
Data-driven process discovery : revealing conditional
infrequent behavior from event logs
Mannhardt, F.; de Leoni, M.; Reijers, H.A.; van der Aalst, W.M.P.

Published in:
Advanced Information Systems Engineering: 29th International Conference, CAiSE 2017, Essen, Germany,
June 12-16, 2017, Proceedings

DOI:
10.1007/978-3-319-59536-8_34

Published: 01/01/2017

Document Version
Accepted manuscript including changes made at the peer-review stage

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Mannhardt, F., de Leoni, M., Reijers, H. A., & van der Aalst, W. M. P. (2017). Data-driven process discovery :
revealing conditional infrequent behavior from event logs. In E. Dubois, & K. Pohl (Eds.), Advanced Information
Systems Engineering: 29th International Conference, CAiSE 2017, Essen, Germany, June 12-16, 2017,
Proceedings (pp. 545-560). (Lecture Notes in Computer Science; Vol. 10253). Cham: Springer. DOI:
10.1007/978-3-319-59536-8_34

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Jan. 2018

http://dx.doi.org/10.1007/978-3-319-59536-8_34
https://pure.tue.nl/en/publications/datadriven-process-discovery--revealing-conditional-infrequent-behavior-from-event-logs(e907a450-72c4-413a-86c4-704d88766fa2).html

Data-driven Process Discovery - Revealing Conditional

Infrequent Behavior from Event Logs

Felix Mannhardt1, Massimiliano de Leoni1 , Hajo A. Reijers2,1,

Wil M.P. van der Aalst1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

f.mannhardt, m.d.leoni, h.a.reijers, w.m.p.v.d.aalst@tue.nl

Abstract. Process discovery methods automatically infer process models from

event logs. Often, event logs contain so-called noise, e.g., infrequent outliers or

recording errors, which obscure the main behavior of the process. Existing meth-

ods filter this noise based on the frequency of event labels: infrequent paths and

activities are excluded. However, infrequent behavior may reveal important in-

sights into the process. Thus, not all infrequent behavior should be considered as

noise. This paper proposes the Data-aware Heuristic Miner (DHM), a process dis-

covery method that uses the data attributes to distinguish infrequent paths from

random noise by using classification techniques. Data- and control-flow of the

process are discovered together. We show that the DHM is, to some degree, ro-

bust against random noise and reveals data-driven decisions, which are filtered

by other discovery methods. The DHM has been successfully tested on several

real-life event logs, two of which we present in this paper.

Keywords: Process Mining · Process Discovery · Event Logs · Noise · Rules

1 Introduction

Process models are used by organizations to document, specify, and analyze their pro-

cesses [1]. A process model describes the expected behavior of a process in terms of

its activities (i.e., units of work) and their ordering. Most contemporary processes are

supported by information systems. Often, those systems record information about the

execution of processes in databases. With the abundance of such data, there is a growing

interest in process discovery [2], i.e., revealing the actual execution of processes from

events. Process discovery methods automatically infer process models from event logs.

One important challenge for process discovery methods is to handle event logs with

noise [2,3]. In practice, event logs often contain noise, e.g., out-of-order events, ex-

ceptional behavior, or recording errors [4]. Including all such infrequent events in the

process discovery often leads to unusable, complex models. Therefore, noise filtering

methods that distinguish noise from the regular behavior of the process may be useful.

Some of the early techniques for process discovery assumed noise-free event logs

(e.g., the Alpha algorithm [5] and the region based approaches [6]). These techniques

are of limited use in real-life settings. Most of the more recent and more sophisticated

process discovery methods support noise filtering [3]. Existing noise-filtering methods

are based on frequencies [7,8,9,10], machine-learning techniques [11,12], genetic algo-

rithms [13], or probabilistic models [14,15]. All of those methods focus on the control-

flow perspective (i.e., the event labels) when filtering noise. Dedicated noise filtering

methods [16,17] are also based on frequencies.

However, processes are often governed by rules. Decision are taken on the basis

of available data, available resources, and the process context. Some paths may be ex-

ecuted infrequently because the corresponding conditions are rarely fulfilled. Existing

methods based solely on the control-flow perspective would disregard such infrequent

behavior as noise. However, some infrequent behavior may be characterized by very de-

terministic rules, and, thus, be of great interest to process analysts (e.g., in the context of

risks and fraud). For example, shortcuts in a process might only be taken by a specific

resource, undesired behavior might be subject to conditions, and infrequently actions

might be legitimate only for special types of cases. These kind of events should not be

set aside as noise. Methods exist to discover such decision rules [18,19,20] but all rely

on a previously discovered process model of the process. Hence, existing methods do

not leverage the full potential of the data perspective. Data- and control-flow need to be

discovered together. Recent work on declarative process discovery [21] considers the

data perspective. However, similar to association rule mining, sets of rules rather than

full process models are returned.

In this work, we propose the Data-aware Heuristic Miner (DHM), which takes the

data perspective into account when discovering the control flow of a process. The DHM

uses classification techniques to reveal data dependencies between activities, and uses

these data dependencies to distinguish noise from infrequent conditional behavior. It

returns process models that yield a better insight into the data perspective of processes

by revealing hidden data dependencies while filtering random noise. The evaluation on

real-life cases shows that the DHM reveals additional insights not returned by state-

of-the-art process discovery methods. We confirmed the discovered conditions with a

domain expert for one of the real-life event logs. The experiment on the synthetic data

shows that the DHM is resilient to a certain degree of randomly injected noise, which is

not characterized by data conditions. It rediscovers the original model, whereas earlier

techniques either show too much, or too little behavior. The contribution of this paper is

a process discovery method that is able to distill important information from infrequent

behavior instead of dismissing it as noise.

The remainder of this paper is structured as follows. We start by introducing the

problem with an example in Sect. 2. Then, required preliminaries are introduced in

Sect. 3. Section 4 presents our novel process discovery method. We evaluate our method

using both synthetic and real-life data in Sect. 5. Finally, Sect. 6 concludes the paper.

2 Problem Description

Figure 1 shows a simplified process from the health care domain. We use this example

in the paper to motivate the relevance of the data perspective for noise filtering. When

patients arrive at the hospital they are assigned a triage priority, registered and assigned

to a responsible nurse. Only in exceptional cases, patients are assigned the white triage

priority. Those patients typically, leave the emergency ward directly after registration

Fig. 1. A simplified process in BPMN notation from the emergency ward of a hospital, which is

used as motivating example throughout this paper.

(a) IM filters little of the injected noise

and fails to reveal behavior A and B .

(b) HM filters the injected noise well, but

fails to show behavior A , B and C .

Fig. 2. Models discovered by IM and HM on an event log generated from the example process.

since their injuries do not require the attendance of a doctor A . All other patients are

admitted to the emergency ward. While patients are in the emergency ward a nurse

periodically checks their condition. In parallel to this, for the group of patients under

consideration, an X-ray is taken and a doctor visits the patient. There are two different

work practices regarding these two activities. Normally, the doctor visits the patients af-

ter which the X-Ray is taken. One particular nurse (Alice) re-sequences these activities

in the reversed order to improve the process: first the X-ray is taken and, only there-

after, the doctor visits the patient B . As this work practice is only followed by one

nurse, it is observed less frequently. Afterwards, the doctor visits the patient one more

time and decides on the type of dismissal. Then, the patient is prepared for a possible

transfer. For patients with the out dismissal type an ambulance needs to be organized

C . This process contains three examples of infrequent, data-dependent behavior: A a

data-dependent path, B data-dependent re-sequencing, and C a data-dependent activ-

ity. The goal of our work is to rediscover such behavior, while ignoring random noise.

Assume an event log of the process in Figure 1 obtained from the information sys-

tems of the hospital. As motivated in the introduction, it is likely that this event log

contains noise. We applied both the Heuristic Miner (HM) [8] and the Inductive Miner

(IM) [9] as representatives of discovery methods supporting noise filtering on such an

event log with a controlled degree of noise1. Figure 2 shows the resulting process mod-

1 Here, in 5% of the cases one additional event was randomly executed out of the original order.

Table 1. Three traces of the example process with attributes activity, priority, nurse, and type.

(a) Trace σ1 ∈ L

id act p n t

e11 Triage Red

e12 Register Joe

e13 Check

e14 Check

e15 Check

e16 Visit

e17 X-Ray

e18 F. Visit ICU

e19 Prepare

(b) Trace σ2 ∈ L

id act p n t

e21 Triage Red

e22 Register Alice

e23 Check

e24 X-Ray

e25 Visit

e26 Check

e27 F. Visit out

e28 Prepare

e29 Org. Amb.

(c) Trace σ3 ∈ L

id act p n t

e31 Triage Red

e32 Register Joe

e33 Check

e34 Visit

e35 X-Ray

e36 Check

e37 Check

e38 F. Visit NC

e39 Prepare

els in BPMN notation. Clearly, both methods are unaware of the data perspective. There-

fore, they fail to distinguish between random noise and the infrequent data-dependent

behavior A , B , and C . It might be possible to tweak the parameters of the algorithms

such that more behavior is revealed (e.g., through grid search). Still, finding the correct

parameter setting that does not include unrelated noise requires deep knowledge about

the underlying process. Therefore, this is often not feasible. Moreover, it is not possible

to reveal the infrequent data-dependent behavior by using decision mining techniques.

Those techniques can only reveal decision rules for paths that are reflected in the process

model, thus low-frequent but deterministic behavior remains undetected.

In the remainder of this paper, we describe the DHM, which extends the ideas of the

HM with the use of classification techniques to reveal data dependencies. Our method,

indeed, rediscovers the behavior of the process as shown in Figure 1.

3 Preliminaries

An event log stores information about activities that were recorded by information sys-

tems supporting the execution of a process [2]. Each execution of a process instance

results in a sequence of events. Each events corresponds to the execution of one activity.

Given universes of attributes A and values U , an event log L = (E,Σ ,#,L) consists of:

– E a finite set of unique event identifiers;

– Σ ⊆U a finite set of activities;

– # : E → (A 6→U) obtains the attribute values recorded for an event;

– L ⊆ E∗ the set of traces over E . A trace σ ∈ L records the sequence of events for

one process instance. Each event occurs only in a single trace.

Given an event e ∈ E , we write #a(e) ∈ U to obtain the value u ∈ U recorded for at-

tribute a ∈ A. We require events to record at least the activity attribute: #act(e) ∈ Σ is

the name of the activity that caused the event. Given a trace 〈e1, . . . ,en〉 ∈ L , we de-

fine val : E → (A 6→ U) to collect the latest attribute values recorded before an event

occurred, i.e., val(ei) = val(ei−1)⊕#(ei−1) with special case val(e1) = f∅.2 We denote

2 f ⊕g denotes the overriding union of f and g, and f∅ : ∅→U is the empty function.

Ⓐ
Ⓑ Ⓒ sosi

Fig. 3. A causal net (C-net) of the example process. Activities are depicted with boxes, the depen-

dency relations as edges, and the binding functions as black dots on the edges. The unique start

and end activities are shown as black boxes. The dotted edges are explained in Sect. 5.

the predecessor event in the trace by •(ei) = ei−1 with special case •(e1) = ⊥. Finally,

in the remainder of this paper, we assume that a particular event log L = (E,Σ ,#,L)
exists to avoid unnecessary notation.

Example 1. Table 1 shows three traces σ1,σ2,σ3 ∈ L based on the process shown in

Fig 1. Each event has a unique identifier. We can identify the activity of event e11 as

#act(e11) = Triage. Moreover, event e11 writes the attribute value #Priority(e11) = Red.

We obtain the latest attribute values recorded before e18 occurred as val(e18) = f , with

f (Priority) = Red and f (Nurse) = Joe.

Our method uses Causal nets (C-nets) to represent the discovered process model [8,22].

A C-net is a tuple (Σ ,si,so,D, I,O) where:

– Σ is a finite set of activities;

– si ∈ Σ is the unique start activity;

– so ∈ Σ is the unique end activity;

– D ⊆ Σ ×Σ is the dependency relation;

– B = {X ⊆ P(Σ) | X = {∅}∨∅ /∈ X} are possible bindings;3

– I ∈ Σ → B is the set of input bindings per activity;

– O ∈ Σ → B is the set of output bindings per activity,

such that the dependency relations match the input and output bindings, i.e., D =
{(s1,s2)∈Σ ×Σ | s1 ∈

⋃

β∈I(s2)
β ∧s2 ∈

⋃

β∈O(s1)
β}. We require C-nets to have a unique

start and end activity, i.e., {si} = {s ∈ Σ | I(s) = {∅}} {so} = {s ∈ Σ | O(s) = {∅}}.

The input and output binding functions of a C-net define its language. We describe the

C-net semantics by example, the full semantics are described in [22].

Example 2. Figure 3 shows how the example from Figure 1 can be modeled as C-net.

Activities are depicted with boxes and dependency relations as edges. There are unique

start and end activities: si and so. Output and input bindings are depicted by black dots

on the edges in Figure 3. Bindings indicate which combinations of activities can pre-

cede or follow a given activity. Connected dots show activities belonging to the same

binding. We abbreviate activity names by using the first letter. For example, after ac-

tivity si, activities T and R follow in a sequence, i.e., O(si) = {{T}}, I(T) = {{si}}
and O(T) = {{R}}, I(R) = {{T}}. Then, there are multiple alternative choices. Three

3 P(Σ) denotes the powerset of set Σ .

output bindings are defined for R: O(R) = {{so},{C,X},{C,V}}. Each set of activi-

ties represents a possible choice of following activities (XOR gateway). Either only so,

or both C and X, or both C and V need to happen. Activities in the same set can be

executed in parallel (AND gateway).

4 Data-driven Process Discovery

The DHM builds on the insight that infrequent but data-dependent process behavior is

of great interest to process analysts and, thus, should not be disregarded as noise. We

extend the ideas of the HM [8] with a measure for conditional dependency.

4.1 Data-aware Dependency Measure

To discover data-dependent behavior in the event log, we make use of classification

techniques (e.g., decision trees). More specifically, we rely on binary classifiers predict-

ing directly-follows relations based on attribute values recorded in the event log. We

denote these classifiers as dependency conditions.

Definition 1 (Dependency conditions). Given universes of attributes A, values U, and

activities Σ ⊆ U, we define the dependency conditions C ∈ (Σ ×Σ) → ((A 6→ U) →
{0,1}). A dependency condition Ca,b(x) = (C(a,b))(x) is a binary classifier that pre-

dicts whether an event of activity a is directly followed by an event of activity b for the

attribute values x ∈ (A 6→ U), i.e., Ca,b(x) = 1 when b is predicted to directly follow a

and Ca,b(x) = 0 when a different activity is predicted.

In the remainder of the paper, we denote with 1 a special dependency condition function

that returns classifiers predicting 1 regardless of the attribute values, i.e., ∀a,b∈ Σ ,∀x ∈
(A 6→U) : 1a,b(x) = 1. Given a dependency condition, we establish the frequency with

which activities are observed to directly follow other activities in the event log when

the condition holds. We denote this as: conditional directly follows.

Definition 2 (Conditional directly follows relation). Given activities a,b ∈ Σ and de-

pendency conditions C, we write a >C,L b if and only if an execution of activity a with

the latest attribute values x is directly followed by an execution of activity b under de-

pendency condition Ca,b(x). We denote the frequency of a conditional directly follows

relation a >C,L b in the event log as:
∣

∣a >C,L b
∣

∣= |{e ∈ E |#act(
•(e)) = a∧ •(e) 6=⊥∧#act(e) = b

∧Ca,b(val(e)) = 1}|.

Now, we define a data-aware variant of the dependency measure proposed by the HM.

Definition 3 (Conditional dependency measure). Given activities a,b∈ Σ and depen-

dency conditions C. We define a ⇒C,L b : Σ ×Σ → [−1,1] as the strength of the causal

dependency from a to b under condition Ca,b in the event log:

a ⇒C,L b =











|a>C,Lb|−|b>C,La|
|a>C,Lb|+|b>C,La|+1

for a 6= b,

|a>C,La|
|a>C,La|+1

otherwise.

The intuition behind the data-aware variant of these measures is that a relation (a,b)
should be included in the dependency relations of the discovered causal net when it is

clearly characterized by a certain dependency condition Ca,b.

Example 3. Consider an event log L with 50 traces like σ1, 50 traces like σ2 and 50

traces like σ3 as shown in Table 1. We determine the conditional dependency mea-

sure X ⇒C,L V from activity X-Ray (X) to activity Visit (V). We assume that condi-

tion CX ,V (v) returns 1 only if attribute Nurse values takes on the value Alice. Then,

we obtain the number of times X is directly followed by V under condition CX ,V as
∣

∣X >C,L V
∣

∣= 50, and the number of times V is directly followed by X under conditions

C as
∣

∣V >C,L X
∣

∣= 0. Therefore, the conditional dependency measure under conditions

C is X ⇒C,L V = 50−0
50+0+1

≈ 0.98. This indicates a strong dependency relation from activ-

ity X to activity V under condition CX ,V . By contrast, if we consider the unconditional

dependency measure X ⇒1,L V , then we obtain 50−100
50+100+1

≈ −0.33. Thus, when disre-

garding the data perspective, both activities appear to be executed in parallel.

4.2 Discovering Data Conditions

We described the conditional directly-follows relation and the conditional dependency

measure. We use the latter measure to determine which relations should be included in

the C-net. Both concepts rely on discovered dependency conditions. Here, we describe

how to train a classifier that can be used as dependency condition. We build a set of

training instances for every combination of activities (a,b) ∈ Σ ×Σ .

In the remainder, B(X) denotes the set of all multi-sets over a set X . We use X =
[a2,b] as a short-hand notation to denote the multi-set X = [a,a,b], and

⊎

to denote the

sum of two multi-sets, i.e., X
⊎

[b,c] = [a2,b2,c].

Definition 4 (Training Instances). Given a source activity a ∈ Σ , a candidate activity

b ∈ Σ , and a dependency threshold θdep ∈ [0,1]. Let a• ⊆ Σ be the set of activities s that

directly follow a in the event log with an unconditional dependency measure above the

threshold θdep, i.e., a• = {s ∈ Σ | a ⇒1,L s ≥ θdep}. We collect those events XL,a,b ⊆ E

that directly follow an execution of a in the event log, and refer to activities in a•, or to

the candidate activity b, i.e., XL,a,b = {e ∈ E | •(e) = a∧#act(e) ∈ a•∪{b}}. Function

TL,θdep
∈ (Σ ×Σ)→ B((A 6→U)×{1,0}) returns the multi-set of training instances:

TL,θdep
(a,b) =

⊎

e∈XL,a,b

[(val(e),cl(e))] with cl(e) =

{

1, for #act(e) = b

0, for #act(e) 6= b

Conceptually, our method is independent of the used classification algorithm. Con-

cretely, we employ decision trees (C4.5) [23] as an efficient method that result in human

interpretable conditions. We build the dependency conditions C by assembling a set of

training instances TL,θdep
(a,b) and training a decision tree for each possible relation

(a,b) ∈ Σ ×Σ . Only good dependency conditions with discriminative power are used

later on. We use a score q(Ca,b)∈ [0,1] to determine the quality of a particular condition

Ca,b. There are many possible performance measures for binary classification algorithm

that can be used together with our method. None of the measures is universally accepted,

the correct choice depends on the concrete application area.

We opted for Cohen’s kappa (κ) [24], which indicates whether the prediction was

better than a prediction by chance (i.e., for κ > 0). Kappa favors a good prediction per-

formance on the minority class, which is a desirable property in our setting. Moreover,

it has been recommended for nonparametric binary classifiers, such as C4.5, on data

with imbalanced class priors [25]. However, we do not claim κ to be the best measure

and, thus, foresee other measures to be plugged-in depending on the application area.

Example 4. Consider the dependency threshold θdep = 0.9 and an event log contain-

ing 150 traces, where 50 traces record the same values as σ1, 50 traces the same

values as σ2 and 50 traces the same values as σ3. We train a classifier for the de-

pendency condition CX ,V , i.e., the dependency relation from X-Ray (X) to Visit (V)

using the training instances TL,θdep
(X ,V). The training instances are TL,θdep

(X ,V) =

[(v1,Final Visit)50,(v2,Visit)50] with attribute value functions v1(P) = Red, v1(N) =
Joe and v2(P) = Red, v2(N) = Alice. Please note that there is no instance with the ac-

tivity Check (C) since the unconditional dependency measure X ⇒1,L C is below the

threshold of 0.9. Therefore, the instances based on trace σ3 are not included as we al-

ready know that activity C is in parallel to X. We train a C4.5 decision tree and obtain

the dependency condition CX ,V with CX ,V (v2) = 1 and CX ,V (v1) = 0.

4.3 Data-driven Discovery of Causal Nets

We describe the DHM method that builds C-nets based on conditional dependencies.

The DHM supports four user-specified thresholds that can be used to tune the noise

filtering capabilities to specific needs of the user. All thresholds range between 0 and 1:

– θobs, the observation threshold, which controls the relative frequency of relations;

– θdep, the dependency threshold, which controls the strength of causal dependencies;

– θbin, the binding threshold, which controls the number of bindings;

– θcon, the condition threshold, which controls the quality of data-dependencies.

We discover a C-net (Σ ,si,so,D, I,O) from event log L = (E,Σ ,#,L) and thresholds

θobs,θdep,θbin,θcon in the following steps.

1. We want to ensure that the resulting C-net has a unique start and end activ-

ity. Therefore, we add artificial start and end events to all traces, i.e., ∀σ∈L (σ =
(ei,e1, . . . ,en,eo)∧#act(ei) = si ∧#act(eo) = so) and Σ = Σ ∪{si,so}.

2. We build the set of standard dependency relations as follows:

D = {(a,b) ∈ Σ ×Σ | a ⇒1,L b ≥ θdep ∧

∣

∣a >1,L b
∣

∣

|L |
≥ θobs}.

3. We discover the dependency conditions C by training classifiers for each pair

(a,b) ∈ Σ ×Σ using the training instances TL,θdep
(a,b).

4. We add the conditional dependency relations to D. We use θcon instead of θobs to

obtain infrequent, high-quality data conditions:

D = D∪{(a,b)∈ Σ ×Σ | q(Ca,b)≥ θcon ∧a ⇒C,L b ≥ θdep}.

5. Some activities s ∈ Σ might not have a predecessor or successor in the directed

graph induced by D. Intuitively, each task in a process should have a cause (prede-

cessor) and an effect (successor) [8], all tasks in the C-net should be connected.

Therefore, we propose two alternative heuristics to enforce this:

– all-task-connected heuristic proposed by the HM [8], or

– the accepted-task-connected heuristic, a new heuristic.

Here, we describe the new accepted-task-connected heuristic. We repeatedly con-

nect only those activities that are already part of the dependency graph using their

best neighboring activities until all activities have a cause and an effect. Then, set

D of relations necessary to connect all activities accepted so far is:

D = {(a,b) ∈ Σ ×Σ |(∄x (a,x) ∈ D∧∀y (a ⇒1,L b)≥ (a ⇒1,L y))

∨(∄x (x,b) ∈ D∧∀y (a ⇒1,L b)≥ (y ⇒1,L b)}.

We extend the dependency relations with the new relations, i.e., D = D∪D. There

might be new, unconnected activities in D. Therefore, we repeat adding the best

neighboring activities until set D is empty.

6. We discover the input and output binding functions of the C-net. For the output

binding function O(a) of an activity a ∈ Σ , we need to determine which executions

of b ∈ Σ (with (a,b) ∈ D) were caused by an execution of activity a. We use the

heuristic proposed by the HM [8] and repeat it for completeness. The heuristic

considers activity b to be caused by activity a only if it is the nearest activity that

may have caused b. Any other activity s executed in between a and b should not

be a possible cause of b, i.e., (s,b) /∈ D. Given a trace σ = 〈e1, . . . ,ei, . . . ,en〉 ∈ L ,

the set of activities O(ei)⊆ Σ that were caused by an event ei is:

O(ei) = {b ∈ Σ |#act(ei) = a

∧ ∃i< j≤n #act(e j) = b∧ (a,b) ∈ D

∧ ∀i<k< j (#act(ek),b) /∈ D}.

We determine the frequency |o|L,a ∈N of an output binding o⊆ Σ for activity a ∈Σ
in the event log L as:

|o|L,a =
∣

∣{e ∈ E | #act(e) = a∧O(e) = o}
∣

∣ .

Then, we build the complete multi-set of output bindings with the most frequent

bindings. Those bindings that fulfill the user-specified binding threshold θbin:

O(a) = {o ⊆ Σ |
|o|L,a

maxo⊆Σ (|o|L,a)
≥ θbin}.

The input binding function I is obtained by reversing the same approach.

Within the scope of this paper, we do not elaborate on the other heuristics of the HM [8],

such as long-distance, length-two loops, and the relative-to-best. Those heuristics and

improvements to the HM described by the Fodina miner [26] can be used together

with the DHM. The choice which heuristics to apply highly depends on the process at

hand. For example, the all-task-connected heuristic results in a process model with all

observed activities regardless of the chosen observation frequency threshold θobs. Even

activities that are only observed once are added. This might not be desirable as very

infrequent activities might be considered as noise. Therefore, we introduced the new

accepted-task-connected heuristic.

5 Evaluation

We implemented the DHM in the open-source framework ProM4. The package Data-

AwareCNetMiner provides a highly interactive tool, which allows to quickly discover

C-nets for different parameter settings and to explore the discovered data dependencies.

C-nets can be converted to Petri nets or BPMN models. Therefore, existing tools can be

used on the results. We applied our method to both synthetic and real-life event logs.

5.1 Synthetic - Handling Noise

Event Log & Methods. We generated an event log with 100,000 traces and approxi-

mately 900,000 events by simulating the process model shown in Fig 3. There are three

data attributes: Priority (P), Nurse (N), and Type (T). We adjust the frequency distri-

butions of these attributes such that paths A, B, and C in model Figure 3 are recorded

infrequently. Specifically, only 1.4% of the traces record P = white, 19.1% of the traces

record N = Alice, and 4.3% of the traces record T = out. We compared three methods:

our proposed method (DHM), the heuristic miner with frequency filtering (HMF), and

the heuristic miner without frequency filtering (HMA). All three methods, used thresh-

olds θobs = 0.06 (0.0 for HMA), θdep = 0.9, θbin = 0.1, θcon = 0.5 together with the

accepted-task-connected heuristic. We used C4.5 as classifier and estimated its perfor-

mance using 10 times 10-fold cross validation.

Experimental Design. The experiment should evaluate the noise filtering capabilities

of our method. Therefore, we injected noise into the event log by randomly adding one

additional event to an increasing number of traces.5 Then, we compared the discovered

dependency relations with those of the reference model (Figure 3) in terms of graph

edit distance (GED) [27]. We did not use fitness, precision, or behavioral comparison

measures as those would not be applicable in this setting. Fitness and precision do not

measure the performance wrt. the reference model (gold standard). Moreover, when

the discovered models are not sound (e.g., having a deadlock), the behavior may be

undefined even when the model is close to the original. Behavioral measures would also

fail to distinguish the difference between the data-dependent re-sequencing of activities

(pattern C in Figure 3) and simple parallelism. For example, both in Figure. 3 and in

Figure 2(b) activities Visit and X-Ray are behaviorally in parallel.

4 The package DataAwareCNetMiner can be downloaded from http://promtools.org.
5 The synthetic event logs can be downloaded from http://dx.doi.org/10.4121/uuid:

32cad43f-8bb9-46af-8333-48aae2bea037.

0

2

4

6

8

10

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

Noise level

G
ra

p
h

 e
d

it
 d

is
ta

n
c
e

Method

HMA

HMF

DHM

Fig. 4. Graph edit distances between the dependency relations discovered by the compared meth-

ods and the reference dependency relations for varying amounts of injected noise.

Results. All models could be discovered in about 3 seconds using 2 GB of memory.

Our method was able to rediscover the conditional relations A , B and C , i.e., the red

edges in Figure 3. The original rules P = white and T = out were discovered for rela-

tions A and B . For path C , two rules were discovered: N = Alice for the edge from X-

Ray to Visit and N 6= Alice for the edge from Visit to X-Ray. Our method discovered the

data-dependent re-sequencing of activities Visit to X-Ray, whereas the standard HM (cf.

BPMN model in Figure 2(b)) considered both activities as parallel. Figure 4 shows the

result of the GED measurement for noise levels ranging from 0% to 40%. Our method

(DHM) handles the added noise well until 25% of the traces were modified. The HM

with frequency-based noise filtering (method HMF) is also unaffected by the injected

noise. However, it fails to discover the reference model even without noise, as shown

in Figure 2(b). The GED of the method HMF improves after injecting noise in 20% of

the traces because the frequency of relation C increases by chance. When lowering the

observation frequency threshold (method HMA), the injected noise quickly affects the

discovery and undesirable dependencies appear. We did not include the IM in Figure 4,

as it returns models with a different structure. However, the models returned by the IM

are already undesirable for an event log with 5% noise, c.f., Figure 2(a).

5.2 Real-life - Revealing Data dependencies

We used two real-life event logs to show that our method can reveal infrequent behavior

in a practical setting. Using the DHM important conditional dependencies can be found

where existing methods abstract away such dependencies.

Data and methods. The Road Fines (RF) event log was recorded by an information

system that handles road-traffic fines by an Italian local police force [28,29]. This event

log contains about 150,000 cases, 500,000 events, and 9 data attributes. The Hospi-

tal Billing (HB) event log was obtained from the ERP system of a hospital. It contains

100,000 cases with 550,000 events and 38 data attributes related to the billing of medical

services. We applied the proposed method (DHM), the HM with the same frequency fil-

ter settings (HMF) and the Inductive Miner (IM) to both event logs. Without a reference

model and knowledge about expected noise levels, we could not compare the discov-

ered models to a gold standard. Therefore, we compare the novel insights obtained by

using our method with those from the other methods.

①

②

③

Fig. 5. Process model discovered for the RF log. The numbered edges were added by our method.

Table 2. Dependency conditions discovered for the RF log.

Nr Source Target Count Quality Dependency Used Attributes

1 Appeal to Judge Add penalty 279 0.86 0.93 amount, dismissal, points, article

2 Payment Add penalty 3,629 0.89 1 amount, isPaid

3 Not. Res. Appeal to Off. End 83 0.56 0.98 dismissal, expense

Road Fines. Figure 5 shows the C-net discovered by the DHM in about 4 seconds

for the RF log. We used the all-task-connected heuristic of the original HM, since we

know that each activity is of interest. We used eight of the attributes including a derived

isPaid attribute since this process is about the payment of fines. We used C4.5 with

10-fold cross validation and only accepted classifications with θcon ≥ 0.5. Most of the

observed behavior (97.8%) can be replayed on the C-net using the alignment method

presented in [22]. Our method reveals three additional relations (red edges), which are

numbered in Figure 5. Table 2 lists the conditional data-dependency measure, the fre-

quency, as well as quality and used attributes of the obtained dependency condition for

each relation. The first two relations target activity Add Penalty and both have a very

good quality score. The decision rule for relation 1 mainly depends on the value of the

dismissal attribute. Cases with values G do not receive a penalty, whereas cases with

value NIL receive a penalty depending on the fine amount, the number of points, and

the article. According to [29] this is to be expected as those cases are dismissed by the

judge. Relation 2 is mainly based on the attribute isPaid. Unpaid fines that have with

a small amount of less than 35 EUR receive a penalty. Relation 3 was discovered for

cases with a dismissal value of # or G. It is to be expected that the process finishes for

cases with this code, since those cases are dismissed by the prefecture. Interestingly, this

relation also occurs for cases with a dismissal value of NIL and high postal expenses.

This should not happen, since those fines still need to be paid [29]. The DHM revealed

three data dependencies that give more insights into the recorded behavior without ob-

structing the process model with infrequent noise. In the model obtained by IM none

of the three relations are directly visible. Therefore, current decision mining techniques

would not be able to discover the conditions.

①
②

③

④

⑤ ⑥

Fig. 6. Process model discovered for the HB. The numbered edges are added by our method.

Table 3. Dependency conditions discovered for the HB log.

Nr Source Target Count Quality Dependency Used Attributes

1 Fin End 3,619 0.98 1 closeCode

2 Release Code Nok 1,674 0.62 0.99 caseType

3 Release Billed 468 0.93 0.98 caseType

4 Code Nok Billed 1,481 0.84 0.99 caseType, specialty

5 Reopen Delete 1,128 0.83 0.81 closed

6 Reopen Change Diagn 212 0.97 0.99 closed

Hospital Billing. Figure 6 shows the C-net discovered by the DHM in about 3 seconds

for the HB event log. The discovered model fits 97% of the observed behavior. We used

the new accepted-task-connected heuristic since not all of the 21 activities may be of

of interest. We discovered the model using C4.5 on a subset of 13 attributes. Here, the

quality threshold is set to θcon ≥ 0.6 and the quality is, again, determined by 10-fold

cross validation. Compared to the model returned by the HMF, our method revealed

six additional dependencies. Again, we numbered these relations in Figure 6, and list

some key statistics in Table 3. For the purpose of this evaluation, we discussed the dis-

covered conditional dependencies with a domain expert from the hospital who works

in this process. Relation 1 is based on a special closeCode that is used when nothing

can be billed and, hence, the process ends. Relation 2 occurs mostly for two specific

caseType values. According to the domain expert both case types correspond to excep-

tional cases: one is used for intensive care and the other for cases for which codes cannot

be obtained (Code Nok). Relation 3 is, again, related to a specific caseType. This type

is used for intensive-care activities as well and, often, does not require a code to be ob-

tained. Relation 4 is also mainly related to the caseType and to some degree to the

medical specialty. Both relation 5 and relation 6 are conditional to the attribute

closed, which indicates whether the invoice is closed or not. Clearly, deleted cases

should not be in the closed status, whereas reopened cases with a change in diagnosis

can be eventually closed in the future. The process model discovered by the DHM pro-

vides a balanced view on the interesting infrequent paths of the billing process together

with the more frequent, regular behavior. Moreover, additional insight is provided by

revealing the conditions with which infrequent paths occur. Again, the model returned

by the IM did not include any of the six paths.

Limitations We acknowledge that there are some limitations to our method. First, we

only consider conditional directly-follows dependencies. Like most process mining ap-

proaches, our method requires sufficiently large event logs. Small event logs might, by

chance, not contain all directly-follows relations. Moreover, more complex patterns of

conditional infrequent behavior, e.g., longer sequences or sub-processes, cannot be dis-

covered. Second, there is a risk that the returned C-nets are unsound [22] since our

method is based on the HM. However, recent research shows that it is possible to struc-

ture the discovered model afterwards [30]. Third, as all data-driven method the DHM

relies on data attributes and infrequent process paths being recorded. Last, we used only

two real-life event logs in the evaluation. Therefore, only limited claims on the general

applicability of the method can be made. We have also tested the DHM on other event

logs. However, very few event logs with data attribute are publicly available.

6 Conclusion

We presented the Data-aware Heuristic Miner (DHM), a process discovery method that

reveals conditional infrequent behavior from event logs. The DHM distinguishes unde-

sired noise from infrequent behavior that can be characterized by conditions over the

data attributes of the event log. This is the first approach that uses both event labels and

data attributes when discovering the control-flow. Dependency conditions are discov-

ered using classification techniques, and, then, embedded in a complete process discov-

ery algorithm built upon the Heuristic Miner. The returned process models are annotated

with information on the discovered rules. We applied the DHM to a synthetic and two

real-life events logs of considerable size and complexity. We showed that the DHM

can efficiently handle large event logs and is robust against typical levels of random

noise. The evaluation on two real-life cases shows that the DHM provides insights that

could be easily missed when relying on state-of-the-art, frequency-based techniques.

In our future work, we would like to extend the idea from directly-follows relations

to more complex patterns of conditional behavior (e.g., long-term dependencies). The

DHM successfully reveals data dependencies based on directly-follows relations, but

dependencies that cannot be captured by directly-follows relations might be missed.

References

1. Davies, I., Green, P., Rosemann, M., Indulska, M., Gallo, S.: How do practitioners use

conceptual modeling in practice? Data Knowl. Eng. 58(3) (2006) 358–380

2. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition. Springer

(2016)

3. Weerdt, J.D., Backer, M.D., Vanthienen, J., Baesens, B.: A multi-dimensional quality as-

sessment of state-of-the-art process discovery algorithms using real-life event logs. Inf. Syst.

37(7) (2012) 654–676

4. Suriadi, S., Andrews, R., ter Hofstede, A., Wynn, M.: Event log imperfection patterns for

process mining: Towards a systematic approach to cleaning event logs. Information Systems

64 (2017) 132 – 150

5. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: discovering process

models from event logs. IEEE Trans. Knowledge Data Eng. 16(9) (2004) 1128–1142

6. Carmona, J., Cortadella, J., Kishinevsky, M.: A region-based algorithm for discovering petri

nets from event logs. In: BPM. Volume 5240 of LNCS., Springer (2008) 358–373

7. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining - adaptive process simplification based

on multi-perspective metrics. In: BPM. Volume 4714 of LNCS., Springer (2007) 328–343

8. Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: CIDM, IEEE (2011) 310–317

9. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured process

models from event logs containing infrequent behaviour. In: BPM Workshops. Volume 171

of LNBIP., Springer (2013) 66–78

10. Liesaputra, V., Yongchareon, S., Chaisiri, S.: Efficient process model discovery using maxi-

mal pattern mining. In: BPM. Volume 9253 of LNCS., Springer (2015) 441–456
11. Goedertier, S., Martens, D., Vanthienen, J., Baesens, B.: Robust process discovery with

artificial negative events. J. Mach. Learn. Res. 10 (2009) 1305–1340

12. Ponce de León, H., Carmona, J., vanden Broucke, S.K.L.M.: Incorporating negative infor-

mation in process discovery. In: BPM. Volume 9253 of LNCS., Springer (2015) 126–143

13. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A genetic algorithm for discover-

ing process trees. In: IEEE Congress on Evolutionary Computation, IEEE (2012) 1–8

14. Rembert, A.J., Omokpo, A., Mazzoleni, P., Goodwin, R.: Process discovery using prior

knowledge. In: ICSOC. Volume 8274 of LNCS., Springer (2013) 328–342

15. Bellodi, E., Riguzzi, F., Lamma, E.: Statistical relational learning for workflow mining. Intell.

Data Anal. 20(3) (2016) 515–541
16. Ghionna, L., Greco, G., Guzzo, A., Pontieri, L.: Outlier detection techniques for process

mining applications. In: ISMIS. Volume 4994 of LNCS., Springer (2008) 150–159

17. Conforti, R., Rosa, M.L., t. Hofstede, A.H.M.: Filtering out infrequent behavior from busi-

ness process event logs. IEEE Trans. Knowl. Data Eng. 29(2) (Feb 2017) 300–314

18. Rozinat, A., Mans, R.S., Song, M., van der Aalst, W.M.P.: Discovering simulation models.

Inf. Syst. 34(3) (2009) 305–327

19. de Leoni, M., van der Aalst, W.M.P.: Data-aware process mining: Discovering decisions in

processes using alignments. In: SAC’13, ACM (2013) 1454–1461

20. Bazhenova, E., Bülow, S., Weske, M.: Discovering decision models from event logs. In: BIS.

Volume 255 of LNBIP., Springer (2016) 237–251

21. Schönig, S., Di Ciccio, C., Maggi, F.M., Mendling, J.: Discovery of multi-perspective declar-

ative process models. In: ICSOC. Volume 9936 of LNCS., Springer (2016) 87–103

22. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Causal nets: A modeling language

tailored towards process discovery. In: CONCUR. Volume 6901 of LNCS., Springer (2011)

28–42

23. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann (1993)

24. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1) (1960)

37–46
25. Ben-David, A.: About the relationship between ROC curves and cohen’s kappa. Eng. Appl.

Artif. Intell. 21(6) (2008) 874 – 882

26. vanden Broucke, S.: Advances in Process Mining: Artificial negative events and othertech-

niques. PhD thesis, KU Leuven (2014)

27. Dijkman, R.M., Dumas, M., García-Bañuelos, L.: Graph matching algorithms for business

process model similarity search. In: BPM. Volume 5701 of LNCS., Springer (2009) 48–63

28. de Leoni, M., Mannhardt, F.: Road traffic fine management process (2015)

doi:10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

29. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-

perspective checking of process conformance. Computing 98(4) (2016) 407–437
30. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Bruno, G.: Automated discovery of

structured process models: Discover structured vs. discover and structure. In: ER. Volume

9974 of LNCS. (2016) 313–329

