differences are domain-dependent and therefore have to be defined
by the process analyst. To this end, we have implemented the approach as a
generic and extensible framework in the process mining tool ProM. Also, as
described in Subsect. 4.3, careful interpretation of the results of the automated
analysis technique is essential. In order to better assist the analyst in provid-
ing performance optimizations, more work is needed to analyze the impact of
discovered differences in performance. Information on significant performance
differences can be used as input for better prediction techniques or can be used
in a streaming data monitoring setting, where states of alert are reached once
differences become significant.

Besides using only event data, information obtained from process models can
aid in providing more accurate measurements. In case of parallelism for example,
process models can help to identify simultaneous activities. Furthermore, process
models can be used when timing information stored in the event log is imprecise
or (partially) missing. Using alignments, process models and event logs can be
combined to show conformance and performance information. However, how to
use process models to better calculate performance is outside the scope of this
paper. More information on this topic can be found in [2,3,7,18]. In the future
we would also like to look into how to visualize the results in different ways.
For example, the most impactful differences in performance can be translated
in natural language. Process models can also be extended with information on
performance issues and their root causes.
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