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Abstract. Until the turn of the century, most Petri nets were made by hand or
generated from another model (e.g., though synthesis). Such Petri nets where
mostly used to provide a specification or design of a system (as-is or to-be). Ana-
lysis of these nets aimed at detecting behavioral anomalies like deadlocks and
livelocks (through verification) and understanding performance (through simula-
tion or analytical techniques). Structure theory provided unique ways to facilitate
such analysis by exploiting the structure of (subclasses of) Petri nets. However,
over the last decade one could witness a dramatic change in the way we analyze
the behavior of discrete processes and systems. Model-driven approaches are re-
placed or complemented by data-driven approaches. The abundance of event data
makes it feasible to study processes and systems directly. Process mining techni-
ques allow for the discovery of Petri nets from event data and can be used to check
conformance. Through process mining we are able to connect Petri nets to main-
stream developments related to Big data, data science, and machine learning. The
direct confrontation between modeled and observed behavior is valuable, but also
provides many challenges. For example, one needs to deal with huge event logs
and processes that change over time and exhibit deviating behavior. Can structure
theory also play a key role in such data-driven analysis? The answer is affirma-
tive. Elements of structure theory are already widely used in process mining and
Business Process Management (BPM). Moreover, further breakthroughs are pos-
sible by tailoring structure theory towards more data-driven problems.

1 Introduction

Traditionally, Petri nets are made by hand or generated from other models [23, 32, 34,
35]. Petri nets can be used to design or specify discrete dynamic systems. Most Petri
nets described in literature where created manually. However, program code, lower-
level models (e.g., transition systems), and higher-level models (e.g., BPMN or UML
models) can be transformed into Petri nets. Most of these transformations are quite
straightforward, although the devil is often in the details and abstractions are needed.
For example, the de facto standard for business process modeling—BPMN (Business
Process Model and Notation) [33]—uses token passing. Also UML activity diagrams
use token-based semantics and a notation similar to Petri nets. Examples of transforma-
tions that are more involved include the Petri net synthesis techniques known under the
name of “region theory” [25, 20, 10]. State-based region theory starts from a transition
system and aims to produce a Petri net that has the same behavior while capturing con-
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currency. For example, in [20] it is shown that any transition system can be transformed
into a bisimilar Petri net.

Given a Petri net, one can apply verification and performance analysis techni-
ques. Verification is concerned with the correctness of a system or process. Verifica-
tion techniques may be used to find deadlocks, livelocks, and other anomalies. It is also
possible to define desirable properties in some temporal logic and then check whether
the model has these properties. Performance analysis focuses on flow times, waiting
times, utilization, and service levels. Typically, three dimensions of performance are
identified: time, cost and quality. For each of these performance dimensions different
Key Performance Indicators (KPIs) can be defined. Simulation, queueing models, or
Markov models can be used to analyze systems with respect to such KPIs.

Mainstream analysis techniques do not exploit the structure of the model. For ex-
ample, verification techniques may try to exhaustively traverse the state space and si-
mulation approaches randomly sample behavior independent of the model’s structure.
One of the key advantages of using Petri nets is that knowledge about the structure can
be exploited during analysis [16]. The marking equation can be used to rule out mar-
kings that cannot be reachable [37, 19]. Siphons and traps can be used to reason about
deadlocks [21, 22]. Place and transition invariants are used to identify properties that
are preserved because of the net’s structure [27, 32, 31, 18]. Reduction rules can be used
to make problems smaller while guaranteeing the same outcome [13, 14, 22, 46, 41].
Free-choice nets [15, 22, 39, 42], Petri nets without conflicting splits and joins [26],
and marked graphs [32] are well-known subclasses of Petri nets. These subclasses can
be identified based on their structure and often analysis becomes easier, e.g., one can
decide whether a free-choice net is live and bounded in polynomial time [22]. Perfor-
mance analysis may also benefit from structural theory [11, 17], e.g., one can compute
performance bounds for marked graphs and free-choice nets.

Petri nets representing workflows or other types of business processes can also be-
nefit from knowledge about the structure of the model. Consider for example the class
of workflow nets (WF-nets) and the corresponding soundness notion [1]. A WF-net is
a Petri net with a dedicated source place where the process starts and a dedicated sink
place where the process ends. Moreover, all nodes are on a path from source to sink. A
WF-net is sound if it is always possible to terminate and there are no dead parts in the
model. Soundness can be checked in polynomial time for several subclasses, including
free-choice WF-nets [7, 40].

The examples above show that structure theory allows for the identification of Petri
nets whose structure strongly influences their behavior. Moreover, structure theory can
also be used to compute bounds or shown the (im)possibility of particular behaviors.

Structure theory developed over the last fifty years with a strong focus on model-
based analysis [16]. However, the spectacular growth of data is rapidly changing the
way we analyze behavior. Rather than analyzing modeled behavior, we can now analyze
the actual behavior of processes and systems!

Data are collected about anything, at any time, and at any place. It has become pos-
sible to record, derive, and analyze events at an unprecedented scale. Events may take
place inside a machine (e.g., an X-ray machine or baggage handling system), inside an
enterprise information system (e.g., an order placed by a customer or the submission of
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a tax declaration), inside a hospital (e.g., the analysis of a blood sample), inside a social
network (e.g., exchanging e-mails or twitter messages), inside a transportation system
(e.g., checking in, buying a ticket, or passing through a toll booth), etc. [5]. Events
may be “life events”, “machine events”, or “organization events”. The term Internet of
Events (IoE), coined in [4], includes (1) the Internet of Content (traditional web pages,
articles, encyclopedia like Wikipedia, YouTube, e-books, newsfeeds, etc.), (2) the Inter-
net of People (all data related to social interaction, including e-mail, Facebook, Twitter,
forums, LinkedIn, etc.), (3) the Internet of Things (physical objects connected to the
network), and (4) the Internet of Locations (data that have a geographical or geospa-
tial dimension, e.g., generated by smartphones and cars). The IoE provides a new and
extremely valuable source of information for analyzing processes and systems.

The abundance of event data triggers the question: Do we need structure theory in
this dynamic data-driven world? We believe that, more than ever, there is a need to use
and develop structure theory. This extended abstract only provides a few pointers in this
direction. However, structure theory is already used in areas such as Business Process
Management (BPM) and process mining. Moreover, in the era of Big data, there is a
need to analyze processes efficiently. This can only be done by exploiting the structure
of process models.

2 Process Mining and Business Process Management

Developments in Business Process Management (BPM) over the last two decades have
resulted in a well-established set of principles, methods and tools that combine kno-
wledge from information technology, management sciences and industrial engineering
for the purpose of improving business processes [3, 24, 45]. Until recently, mainstream
BPM approaches were predominantly model-driven without considering the “evidence”
hidden in the data [3]. However, this changed dramatically with the uptake of process
mining.

Process mining aims to exploit event data in a meaningful way, for example, to
provide insights, identify bottlenecks, anticipate problems, record policy violations, re-
commend counter-measures, and streamline processes [5].

The interest in process mining is reflected by the growing number of commercial
process mining tools available today. There are over 25 commercial products suppor-
ting process mining (Celonis, Disco, Minit, myInvenio, ProcessGold, QPR, etc.). All
support process discovery and can be used to improve compliance and performance
problems. For example, without any modeling, it is possible to learn process models
clearly showing the main bottlenecks and deviating behaviors.

Starting point for any process mining effort is a collection of events commonly
referred to as an event log (although events can also be stored in a database). Each event
is characterized by:

– a case (also called process instance), e.g., an order number, a patient id, or a busi-
ness trip,

– an activity, e.g., “submit form” or “make decision”,
– a timestamp, e.g., “2017-06-30T09:56:30+00:00”,
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– additional (optional) attributes such as the resource executing the corresponding
event, the type of event (e.g., start, complete, schedule, abort), the location of the
event, or the costs of an event.

The lion’s share of process mining research focused on the discovery of process
models from event data [5]. The process model should be able to capture causalities,
choices, concurrency, and loops. Process discovery is a notoriously difficult problem
because event logs are often far from complete and there are at least four competing
quality dimensions: (1) fitness, (2) simplicity, (3) precision, and (4) generalization. Most
discovery algorithms described in the literature (e.g., the α-algorithm [8], the region-
based approaches [12, 38, 44], and the inductive mining approaches [28, 29, 30]) pro-
duce formal models having clear semantics. All of these approaches use Petri nets as a
representation or the results they return can easily be converted into Petri nets [5].

We strongly believe that the communities working on BPM and process mining can
benefit more from structure theory. Moreover, we also believe that process mining pro-
vides novel and exciting challenges for people working on structure theory. Given the
developments sketched before, it is important to use the abundantly available data. Pu-
rely model-driven analysis only makes sense when designing a completely new system
of process.

In the remainder, we briefly sketch two examples where structure theory could play
a more prominent role. In this extended abstract, we only highlight some of the oppor-
tunities and challenges without going into detail.

3 Process Discovery

The goal of process discovery is to learn a process model from event data. Typically, an
event log L ∈ B(A∗) is used as input. L is a non-empty multiset of traces over some
activity set A. A process model Mod ⊆ A∗ defines a set of traces over some activity set
A. Different representations can be used to describe Mod . One can use for example a
so-called accepting labeled Petri net described by the triplet AN = (N,Minit ,Mfinal)
where N = (P, T, F,A, l) is a labeled Petri net, Minit ∈ B(P ) is the initial marking,
andMfinal ∈ B(P ) is the final marking. P is the set of places, T is the set of transitions,
and F is the flow relation. Transitions can have a label as defined by labeling function
l ∈ T 6→ A. Transition t ∈ T has a label l(t) ∈ A if t ∈ dom(l). Otherwise, t is
silent (i.e., its occurences are not recorded). Any firing sequence leading from Minit

to Mfinal corresponds to an accepting trace σ ∈ A∗.1 The set of all possible accepting
traces defines the behavior of AN : ModAN ⊆ A∗.

A discovery algorithm can be described as a function disc ∈ B(A∗) → P(A∗).
Note that P(A∗) denotes the powerset of traces over A, i.e., disc(L) ⊆ A∗. Ideally,
the discovered model allows for all traces observed, i.e., {σ ∈ L} ⊆ disc(L). Ho-
wever, it is easy to define degenerate solutions like discoverfit(L) = {σ ∈ L} and
discunderfit(L) = A∗ that do not provide any insights. discoverfit basically enumerates

1 Note that one needs to apply the labeling function to each transition occurrence in the firing
sequence. Transitions without a visible label are skipped.
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the event log and is likely to severely overfit the data. discunderfit allows for any be-
havior involving activities A. Discovery function disc should generalize over the input
data that consists of examples only.2 At the same time, we may want to abstract from
infrequent behavior.

The representation of the discovered process model plays an important role in ba-
lancing between overfitting and underfitting. The so-called representational bias de-
fines the class of model that can be returned by the discovery algorithm. Accepting
labeled Petri nets form such a class. One can impose additional restrictions on the class
of accepting labeled Petri nets. For example, one can limit the representational bias
to free-choice nets, WF-nets, or sound WF-nets. Such constraints may aid the under-
standability of the resulting process models, e.g., free-choice nets separate choice and
synchronization and WF-nets have a clear begin and end.

Discovery algorithms producing Petri nets may return a model that is not a WF-
net or that is not sound. This makes the interpretation of the discovered process model
very difficult. The α miner [8] and heuristic miner [43] aim to return a sound WF-net,
but often do not. Parts of the model may be disconnected and cases may get stuck in
the middle of the process. Discovered Petri nets having deadlocks and and livelocks
are difficult to interpret: They should describe the observed behavior but confuse the
analyst instead. The deadlocking or livelocking paths do not contribute to the set of
accepting traces ModAN ⊆ A∗. Region-based approaches [12, 38, 44] provide more
control over the result. However, without special provisions the set of accepting traces
is ill-defined or hard to interpret. The family inductive mining approaches [28, 29, 30])
produce process trees which form a subclass of sound WF-nets. However, the output
of these techniques is limited to process trees: a small and very particular subclass of
process models.

We would like to discover process models with a configurable representational bias
and therefore see many opportunities for structure theory. The representational bias,
i.e., the class of models that can be discovered, should not be accidental. The class
should be defined based on desirable (1) structural properties and (2) behavioral pro-
perties. Structural properties include possible constraints like:

– There is one source place and one sink place marking the start and completion of a
case (i.e., a WF-net) [1, 7].

– There should be no mixtures of choice and synchronization (i.e., the net is free-
choice) [22].

– Splits and joins should match (i.e., there are no PT- and PT-handles) [26].
– The sort-circuited Petri net should have an S-cover and/or a T-cover [22].
– Places cannot be a split and a join at the same time (for any p ∈ P : | •p| ≤ 1 or
|p• | ≤ 1).

– Places have at most k inputs and outputs for any p ∈ P : | •p|+ |p• | ≤ k.
– Etc.

Behavioral properties include [7]:
2 Loops can only be unfolded a finite number of times in the event log. Moreover, in case of

concurrency, one cannot expect to see all interleavings in the log.
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– Soundness: there are no dead parts and it is always possible to reach the final mar-
king and when it is reached the rest of the net is empty.

– Generalized soundness: the same as soundness but with any number of tokens in
the source place.

– Relaxed soundness: there is at least one execution that ends up in the final marking.
– Deadlock free: the only reachable dead marking is the final marking.
– Etc.

As shown in [2, 40, 7] there are interesting relations between structure and behavior.
These are key to limit the search space to the desired class of models. It is not very
effective to generate models first and subsequently check whether they match the desi-
red representational bias. Therefore, structural techniques are needed to limit the search
space during discovery.

4 Conformance Checking

After discussing the (possible) role of structure theory in control-flow discovery, we
now look at the situation in which both a process model and an event log are given.
The model may have been constructed by hand or may have been discovered. Moreo-
ver, the model may be normative or descriptive. Conformance checking relates events
in the event log to activities in the process model and compares both. The goal is to
find commonalities and discrepancies between the modeled behavior and the observed
behavior.

For conformance checking an event logL ∈ B(A∗) and a process model Mod ⊆ A∗
are used as input. Here we assume that process model Mod was specified in terms
of accepting labeled Petri net AN = (N,Minit ,Mfinal) with N = (P, T, F,A, l).
The result of conformance checking is a diagnosis identifying and explaining discre-
pancies. Hence, a conformance checking algorithm can be described as a function
conf ∈ B(A∗) × P(A∗) → D where D is the set of possible diagnostics. For ex-
ample, we may compute the fraction of cases in the log that fit the model perfectly.
Formally: conf (L,Mod) = |[σ∈L|σ∈Mod]|

|L| (note that L is a multiset and Mod is a set).
Simply counting the fraction of fitting cases is useful, but does not provide detailed

diagnostics. Moreover, one cannot distinguish between cases that deviate just a bit and
cases that are completely unrelated. Therefore, more advanced techniques have been de-
veloped. The token-based conformance checking approach proposed in [36] counts the
number of missing and remaining tokens. State-of-the-art techniques in conformance
checking are often based on the notion of alignments [6, 9]. Alignments relate events
in the log to transition occurrences in the model. An alignment is a sequence of moves.
There are three types of moves: synchronous moves (model and log agree), moves on
model only (the model needs to make a move that is not matched by the event log),
and moves on log only (an event in the log cannot be matched by the model). Here
we cannot give the details. However, the construction of an optimal alignment can be
formulated as a shortest path problem in the state space obtained by taking the synchro-
nous products of both the model and log. This shortest path problem greatly benefits
from the marking equation which can be used to (1) prune the state-space by removing
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paths that cannot lead to the final marking and (2) to compute underestimates for the
remaining distance [6, 9]. This is a wonderful example of using structure theory in the
context of process mining.

Apart from alignments there may be other opportunities for structure theory. If there
is a clear relation between structure and behavior, then there are opportunities to speed-
up conformance checking.

5 Outlook

In this extended abstract, we positioned structure theory in the context of more data-
driven challenges. Structure theory has been applied to verification questions in Busi-
ness Process Management (BPM). For example, the soundness notion for WF-nets can
be related to a variety of “structural ingredients”, e.g., by using properties specific for
free-choice WF-nets or by applying the marking equation to get initial diagnostics. Ho-
wever, even more promising are the applications of structure theory in process mining.
We provided two example questions (process discovery and conformance checking)
where structure theory could play a prominent role. Process discovery is probably the
most important and most visible intellectual challenge related to process mining. It is
far from trivial to construct a process model based on event logs that are incomplete
and noisy. New process mining approaches should reconsider the representational bias
to be used. However, this is only feasible for real-life event logs if the structure can
be related to behavior. Alignments are a powerful tool to relate modeled and observed
behavior. However, computing optimal alignments requires solving large optimization
problems for every trace in the event log. Fortunately, the marking equation can been
used to prune the search space and guide the search algorithms.

We hope that this extended abstract will encourage people working on structure
theory to consider the many interesting and challenging problems in process mining.
There are great opportunities for original research and a need to better cope with the
abundance of event data. Clearly, it does not make sense to consider only models when
analyzing existing processes and systems. We should also take into account the data to
remain relevant for the stakeholders.
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