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Abstract. This paper presents a novel extension to the process tree
model to support cancelation behavior, and proposes a novel process
discovery technique to discover sound, fitting models with cancelation
features. The proposed discovery technique relies on a generic error ora-
cle function, and allows us to discover complex combinations of multi-
ple, possibly nested cancelation regions based on observed behavior. An
implementation of the proposed approach is available as a ProM plu-
gin. Experimental results based on real-life event logs demonstrate the
feasibility and usefulness of the approach.
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1 Introduction

Process mining provides a powerful way to discover and analyze operational
processes based on recorded event data stored in event logs. These event logs
can be found everywhere: in enterprise information systems and business trans-
action logs, in web servers, in high-tech systems such as X-ray machines, in
warehousing systems, etc. [17]. The majority of such real-life event logs contain
some form of cancelation or error-handling behavior. A bank loan request may
be canceled or declined, a webserver needs to handle a connection error, an X-
ray machine may detect a sensor problem, etc. These cancelations can easily
be expressed in workflow languages (BPMN, YAWL) and formal models such
as reset workflow nets (RWF-nets). When formal process descriptions are not
available, outdated or otherwise inaccurate, we turn to process discovery tech-
niques. Process discovery aims to learn a process model from example behavior
in event logs. Many discovery techniques have been proposed in literature, but
few take into account cancelation features.

To illustrate the need for cancelation features, consider a bank loan request
example, as modeled in Fig. 1. After a request is registered (a), in parallel the
client’s credit is checked (d), the request is processed (b, c, f), and a fraud check
is performed (g). Once all parallel branches succeed, the loan is granted (h). If
the credit check failed, the loan is declined (e), and there is no need to wait
for the other activities. Since the credit check can fail at any stage during the
request processing and fraud checking, there are 3 · 2 = 6 scenarios where a
decline loan has to be modeled (see the six black transitions in Fig. 1(a)).
c© Springer International Publishing AG 2017
H. Panetto et al. (Eds.): OTM 2017 Conferences, Part I, LNCS 10573, pp. 93–113, 2017.
https://doi.org/10.1007/978-3-319-69462-7_8



94 M. Leemans and W.M.P. van der Aalst

a

register
loan 

request

h

grant 
loan

e

decline loan

b

check request

d

check credit

f

validate request

c

query more info

g

check fraud
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Fig. 1. Small loan application example with cancelation behavior, modeled in different
languages, illustrating the advantage of using cancelation features. As we will show in
this paper, these models can be compactly represented using the proposed cancelation
process tree (see Definition 4): →(a,

�→(→(∧(→(�(b, c), f), g, �
{ e }
d ), h), e))

The model in Fig. 1(a) is already rather complex. However, we assumed that
the activities are atomic. This is not realistic, because the check credit, request
processing and check fraud happen in parallel, and if the check fails, any process-
ing tasks need to be withdrawn. Assuming we also model the start and end for
each activity (thus modeling the running state of an activity), the number of
scenarios/black transitions increases to 6 · 3 = 18. Using the cancelation fea-
tures available in the various languages, we get a much simpler and more precise
model, as shown in Figs. 1(b), (c) and (d).

Clearly, there is a need to model cancelation features explicitly, and process
discovery should be able to discover these cancelation features. Furthermore, it
is important that the discovered model meets certain quality criteria. Obviously,
the model should be sound, i.e., all process steps can be executed and an end
state is always reachable. Moreover, it is desirable to discover models that can
replay all the behavior in the event log, i.e., to discover fitting models that relate
to the event log. Recent work proposed a framework for discovery algorithms
which find sound, fitting models in finite time, based on process trees [14]. The
process tree notation is tailored towards process discovery and is a compact way
to represent block-structured models that can easily be represented in terms
of, for example: workflow nets, statecharts and BPMN models. However, in its
current form, process trees cannot effectively capture cancelation features.

In this paper, we propose a novel extension to the process tree model
to support cancelation behavior, and propose a novel process discovery tech-
nique to discover sound, fitting models with cancelation features. The proposed
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discovery technique relies on a generic error oracle function, and allows us to
discover complex combinations of multiple, possibly nested cancelation regions
based on observed behavior.

The approach is outlined in Fig. 2. An implementation of the proposed algo-
rithm is tested and made available via the Statechart plugin for the ProM frame-
work [12].

Section 5Section 4

Event Log Cancelation
Process Tree

Error Oracle

Discover

Heuristics
for Oracle

Discovery
Algorithm

Fig. 2. Approach outline.

The remainder of this paper is organized as
follows. Section 2 positions the work in exist-
ing literature. Section 3 introduces formal defi-
nitions and the proposed cancelation model. In
Sect. 4, we discuss several heuristics for our error
oracle. The novel cancelation process discovery
technique is explained in Sect. 5. The approach
is evaluated in Sect. 6. Section 7 concludes the
paper.

2 Related Work

To relate our work to existing approaches in process mining, we provide a sys-
tematic comparison of discovery approaches based on four criteria (Sect. 2.1).
That is, the approach should provide expressive and sound models, and allow
for a trade-off between fitness and simplicity. Next, we discuss and compare the
related work (Sect. 2.2). Table 1 summarizes the comparison.

2.1 Criteria for Comparison

For comparing the related work, we define several comparison criteria.
As a basis, any discovery algorithm should yield sound process models. That

is, all process steps can be executed and an end state is always reachable. In
addition, it is desirable to be able to discover models that can replay all the
behavior in the event log, i.e., to discover fitting models that relate to the event
log [17].

Real-life event logs are often messy and challenging for discovery algorithms.
In these cases, it may be necessary to trade off fitness for simplicity by filtering
out infrequent behavior. In addition, some behavior can only be captured by non-
local constructs such as long-distance dependencies or, to a degree, cancelation
features.

For the related work techniques that do discover cancelation features, we look
into how the corresponding cancelation regions are discovered from the event log.
In addition, we will also compare on the complexity of the discovered features.
That is, if multiple regions can be discovered, possibly in a nested configuration.

2.2 Discussion of the Related Work

We divided the related work discussion into several groups based on their com-
parison characteristics, see also Table 1.
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Table 1. Comparison of related techniques from Sect. 2, according to the comparison
criteria detailed in Sect. 2.

There is a wide variety of Petri net based algorithms that can discover non-
local constructs [2,5,18,19,21,23,24]. Even though these algorithms do not sup-
port cancelation features, they can discover and model complex, real-life behav-
ior. The major downside is that none of these techniques guarantee a sound
model.

A small group of algorithms focus on the process tree representation [4,14].
The use of process trees guarantees the discovery of sound workflow nets. How-
ever, by design, this limits the discovery search space to models with structured,
local features only. Less structured behavior, like cancelation features, cannot
be modeled or discovered.

In recent years, several commercial process mining tools emerged on the mar-
ket [6,9,10]. Compared to academic tools, these commercial tools are easier to
use, but provide less functionality. In particular, the commercial models provide
no executable semantics, and do not support concurrency [17].

There have been a few attempts at supporting the discovery of cancelation
features. In the work of [11], cancelation discovery is based on the behavior found
in the event log. By analyzing a transition system (TS) abstraction of the event
log, [11] searches for a single cancelation region. In contrast, the technique out-
lined in [16] uses a post-processing strategy based on conformance techniques.
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That is, given a discovered model (using an existing algorithm), it tries to deter-
mine where a cancelation region should have been, based on unsuccessful event
log replays (i.e., remaining tokens in the Petri net). In the work of [7], another
post-processing heuristic is proposed. It assumes the underlying discovery algo-
rithm (the BPMN miner) can correctly identify subprocesses (based on the rela-
tions in additional data attributes), and then checks which of these subprocesses
should be “upgraded” to a cancelation region.

3 Event Logs and Process Trees

Before we explain the proposed discovery technique, we first introduce some
definitions and our novel extension to process trees. We start with some pre-
liminaries in Subsect. 3.1. In Subsect. 3.2 we introduce event logs (our input).
Finally, in Subsects. 3.3 and 3.4, we will discuss the process tree model and our
novel extension: cancelation process trees.

3.1 Preliminaries

We denote the powerset over some set A as P(A). We denote the set of all
multisets over some set A as B(A). Note that the ordering of elements in a set
or multiset is irrelevant.

Given a set X, a sequence over X of length n is denoted as t = 〈 a1, . . . , an 〉 ∈
X∗. The empty sequence is denoted as ε, and we define head(t) = a1, end(t) =
an. We define a ∈ t iff there is at least one ai such that ai = a. We write · to
denote sequence concatenation, for example: 〈 a 〉·〈 b, c 〉 = 〈 a, b, c 〉 , and 〈 a 〉·ε =
〈 a 〉. We write � to denote sequence interleaving (shuffle). For example: 〈 a, b 〉 �
〈 c, d 〉 = { 〈 a, b, c, d 〉 , 〈 a, c, b, d 〉 , 〈 a, c, d, b 〉 , 〈 c, a, b, d 〉 , 〈 c, a, d, b 〉 , 〈 c, d, a, b 〉 }.

We write f : X �→ Y for a function with domain dom(f) = X and range
rng(f) = { f(x) | x ∈ X } ⊆ Y .

3.2 Event Logs

The starting point for any process mining technique is an event log, a set of events
grouped into traces, describing what happened when. Each trace corresponds to
an execution of a process. Events may be characterized by various attributes,
e.g., an event may have a timestamp, correspond to an activity, denote a start
or end, is executed by a particular resource, etc.

For the sake of clarity, we will ignore most event attributes, and use sequences
of activities directly, as defined below.

Definition 1 (Event Log). Let A be a set of activities. Let L ∈ B(A∗) be
an event log, a multiset of traces. A trace t ∈ L, with t ∈ A∗, is a sequence of
activities. �
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Given a set Σ ⊆ A and trace t ∈ L, we write Σ(t) = Σ ∩ { a ∈ t } to denote
the set of activities in the intersection of Σ and t.

3.3 Process Trees

In this subsection, we introduce process trees as a notation to compactly repre-
sent block-structured models. An important property of block-structured models
is that they are sound by construction; they do not suffer from deadlocks, live-
locks and other anomalies. In addition, process trees are tailored towards process
discovery, and have been used previously to discover block-structured workflow
nets [14]. A process tree describes a language; an operator describes how the
languages of its subtrees are to be combined.

Definition 2 (Process Tree). We formally define process trees recursively. We
assume a finite alphabet A of activities and a set

⊗
of operators to be given.

Symbol τ /∈ A denotes the silent activity.

– a with a ∈ (A ∪ { τ }) is a process tree;
– Let P1, . . . , Pn with n > 0 be process trees and let ⊗ ∈ ⊗

be a process
tree operator, then ⊗(P1, . . . , Pn) is a process tree. We consider the following
operators for process trees:

– → denotes the sequential execution of all subtrees;
– × denotes the exclusive choice between one of the subtrees;
– � denotes the structured loop of loop body P1 and alternative loop back

paths P2, . . . , Pn (with n ≥ 2);
– ∧ denotes the parallel (interleaved) execution of all subtrees.

�

Definition 3 (Process Tree Semantics). To describe the semantics of
process trees, the language of a process tree P is defined using a recursive
monotonic function L(P ), where each operator ⊗ ∈ ⊗

has a language join
function ⊗l : (P(A∗) × . . . × P(A∗)) �→ P(A∗):

L(a) = { 〈 a 〉 } for a ∈ A

L(τ) = { ε }
L(⊗(P1, . . . , Pn))

= ⊗l(L(P1), . . . , L(Pn))

Each operator has its own language join function ⊗l. The language join
functions below are borrowed from [14,17], with Li ⊆ A∗:

→l(L1, . . . , Ln) = { t1 · . . . · tn | ∀1 ≤ i ≤ n : ti ∈ Li }
×l(L1, . . . , Ln) =

⋃
1≤i≤n Li

�l(L1, . . . , Ln) = { t1 · t′
1 · t2 · t′

2 · . . . · tm−1 · t′
m−1 · tm | ∀ i : ti ∈ L1, t′

i ∈ ⋃2≤j≤nLj }
∧l(L1, . . . , Ln) = { t′ ∈ (t1 
 . . . 
 tn) | ∀1 ≤ i ≤ n : ti ∈ Li }

�
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Example models and their languages:

L(∧(a, b)) = { 〈 a, b 〉 , 〈 b, a 〉 }
L(�(a, b)) = { 〈 a 〉 , 〈 a, b, a 〉 ,

〈 a, b, a, b, a 〉 , . . . }

L(→(a, ×(b, c))) = { 〈 a, b 〉 , 〈 a, c 〉 }
L(∧(a, →(b, c)) = { 〈 a, b, c 〉 , 〈 b, a, c 〉 ,

〈 b, c, a 〉 }

3.4 Cancelation Process Trees

We extend the process tree representation to support cancelation behavior. We
add two new tree operators to represent a cancelation region, and a new tree
leaf to denote a cancelation trigger.

Definition 4 (Cancelation Process Tree). We formally define cancelation
process trees recursively. We assume a finite alphabet A of activities to be given.

– Any process tree is also a cancelation process tree;
– Let P1, . . . , Pn with n ≥ 2 be cancelation process trees, then:

– �→(P1, . . . , Pn) denotes the sequence-cancel of cancelation body P1 and
mutually exclusive error alternative paths P2, . . . , Pn;

–
�
�(P1, . . . , Pn) denotes the loop-cancel of cancelation body P1 and mutu-
ally exclusive error loop back paths P2, . . . , Pn;

– �E
a with a ∈ A, E ⊆ A denotes the cancelation trigger. Combined with a can-

celation operator �→,
�
�, this leaf denotes the point where we execute activity

a, and have the option to trigger an error e ∈ E, firing a corresponding
cancelation region. This concept is explained and defined in detail below. �

The intuition behind the cancelation operators is described below. We refer-
ence to Table 2 for a concrete example tree with a step by step construction of
its language. Observe that the new operators enable the modeling of semi-block
structured behavior (see the semi-structured loop modeling activity r).

Assume a tree
�⊗(P1, . . . , Pn),

�⊗ ∈ { �→,
�
� } with a leaf �E

a somewhere in
the subtree P1. When we want to “execute” this tree (i.e., generate a trace in
its language), we start with the subtree P1. At any �E

a point, we do activity a
as normal (happy flow), and have the option to trigger any error e ∈ E. For
example, in Table 2, the leaf �

{ e,r }
c can trigger either error e or r.

In case an error e ∈ E is triggered, we need to find a matching cancelation
region. A cancelation region

�⊗(P1, . . . , Pn) matches an error e ∈ E iff e is the
start activity for a trace in t ∈ L(P2, . . . , Pn). When we trigger the error e ∈ E
at �E

a , we perform the activity a, but ignore the rest of the subtree P1. I.e., we
take the prefix up to and including a, and fire the cancelation region. We follow
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Table 2. Example cancelation process tree (left) with its language (right) and cor-
responding Reset WF net (bottom). Shown are the traces in the language and the
corresponding errors that are triggered to generate the trace. The grey arrows in the
cancelation process tree indicate the possible error trigger “jumps”.

→
�→

→

a �
�

→

b �
{ e,r }
c d

r

g

e

h
Errors Trace

− 〈 a, b, c, d, g, h 〉
e 〈 a, b, c, e, h 〉
r 〈 a, b, c, r, b, c, d, g, h 〉

r, e 〈 a, b, c, r, b, c, e, h 〉
r, r 〈 a, b, c, r, b, c, r, b, c, d, g, h 〉

r, r, e 〈 a, b, c, r, b, c, r, b, c, e, h 〉
...

a b c d

er

g h

with a trace t ∈ L(P2, . . . , Pn) such that e is the start activity of t. I.e., we make
a “jump” and execute a matching trace from one of the non-first subtrees. In
Table 2, the node �→ matches with error e, and the node

�
� matches with error r.

The difference between �→ and
�
� is as follows: In case of �→, we have sequential

behavior, i.e., after a happy flow or error path, we continue with the rest of the
process tree. In case of

�
�, we have looping behavior, i.e., after an error path, we

loop back and try executing P1 again. For instance, in the example of Table 2
at the leaf �

{ e,r }
c , we can either continue as normal (happy flow), or jump to r

(repetitively) or e (only once).

Definition 5 (Cancelation Process Tree Semantics). We define the seman-
tics of cancelation process trees in multiple steps, and provide an adaptation for
the existing process tree semantics.

First, we define the language of the cancelation trigger leaf �E
a . At this leaf, we

can either execute activity a as normal, or execute it and trigger an error e ∈ E.

L(�E
a ) = {

〈
�E

a

〉
, 〈 a 〉 } for a ∈ A , E ⊆ A

Next, we define the language for the cancelation operators �→,
�
�. There are

two common cases for these operators: (1) no error is triggered, and (2) an error

is not caught by this operator. We define
�⊗

l

to represent these common cases.
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�⊗
l

(L1, . . . , Ln) = { t1 | t1 ∈ L1 , end(t1) �= �E
a } ∪ { t1 ·

〈
�E\S

a

〉
| t1 ·

〈
�E

a

〉
∈ L1,

S = { head(t) | t ∈ ⋃2≤j≤n Lj } , E \ S �= ∅ }

For the sequence-cancel operator �→, we extend upon the language of
�⊗

l

by
allowing a matching error path, after which we continue with the rest of the
process tree.

�→l
(L1, . . . , Ln) = { t1 · 〈 a 〉 · te | t1 ·

〈
�E

a

〉
∈ L1 , head(te) ∈ E , te ∈ ⋃2≤j≤n Lj }

∪ �⊗
l

(L1, . . . , Ln)

For the loop-cancel operator
�
�, we extend upon the language of

�⊗
l

by allow-
ing a matching error path, after which we loop back and try executing P1 again.

�
�

l

(L1, . . . , Ln) = { t1 · 〈 a1 〉 · t′
1 · t2 · 〈 a2 〉 · t′

2 · . . . · tm−1 · 〈 am−1 〉 · t′
m−1 · tm

| tm ∈ �⊗
l

(L1, . . . , Ln) , ∀ i < m : ti ·
〈

�Ei
ai

〉
∈ L1 , head(t′

i) ∈ Ei,

t′
i ∈ ⋃2≤j≤n Lj} ∪ �⊗

l

(L1, . . . , Ln)

The existing process tree semantics can easily be adapted for these can-
celation semantics by applying a prefix function φ to all traces in ⊗l (for
⊗l ∈ { →l,×l,�l,∧l

}
). The idea is to remove any activity after a �E

a symbol.
For instance φ(〈 a, b, c 〉) = 〈 a, b, c 〉, but φ(

〈
a, �E

b , c
〉
) =

〈
a, �E

b

〉
. �

Below are some simple models and their corresponding language:

L(→(a, �
{ e }
b , c)) = { 〈 a, b, c 〉, 〈 a, �

{ e }
b 〉 }

L(
�→(→(a, �

{ e }
b , c), e) = { 〈 a, b, c 〉, 〈 a, b, e 〉 }

L(
�
�(→(a, �

{ r }
b , c), r)

= { 〈 a, b, c 〉, 〈 a, b, r, a, b, c 〉,
〈 a, b, r, a, b, r, a, b, c 〉 , . . . }

4 Heuristics for Error Oracle

We rely on explicitly modeling cancelation triggers and error activities (see
Definition 4). For the algorithm in Sect. 5, we assume that the error activities
are also explicit in the input. However, for any given event log, this is usually
not the case (see Definition 1). To make error activities explicit in the input, we
will assume a so-called error oracle function as an additional input.
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Definition 6 (Error Oracle). Let A be a set of activities. Let isError : A �→
{ true, false } be an error oracle function, yielding true iff an activity a ∈ A is
an error activity. �

There are numerous ways to instantiate such an error oracle function. A
simple heuristics is to rely on domain knowledge or keywords in the activity
names. For example, a negative activity name like “Cancelled” or “Declined”
is often a good candidate. In addition, one can also check activities that break
the normal flow: timed triggers, (external) events or asynchronous activities.
Alternatively, exception or error data attributes may prove useful.

When none of these heuristics are an option, one can always fall back to an
optimization strategy. The intuition is that, if cancelation behavior is present,
modeling this behavior with cancelation operators will yield a more fitting and
possibly more precise process tree. This is easy to see considering the fact that
process trees traditionally capture only block-structured behavior, and cancela-
tion behavior breaks this block-structuredness. Such an optimization strategy
would feed several candidate error oracle functions to the discovery algorithm,
compute the fitness and precision of the resulting model, and return the best
scoring candidate.

Future work should look into more behavioral oriented error oracle heuristics.

5 Model Discovery

In this section, we will detail our discovery approach. We start by introducing
the directly follows abstraction over an event log in Subsect. 5.1. Next, we briefly
cover the framework our technique is based on in Subsect. 5.2. After that, we
detail our proposed approach in Subsect. 5.3.

5.1 Directly Follows Graph and Cuts

The directly follows relation describes when two activities directly follow each
other in a process. This relation can be expressed in the directly follows graph
of a log L, written G(L). Nodes in G(L) are the activities of L. An edge (a, b)
is present in G(L) iff some trace 〈 . . . , a, b, . . . 〉 ∈ L. We define the start and
end nodes of G, Start(G) and End(G) respectively, based on the start and end
activities in L. An n-ary cut of G(L) is a partition of the nodes of the graph
into disjoint sets Σ1, . . . , Σn.

Consider a directly follows graph G(L) and error oracle function isError :
A �→ { true, false }. If an edge (a, b) has isError(b), then we call (a, b) an error
edge. In any subgraph G′ ⊆ G, a node a can only be an end node of G′ iff it
would be an end node without error edges.
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5.2 Discovery Framework

Our technique is based on the Inductive Miner (IM) framework for discovering
process tree models, as described in [14]. Given a set

⊗
of process tree oper-

ators, [14] defines a framework to discover models using a divide and conquer
approach. Given a log L, the framework searches for possible splits of L into
sublogs L1, . . . , Ln, such that these logs combined with an operator ⊗ ∈ ⊗

can
(at least) reproduce L again. The split search is based on finding cuts in the
directly follows graph G(L) of the log L. For each operator, a different cut is
characterized based on the edges between the nodes in G(L). The framework
then recurses on the corresponding sublogs and returns the discovered submod-
els. Logs with empty traces or traces with a single activity form the base cases
for this framework. Note that, by design, each activity only appears once in the
produced process tree, and this tree can be a generalization of the original event
log.

We use this framework as a basis because of its extensibility (it works inde-
pendently of the chosen process tree operators), as well as the following proper-
ties: the log fits the resulting model, and there exists an implementation with a
polynomial run time complexity [14].

5.3 Cancelation Discovery

We generalize the above approach to also support the discovery of cancela-
tion behavior by including the error oracle function isError as an additional
input, and tracking cancelation triggers during discovery. Note that we main-
tain the rediscoverability and fitness guarantees of the original framework [14]. In
Algorithm 1, an overview of the discovery approach is given. In Table 3, an exam-
ple run is given.

We will first discuss cancelation triggers in more detail. The three extension
points labelled in Algorithm1 are discussed next: (1) the cancelation trigger base
case (line 5), (2) the cut finding extensions (line 10), and (3) the log splitting
for cancelation (line 11).

Cancelation Triggers. A key observation is that we can track cancelation trig-
gers during discovery. Whenever we observe an error activity e with isError(e)
in the log, it had to be triggered by the last activity before e. This naturally
follows from the prefix cancelation semantics and the fact that each activity only
appears once in the produced process tree. We keep track of these predecessors
via the triggers mapping defined below.

Definition 7 (Cancelation Triggers). Let triggers : A �→ P(A) be a cance-
lation triggers mapping, mapping an activity to the set of error activities such
that ∀E ∈ rng(triggers), e ∈ E : isError(e). �
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Algorithm 1: Cancelation Discovery
Input: An event log L and error oracle function isError : A �→ { true, false }
Output: A cancelation process tree P such that L fits P

Description: Extended framework that takes into account cancelation operators.

discover(L, isError)

(1) if ∀σ ∈ L : σ = ε

(2) // the log is empty or only contains empty traces

(3) return τ

(4) else if ∃x ∈ A : ∀σ ∈ L : σ = 〈 x 〉
(5) // the log only has a single activity – – – – – – – – – – – – – – – – – – – – – (1)

(6) if triggers(x) 	= ∅ then return �
triggers(x)
x // cancelation trigger case

(7) else return x // normal base case

(8) else

(9) // the normal framework cases

(10) (⊗, (Σ1, . . . , Σn)) = findCut′(G(L), isError) – – – – – – – – – – – – – – (2)

(11) ((L1, . . . , Ln), triggers) = splitLog′(L, (Σ1, . . . , Σn), isError, triggers) – (3)

(12) return ⊗(M1, . . . , Mn) where Mi = discover(Li, isError)

(1) Base Case. In the case the sublog consists of only a single activity, we have
two options. To discover a cancelation trigger �E

a for an activity a, we simply
check the triggers mapping. If this is mapping empty, we have a normal activity
leaf a, else we have a cancelation trigger leaf with E = triggers(a).

(2) Finding Cuts. We include support for our cancelation tree operators by
adding new cuts, and only slightly adapting existing cut definitions from [14]. In
Fig. 3, all the graph cuts are depicted informally.

In our cancelation discovery, any non-cancelation cut cannot have an error
edge between two partitions. In contrast, a cancelation cut is characterized by
having error edges from its first partition to all non-first partitions. That is, in
a cancelation cut, the first partition is the normal (happy flow) behavior inside
the cancelation region. The non-first partitions are the mutually exclusive error
paths after triggering the cancelation. The sequence and loop cancelation cuts
are formally defined below.

Definition 8 (Sequence Cancel Cut). A sequence cancel ( �→) cut is a par-
tially ordered cut Σ1, . . . , Σn, with n ≥ 2, of a directly-follows graph G such
that:

1. All start activities are in the
body Σ1:

Start(G) ⊆ Σ1

2. Every partition Σi has some
end activities:

∀ i ≥ 1 : End(G) ∩ Σi �= ∅

3. There are only error edges from Σ1 to
Σi>1:

∀ i > 1, ai ∈ Σi, a1 ∈ Σ1 :

(a1, ai) ∈ G ⇒ isError(ai)

4. There are no edges from Σi>1 to Σj≥1:

∀ i > 1, j ≥ 1, i �= j, ai ∈ Σi, aj ∈ Σj :

(ai, aj) /∈ G
�
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Fig. 3. Cuts of the directly-follows graph for all operators. The grey areas indicate
partitions; the arrows indicate required and disallowed edges characterizing the cut.

Definition 9 (Loop Cancel Cut). A loop cancel (
�
�) cut is a partially ordered

cut Σ1, . . . , Σn, with n ≥ 2, of a directly-follows graph G such that:
1. All start and end activities are

in the body Σ1:

Start(G) ∪ End(G) ⊆ Σ1

2. There are only error edges from
Σ1 to Σi>1:

∀ i > 1, ai ∈ Σi, a1 ∈ Σ1 :

(a1, ai) ∈ G ⇒ isError(ai)

3. There are only edges from Σi

to start nodes in Σ1:

∀ i > 1, ai ∈ Σi, a1 ∈ Σ1 :

(ai, a1) ∈ G ⇒ a1 ∈ Start(G)

4. There are no edges from Σi>1 to Σj>1:

∀ i > 1, j > 1, i 
= j, ai ∈ Σi, aj ∈ Σj : (ai, aj) /∈ G

5. If Σi has an edge to Σ1, it connects to all start
activities:

∀ i > 1, ai ∈ Σi, a1 ∈ Start(G) :

(∃a
′
1 ∈ Σ1 : (ai, a

′
1) ∈ G) ⇔ (ai, a1) ∈ G �

(3) Splitting Logs. Once a cut Σ1, . . . , Σn has been found for an operator ⊗,
we need to split the log L into sublogs L1, . . . , Ln, such that these logs com-
bined with operator ⊗ can (at least) reproduce L again. For the new cancelation
operators, we define the log splits and cancelation trigger update below.

Definition 10 (Sequence Cancel Split). Given a sequence cancelation cut
Σ1, . . . , Σn:

1. Sublog L1 consists of all maximal prefix subtraces with activities in Σ1:

L1 = { t1 | t1 · t2 ∈ L, Σ(t1) ⊆ Σ1, (t2 = ε ∨ (t2 = 〈 e, . . . 〉 ∧ e /∈ Σ1)) }
2. Sublog Li>1 consists of all maximal postfix subtraces with activities in Σi:

Li>1 = { t2 | t1 · t2 ∈ L, Σ(t2) ⊆ Σi, (t1 = ε ∨ (t1 = 〈 . . . , a1 〉 ∧ a1 ∈ Σ1)) }
3. Update the triggers mapping such that any activity a ∈ A ending a trace in L1 is

mapped to all error activities following it in L:

triggers(a) = triggers(a) ∪ { e | t1 · t2 ∈ L, Σ(t1) ⊆ Σ1, e /∈ Σ1,

t1 = 〈 . . . , a 〉 , t2 = 〈 e, . . . 〉 } �
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For example, consider a log L = [ 〈 b, c, d 〉 , 〈 c, b, d 〉 , 〈 c, e, f 〉 ] (taken from step 2
in Table 3) and sequence cancelation cut Σ1 = { b, c, d }, Σ2 = { e, f }. The
resulting log splits are L1 = [ 〈 b, c, d 〉 , 〈 c, b, d 〉 , 〈 c 〉 ], L2 = [ 〈 e, f 〉 ], and the
resulting triggers mapping is triggers = { c �→ { e } }.

Definition 11 (Loop Cancel Split). Given a loop cancelation cut Σ1, . . . , Σn:

1. Sublog Li consists of all maximal subtraces with activities in Σi:

Li = { t2 | t1 · t2 · t3 ∈ L, Σ(t2) ⊆ Σi, (t1 = ε ∨ (t1 = 〈 . . . , a1 〉 ∧ a1 /∈ Σi)),

(t3 = ε ∨ (t3 = 〈 a3, . . . 〉 ∧ a3 /∈ Σi)) }
2. Update the triggers mapping such that any activity a ∈ A ending a trace in L1 is

mapped to all error activities following it in L:

triggers(a) = triggers(a) ∪ { e | t1 · t2 · t3 ∈ L, Σ(t2) ⊆ Σ1, e /∈ Σ1,

t2 = 〈 . . . , a 〉 , t3 = 〈 e, . . . 〉 } �

For example, consider a log L = [ 〈 b, c, r, b, c, d 〉 ] (a small snippet from Table 2)
and loop cancel cuts Σ1 = { b, c, d }, Σ2 = { r }. The resulting log splits are L1 =
[ 〈 b, c 〉 , 〈 b, c, d 〉 ], L2 = [ 〈 r 〉 ], and the resulting triggers mapping is triggers =
{ c �→ { r } }.

6 Evaluation

In this section, we compare our technique against related, implemented tech-
niques. The proposed algorithm is implemented in the Statechart plugin for the
process mining framework ProM [12]. In the remainder of this section, we will
refer to Algorithm 1 as cancelation. We end the evaluation by showing example
results obtained using our tool.

6.1 Input and Methodology for Comparative Evaluation

In this comparative evaluation, we focus on the quantitative aspects. That is, the
models discovered are precise and fit the actual system. We compare a number
of techniques and input event logs on: (1) the running time of the technique, (2)
the model quality (fitness and precision), and (3) the model simplicity.

For the running time, we measure the average running time and associated
95% confidence interval over 30 micro-benchmark executions, after 10 warmup
rounds for the Java JVM. Each technique is allowed at most 30 seconds for
completing a single model discovery. Fitness and precision are calculated using
the technique described in [1]. In short, fitness expresses the part of the log that
is represented by the model; precision expresses the behavior in the model that
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Table 3. Example Cancelation Discovery on the log [ 〈 a, b, c, d, g 〉 , 〈 a, c, b, d, g 〉 ,
〈 a, c, e, f, g 〉 ] and error oracle isError with isError(e) = true and false otherwise.
The rows illustrate how the discovery progresses. The highlights indicate the parts of
the log and directly follows graph used, and relate them to the corresponding partial
model that is discovered. The dashed arrow is an error edge, and the dashed lines
indicate the cuts. The resulting Reset WF net is shown at the bottom.

Step Discovered Model Event Log Directly Follows Graph

1
→

a ? g

a b c d g

a c b d g

a c e f g

a
b

c
d g

e f

2

→
a �→

? ?

g

a b c d g

a c b d g

a c e f g

a
b

c
d g

e f

3

→
a �→

? →
e f

g a b c d g

a c b d g

a c e f g

a
b

c
d g

e f

4/5

→
a �→

→
∧

b �
{ e }
c

d

→
e f

g
a b c d g

a c b d g

a c e f g

a
b

c
d g

e f

a
b

c
d

e f

g

is present in the log. For these experiments we used a laptop with an i7-4700MQ
CPU @ 2.40 GHz, Windows 8.1 and Java SE 1.7.0 (64 bit) with 8 GB of RAM.

We selected several real-life event logs as experiment input, covering a range
of input problem sizes and complexities. The input problem size is typically
measured in terms of four metrics: number of traces, number of events, number
of activities (size of the alphabet), and average trace length. The event logs and
their sizes are shown in Table 4.
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Table 4. The event logs used in the evaluation, with input sizes and applied filters

Table 5. The error oracles used for the event logs in the evaluation.

The NASA CEV [13] event log describes two executions of a software process
with errors. This small log was obtained from two existing NASA CEV software
tests. The WABO [3] event log describes the receipt phase of an environmental
permit application process (‘WABO’) at a Dutch municipality. The BPIC12 [22]
event log is a BPI challenge log that describes three subprocesses of a loan
application process. In this evaluation, we only focus on the “A ” subprocess.
The Road fine [8] event log was obtained from an information system managing
road traffic fines. We use two variants of this large event log. The Road fine,
a variant is the largest, most complex event log in our experimental setup. In
variant Road fine, f, we filtered out two asynchronous activities to decrease the
(directly-follows) complexity.

We compare our discovery algorithm against most of the techniques men-
tioned in Sect. 2. Unfortunately, we could not compare against the work of [5–
7,9,10,15,16] due to invalid input assumptions, absence of semantics, or the
lack of a reference implementation. The Inductive Miner (IM) [14] is our base-
line comparison algorithm, since our approach builds upon the IM framework.
For the Inductive Miner and our derived techniques, we also consider the paths
setting. This is the frequency cutoff for discovering an 80/20 model: 1.0 means
all behavior, 0.8 means 80% of the behavior. In Table 5, we have listed the error
oracles we used for our cancelation discovery techniques.

6.2 Comparative Evaluation Results and Discussion

Runtime Analysis. In Table 6, the results for the runtime benchmark are
given.
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Fig. 4. Models mined from the BPIC12 log with the Path filter at 0.8, both produced by
our ProM plugin [12], and visualized in the Statechart language. Legend: (S) A Submitted,

(PS) A PartlySubmitted, (PA) A PreAccepted, (A) A Accepted, (F) A Finalized, (C) A Cancelled,

(D) A Declined, (R) A Registered, (AP) A Approved, (AC) A Activated

The first thing we notice is that, in contrast to the TS Cancel technique,
our Cancelation algorithm always discovers a model within the allotted time.
When compared to the baseline Inductive Miner, there seems to be a small over-
head in running time. There are two explanations for this small overhead. One
being the fact that more tree operator cuts have to be checked at each recur-
sive call of the algorithm. But more importantly, the new cancelation operators
potentially uncover more structures in the directly follows graph. In cases where
the original Inductive Miner might give up and falls back to loops with skips
and/or flower models, we can find a cancelation pattern, and recurse on a more
structured subproblem. The end result is that we have more recursive calls to
uncover all the structures/tree operators, and hence have a larger running time.
Nevertheless, our technique successfully scales to larger logs and consistently
yields results within seconds.

Model Quality Analysis. In Table 7, the results of the model quality mea-
surements are given. Note that in order to compute model quality scores, the
model should be sound.

Observe that, compared to the original Inductive Miner, our Cancelation
algorithm always yields an equal or more fitting model. Moreover, we preserve
the perfect fitness guarantee of the original Inductive Miner (for path 1.0). In
addition, in most cases, the resulting model is also more precise.
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Table 6. Runtime for the different algorithms, paths filter settings, and event logs.

Table 7. Fitness (Fit.) and Precision (Prec.) scores for the different algorithms, paths
filter settings, and event logs. Scores range from 0.0 to 1.0, higher is better.

NASE CEV WABO BPIC12, A Road fine, a Road fine, f

Algorithm Path Fit. Prec. Fit. Prec. Fit. Prec. Fit. Prec. Fit. Prec.

[20] Alpha miner - 0.89 0.08 −U −U −U −U −U −U −U −U

[24] Heuristics - −U −U 0.61 0.98 −U −U −U −U 0.74 1.00
[21] ILP - 1.00 0.33 1.00 0.12 1.00 0.22 1.00 0.50 1.00 0.53
[23] ILP, filtering - 1.00 0.33 1.00 0.35 1.00 0.28 0.78 1.00 0.81 1.00

[18] Genetic miner - −U −U −U −U −U −U −N −N −U −U

[4] ETMd miner - 0.74 1.00 0.83 1.00 1.00 0.86 0.79 1.00 0.75 1.00

[11] TS Cancel - −N −N −N −N 0.91 0.78 −N −N −N −N

[19] TS Regions - 0.27 0.61 −N −N 0.93 0.88 0.86 0.76 0.76 0.82

[14] IM (baseline) 1.0 1.00 0.69 1.00 0.43 1.00 0.89 1.00 0.69 1.00 0.83
[14] IM (baseline) 0.8 0.74 0.73 0.94 0.64 1.00 0.92 0.99 0.48 1.00 0.82
[14] IM (baseline) 0.5 0.62 0.75 0.94 0.63 0.82 1.00 0.76 0.48 0.74 0.77

O
u
rs Cancelation 1.0 1.00 0.70 1.00 0.62 1.00 1.00 1.00 0.66 1.00 0.76

Cancelation 0.8 0.76 0.58 0.94 0.67 1.00 1.00 1.00 0.35 1.00 0.68
Cancelation 0.5 0.64 0.67 0.94 0.66 1.00 1.00 0.90 0.39 0.81 0.73

U Unsound model N No model (see Table 6)

In all cases, we can see that we outperform the ILP algorithms on precision,
and we outperform the ETMd miner and TS based miners on fitness. Overall, we
can conclude that the added expressiveness of modeling the cancelation region
have a positive impact on the model quality.

On the Simplicity of Models. We compared the discovered models both using
a simplicity metric [4] and manually. In most cases, the discovered models are
comparably complex, with the cancelation models usually being slightly simpler.
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In Fig. 4, two discovered models for the BPIC12 log at paths 0.8 are shown. Note
that in the Cancelation model (Fig. 4(b)), we see that the main, happy flow
behavior is neatly discovered inside the cancelation region, and the “negative”
behavior is modeled separately after triggering the cancelation region. In the IM
model (Fig. 4(a)), skips obfuscate the normal happy flow behavior.

Overall, we can conclude that the added expressiveness of modeling the can-
celation region has, in most cases, a positive impact on the model simplicity.

7 Conclusion

In this paper, we presented a novel extension to the process tree model to sup-
port cancelation behavior, and proposed a novel process discovery technique to
discover sound, fitting models with cancelation features. The proposed discov-
ery technique relies on a generic error oracle function, and allows us to discover
complex combinations of multiple, possibly nested cancelation regions based on
observed behavior. An implementation of the proposed algorithm has been tested
and made available via the Statechart plugin for the ProM framework [12]. Our
experimental results, based on real-life event logs, demonstrate the feasibility
and usefulness of the approach.

Future work aims to further aid the user in selecting an error oracle, and (par-
tially) automate the error oracle instantiation. In addition, we aim to support
reliability analysis around cancelation features, using additional event log data.
Lastly, enabling the proposed techniques in a streaming context could provide
valuable real-time insights into (business) processes in their natural environ-
ment. Techniques able to operate in a streaming context need less memory and
are therefore also valuable for other types of analysis.
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