
Semi-Supervised Log Pattern Detection and Exploration
Using Event Concurrence and Contextual Information

(Extended Version)

Xixi Lu1, Dirk Fahland1, Robert Andrews2, Suriadi Suriadi2,
Moe T. Wynn2, Arthur H.M. ter Hofstede2, Wil M.P. van der Aalst1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
2 Queensland University of Technology, Brisbane, Australia

(March, 2017)

Abstract. Process mining offers a larger variety of techniques for analyzing pro-
cess execution event logs. Although end-to-end process models can be discovered
automatically, often surprisingly many insights can only be obtained and verified
by carefully investigating the actual event data. Uncovering such insights is an
explorative and iterative process as witnessed in many case studies. Automated
pattern detection on event logs can support this. Here, unsupervised techniques
generate a multitude of patterns based on statistical properties of the log only
(lacking domain context), whereas supervised pattern detection requires domain
experts to specify patterns to detect by hand (lacking the event log context). In
this paper, we reconcile supervised and unsupervised pattern detection. We let
users both, build basic patterns by hand and automatically obtain patterns through
unsupervised learning. We visualize pattern matches in the context of the event
log (also showing concurrency and other contextual information) and let the user
modify earlier patterns based on the domain insights. This enables an iterative
approach for identifying more complex patterns than those obtainable by existing
techniques. We implemented our approach in the ProM framework and evaluated
the tool using both the BPI Challenge 2012 log of a loan application process and
an insurance claims log from a major Australian insurance company.

1 Introduction

Real-life business processes and correspondingly recorded event logs tend to be com-
plex and unstructured. To derive useful insights for improving business processes, pro-
cess mining offers a large variety of techniques for analyzing these event logs. Although
discovering end-to-end process models from such complex event logs is useful, experi-
ence shows that many important insights can only be obtained by carefully investigating
the actual event data, see for example the reports for the BPI challenges [1].

Pattern detection has been proven to be a powerful mechanism for dealing with
complex event logs in process mining and helping to gain valuable insight into common
behavior in process executions [2–8]. More specifically, pattern detection has been ap-
plied in various contexts: (i) to specify patterns as constraints and detect non-compliant
cases [6]; (ii) to automatically detect frequent common behavior [8]; (iii) to find low
level behavior patterns for log simplification [3, 4]; (iv) to model re-occurring quality

Pattern elicitation and detection

Gap

Mine
Frequency,
Support,
Coverage,
…

Manually
draw

Mine

Unsupervised pattern detection Supervised pattern detection

Patterns Patterns

Pattern instances
and diagnostics

Limitations:
• Computational complex / expensive
• #Patterns explodes
• Trivial/meaningless patterns
• Not leveraging domain knowledge

Limitations:
• Manual intensive
• Drawn patterns not observed or

not reflecting reality
• Require “modeling” knowledge

Pattern instances
and diagnostics

Missing:
semi-supervised

approach

Fig. 1: Problem analysis: there is a gap between unsupervised and supervised pattern
detection on event logs.

issues in event logs [9]. However, existing approaches to pattern detection are either
exclusively unsupervised learning or exclusively supervised learning, with each having
their own limitations, as depicted by Fig. 1.

Unsupervised learning [3, 7] generates patterns based on statistical properties of
the log, such as frequency, support and confidence, and suffers from a problem known
as “pattern explosion”, resulting in many uninteresting or trivial patterns. Patterns that
are less frequent are much more difficult to detect. In contrast, most supervised ap-
proaches [5,6] assume the patterns to be given in a formal language such as LTL, (Col-
ored) Petri nets or Declare models, e.g., manually drawn by the experts. This modeling
task is often laborious and may miss unexpected but relevant patterns from the log.

In this paper, we propose a semi-supervised approach to detect log patterns. An
overview of the approach is shown in Fig. 2. We first convert traces in the log into par-
tial orders of events, deriving concurrent events and contextual information using e.g.
time information. We then visualize these partial orders allowing the user to explore
traces, select events, and extract patterns of interest. Extracted patterns are expressed as
simple graphs that specify direct and indirect succession or unknown (partial) ordering
of activities. We show how such patterns can be extracted automatically by converting
the output of existing unsupervised pattern detection algorithms, or by our proposed
semi-supervised detectors. By highlighting in the log all occurrences of patterns cho-
sen by a user, we enable the user to explore the patterns in their context (where and
how frequently they occur). We provide operations to let a user modify a pattern based
on an occurrence in a particular context (by extending them with additional activities,
different ordering relations, etc.) or create new patterns based on existing ones. This
facility to explore and modify patterns iteratively helps the user to balance between
unsupervised and supervised learning.

The contributions are the following. We formally define a pattern as a partial order
of activities in terms of concurrence (or independence), directly-cause or eventually-
cause relations. We distinguish one event as a core-event, which is the focal point of
a pattern. We discuss a matching algorithm using the notion of core-event to retrieve
pattern instances and calculate the support and confidence of a pattern based on the
number of core-events that match the pattern. We propose semi-supervised pattern de-
tectors using the core-event of interest, and we provide operations to extract and modify
patterns based on matches in an event log. Based on the literature study (see Sect. 2),

Our approach

Convert

Visualize / Supervised

Detect
instances

Process analyst /
Domain expert

Log patterns

Pattern instances &
contextual information

& pervasiveness

Partially ordered
traces

Log

Unsupervised detect

Semi-supervised detect

Select core-events Direct-context detector

… other detectors

Integrated existing

Contribution (this paper)

Implemented detectors

Select, create, change, or extend patterns Feedback loop

Fig. 2: An overview of the proposed approach.

8 out of 11 investigated pattern detection approaches do not allow the user to explore
instances of patterns. We implemented the approach as a plug-in for the ProM process
mining framework3. The tool supports both supervised and semi-supervised detection.
Moreover, we integrate two unsupervised approaches to show that our approach does
not substitute but complements existing pattern detection approaches. We evaluated the
approach in two case studies conducted using real-life event data sets.

The remainder of this paper is organized as follows. Sect. 2 discusses related work.
Sect. 3 discusses the preliminaries and the input for our approach. In Sect. 4, we for-
mally define the patterns and pattern instances. In Sect. 5, we explain our approach to
detect patterns and find pattern instances. Sect. 6 reports results for the two case studies
conducted. Sect. 7 concludes the paper and discusses future work.

2 Related work

We use Table 1 to discuss and structure related work. Here we discuss related work on
log pattern detection on a conceptual level; an evaluation of the techniques for which
an implementation is available is available in Sect. 6.2.

Log Pattern Definition. Patterns in the process mining literature have been defined
differently. Early work focuses on clustering frequently co-occurring activities; such a
cluster of activities is considered as a (low-level) pattern and mapped into a high level
activity [4, 10]. Later, more specialized definitions are used. Bose et al. [3] defined pat-
terns as repeated sequences. [7] and [8] defined patterns as partial orders of activities in
which the edges represent only eventual-cause relations. The work in [5,11] considered
patterns as Petri nets. In our case, we use partial orders, distinguishing concurrence,
directly-cause and eventually-cause.

Unsupervised Log Pattern Detection. Unsupervised log pattern detection approaches
take an event log as input and generate patterns based on predefined measures [3, 7, 8].
Some limitations are known. Firstly, such unsupervised approaches are computation-
ally complex and expensive, generating a massive amount of possible patterns based on
their frequencies or other measures. If one sets the values for the measures too high,
then only very frequent, trivial patterns are returned, thereby missing many interesting

3
http://www.promtools.org/

http://www.promtools.org/

Table 1: Comparison of related pattern detection approaches.
S/U/M/V* Exact

instances?
provide
unsuper.
support

Change/
define

patterns?

Explore
pattern

instances?

Bose et al., Pattern abstraction [3] U Exact + (beh.)† - -
Günther et al., Fuzzy mining [4] U Exact + (act.) - -
Mannhardt et al., Log abstraction [5] S Approx. - (act.) + +/-
Maggi et al., LTL checker [6] S Exact - (com.) +/- +/-
Leemans et al., Episodes miner [7] U Exact + (beh.) - -
Diamantini et al., Pattern discovery [8] U Exact + (beh.) - -
Baier et al., Activity maching [12] M Exact - (act.) - -
Ferreira et al., Label abstraction [10] U Exact + (act.) - -
Tax et al., Local models [11] U Approx. + (beh.) - -
Song et al., Dotted chart [13] V NA - (beh.) - -
Shneiderman et al., EventFlow [2] S.V. Exact - (beh.) + +
Lu et al., Pattern explorer M.S.V.U. Exact + (beh.) + +
* S. for supervised; U. for unsupervised; M. for Semi-Supervised; V. for visualization.
† In parentheses, the aim of the technique is abbreviated: beh. for behavior analysis; act. for low level activity abstraction;
com. for compliance checking.

results. By setting the values too low, too many patterns are returned (so called ‘pattern
explosion’) [3, 7, 8]. Secondly, as a result of not leveraging domain knowledge, many
of the patterns generated by unsupervised learning are not of interest or are meaning-
less. Finally, most unsupervised approaches do not return pattern instances or additional
contextual or diagnostic information of the detected patterns, thus obstructing the user
from analyzing the patterns [7].

Supervised Log Pattern Detection. Supervised pattern detection approaches in pro-
cess mining take patterns and logs as input and detect pattern instances as results [5].
Such supervised approaches require the user to model patterns in a formal language
(e.g. as (Colored) Petri nets, or LTL constraints), which relies on the expertise of the
user. This may potentially require formalizing a large set of pattern descriptions. More-
over, the user may miss potentially important patterns through incomplete specification
or model idealized patterns that are not observed in reality.

Log Explorer and Visualization. Advanced log visualization analytics have also been
proposed as a way to help the user observe patterns. The dotted chart [13] is a simple
way of visualizing event logs and helping the user spot and interpret patterns such as
batch processing. However, no pattern extraction approaches are supported, nor is it
possible to query for all instances of the observed patterns. EventFlow [2] has been pro-
posed as a more advanced tool for visualizing event sequences. It allows for advanced
querying. However, EventFlow also requires the user to create patterns (queries) and
does not support generating patterns in an unsupervised or semi-unsupervised way. In
our case, we allow semi-supervised pattern detection; the detected patterns are sug-
gested to the user and can be used as queries. Moreover, we support partially ordered
events and help the user detect and explore causal dependencies between events [14].

3 Preliminaries

In this section, we recall a few basic concepts such as partial orders, event logs, and
partially ordered traces. These are used later in the paper.

3.1 Basic Notations: Partial Order, DAG, Projection, Event logs

Let X be a set of elements. X′ ⊆ X is a subset of elements of X. R ⊆ X × X denotes
a set of relations between X. R is a partial order over X if and only if R is irreflexive,
anti-symmetric, and transitive. R : X → Y is a function that maps an element in X to
an element in Y , we use Dom(R) to denote the domain of R and Rng(R) the range of R,
i.e., Dom(R) ⊆ X and Rng(R) ⊆ Y . Let G = (N, <) be a directed acyclic graph (DAG)
with <⊆ N × N. We use <− to denote transitive reduction of < and <+ to denote the
transitive closure of <. The relation <+ will be used to denote reachability and is also
known as a partial order. In this paper, for all nodes n, n′ ∈ N, n 6<+ n′ and n′ 6<+ n,
we say n and n′ are concurrent and use n ||< n′ to denote this. We use ↓ to denote a
projection function, i.e., X ↓X′= X ∩ X′, and R ↓X′= R ∩ (X′ × X′). Let G = (N, <) be
a DAG and N′ ⊆ N. We overload the projection function and define the projection for
a graph, G ↓N′= (N ↓N′ , <↓N′), also known as induced subgraph.

An event log represents the observed behavior of a process. Each case going through
the process results in a trace of events in the event log.

Definition 1 (Event, trace, event log). Let E be the universe of unique events, i.e., the
set of all possible event identifiers. A trace σ ∈ E∗ is a finite sequence of events. An
event log L = {σ1, σ2, · · · , σn} ⊆ E∗ is a set of traces.

Here we assume no event appears twice in the same trace nor in the same log. We use
Eσ for the set of events in trace σ and EL for the set of events in log L. Let U be a
set of attribute names. For each event e ∈ E and name d ∈ U, πd(e) returns the value
of attribute d for event e, or πd(e) = ⊥ otherwise. For example, πcase(e) denotes the
trace of e; πact(e) is the activity associated with e; πtime(e) denotes the timestamp of e;
πresource(e) denotes the resource that executed e. Fig. 3(a) shows an example of a trace.
The trace σ = 〈e1, e2, ..., e5〉 contains five events, totally ordered as is. Event e1 has
activity πact(e1) = Injury and is executed on πtime(e1) = 08/09/2016-00:30:00.

3.2 Partially Ordered Traces

We explain the use of partial orders for analyzing events, define partially ordered traces,
and discuss how to obtain them from an event log (Def. 1). Many recent papers con-
sider partial orders of events [14–16], instead of totally ordered event sequences. One
reason for this consideration is that a particular total order of events may be unreliable
or unknown. For example, if events a and b are recorded only on day granularity (not
seconds), then the totally ordered log may contain the sequence 〈a, b〉whereas in reality
〈b, a〉 occurred. On the other hand, ordering events totally based on time may be mis-
leading, i.e. two events may be causally unrelated but just happen to occur in a particular
order. Representing events as a partial order (where a and b can occur “unordered” or
“concurrent”) alleviates this problem and allows us to represent more accurate contex-
tual information of events [14, 16].

Definition 2 (Partially Ordered Trace). A partially ordered trace ϕ = (E,≺) is a
Directed Acyclic Graph (DAG), in which≺ denotes the inferred “cause” relations4 over
events E. If e ≺ e′, we say e caused e′. We use ≺− to denote directly-cause, ≺+ to
denote eventually-cause, and ||≺ to denote the concurrent relation.

Note that the eventually-cause relations ≺+ is equivalent to the reachability relation of
the DAG (E,≺) and forms therefore a partial order. Fig. 3(b) shows a partially ordered
trace (E,≺), in which E = {e1, e2, · · · , e5} and ≺= {e1 ≺ e2, e1 ≺ e3, e2 ≺ e4, e3 ≺
e4, e4 ≺ e5}. In this particular case, ≺−=≺ and ≺+=≺ ∪{e1 ≺ e4, e1 ≺ e5, e2 ≺
e5, e3 ≺ e5}. ||≺= {e2 ||≺ e3}. Note that ≺, ≺−, and ≺+ are irreflexive and acyclic.

08/09/2016
00:30:00

08/09/2016
23:47:00

ArrivalInjury

𝑒1 𝑒2

Admission

𝑒3

Consult

𝑒4

Treat

𝑒5

08/09/2016
23:47:00

(b) Partially ordered trace

08/09/2016
00:30:00

08/09/2016
23:47:00

ArrivalInjury

𝑒1 𝑒2

Admission
𝑒3

Consult
𝑒4

Treat

𝑒5

09/09/2016
01:47:00

09/09/2016
02:47:00

09/09/2016
01:47:00

09/09/2016
02:47:00

Directly causes (and
eventually causes)

Eventually causes

(a) Totally ordered trace

Fig. 3: A sequential trace and its con-
verted partially ordered trace.

Partial orders of events may be obtained
from totally ordered traces. A few works [15,
17, 18] assume to have an oracle that indi-
cates the set of activities that are concurrent
or unordered and use this oracle to convert to-
tally ordered events into partial orders. Such
an oracle could be obtained by interviewing
domain experts or be computed from event
logs [14].

In this paper, we overload the symbol
ϕ to denote an conversion oracle function
that, for a trace σ, returns the partially or-
dered trace ϕ(σ) = (Eσ,≺σ). We deploy
the oracle that considers the events occurring
within a short time to be concurrent [14] as
our default oracle. Let σ = 〈e1, · · · , en〉 be
a trace. ϕtime(σ, dt) = (Eσ,≺σ) in which
≺σ= {ei ≺σ ej | 1 ≤ i < j ≤ n ∧
∃i≤k<j πtime(ek+1) − πtime(ek) > dt}. In addition, we also overload the ϕ function to
handle an event log L = {σ1, · · · , σn} and return a set of partially ordered traces, one
for each trace in L, i.e., ϕ(L) = {ϕ(σ1), · · · , ϕ(σn)}. An example of such a conversion
based on the timestamps is shown in Fig. 3, with dt = 0 sec.

In this paper, we use πact as our default labeling function for events and assume it
is universally available. Note that it is possible to consider other functions, for example
πresource, to explore resource related patterns such as hand-over of work.

4 Patterns and Pattern Instances

Having defined partially ordered traces of an event log, we now present the concepts of
log patterns. In Sect. 4.1 we first motivate and then define the log patterns and pattern
instances. Next, in Sect. 4.2, we discuss how pervasiveness measures for the patterns,
such as support, confidence and coverage, are computed. In Sect. 5, we discuss our three
approaches to pattern detection.

4 We use the term “cause” (causality) only to distinguish the relations in a partially ordered trace from the follow relations
(i.e., directly-follow and eventually-follow) in totally ordered traces.

(b) Pattern Instance 1

Arrival𝑒11 𝑒12

Admission 𝑒13

Consult
𝑒14

Treat

𝑒15

Injury
Arrival

Admission

𝑛1 𝑛2

𝑛3

(a) Pattern P1

ArrivalInjury

𝑒31 𝑒32
Admission

𝑒33

Treat

𝑒34

Arrival Treat

𝑛4 𝑛5 𝑛6

(d) Pattern P2

ArrivalInjury

𝑒21 𝑒22

Admission

𝑒23

Treat

𝑒24

ArrivalInjury

𝑒41 𝑒42
Treat

𝑒43

(c) Pattern Instance 2

(e) Pattern Instance 3 (f) Pattern Instance 4

Treat

𝑒44

Directly and
eventually cause

Eventually cause

Core-event

Injury

Injury

Matched
events

Matched
core-event

Match
Instances

Match
Instances

Fig. 4: Two patterns and four highlighted pattern instances, two for each pattern.

4.1 Core-Event, Pattern and Pattern Instance

To support process analysts in expressing and modifying log patterns with ease, the
patterns should be simple. Moreover, if such a pattern resembles the event structure of
our traces, it should be easier for the user to observe and recognize these patterns. We
therefore define a pattern too as a labeled DAG, which allows for expressing common
causal dependencies that occur in a partially ordered trace, namely directly-cause and
eventually-cause. The concurrence relation is then deduced for any two events that are
not eventually causing one another. Fig. 4(a) and (d) show two examples of patterns.

In addition to considering patterns as labeled DAGs, we, for two reasons, explicitly
include a notion called a core-event in the patterns. Firstly, the core-event notion allows
for unambiguous notions of pattern matches and unambiguous computation of measures
such as frequency. Without a core-event, having a pattern P that says “a eventually-
caused b” and a trace σ1 = 〈a, b, b, a〉, should one count this as one instance or two?
Given another trace σ2 = 〈a, b, a, b, c〉, if one counts the number of combinations, such
an approach results in three pattern instances in σ2 while there is only two a’s and two
b’s, causing confusion. In our case, the core-event anchors the pattern in a particular
perspective, we simply count the number of distinct events that match the core-event
and satisfy the pattern; we ignore whether the pattern for the same core-event occurs
several times. Take the same example, if a is the core-event of P, then we have one a for
σ1 and two a’s for σ2. Similarly, if the pattern P has b as the core-event, then we have
two b’s for σ1 and also two b’s for σ2. Moreover, having a core-event also allows us to
unambiguous find anti-instances (events) that do not satisfy a pattern on the event level
and not just on the case level. For example, having pattern P with a as the core-event,
the second a in σ1 do not satisfy the pattern. Without the core-event, σ1 may be consider
as compliant or not, depending on the interpretation of the pattern.

Definition 3 (Log Pattern). A log pattern P = (N, 7→,;, α, c) is a directed acyclic
graph, of which:

– N is a set of nodes,
– 7→ is a set of edges among N and denotes the directly-cause relation4,
– ; is a set of edges among N and denotes the eventually-cause relation4,
– α : N → A is a partial function that assigns a label α(n) to any node n ∈ N,
– c ∈ N is the core-event of the pattern

and satisfies the following constraints:
1. 7→⊆;, i.e., the directly-cause relation is a subset of the eventually-cause relation;

2. (N,;) is a partial order, from which the concurrence ||; can be deduced;
3. for all n, n′ ∈ N, if there is n′′ ∈ N such that n ; n′′ ; n′, then there is no n 7→ n′.

We also say c has context P and call N\{c} the context-nodes of c.

By regarding a pattern as a core-event (activity) that occurred in a particular context,
a pattern instance is an occurrence of the core-event in the log in the same context.

Definition 4 (Pattern Instance). Let P = (N, 7→,;, α, c) be a log pattern, (Eϕ,≺) a
partially ordered trace, E′ ⊆ Eϕ a subset of events, and ec ∈ E′ an event. (ec,E′) is an
instance of pattern P if and only if there is a bijective function I : E′ → N such that

– ec is mapped to the core-event, i.e., I(ec) = c.
– for each event e ∈ E′, event e and the corresponding node I(e) have the same label,

i.e., πact(e) = α(I(e));
– for all events e, e′ ∈ E′, the relations between e and e′ satisfy the relations between

I(e) and I(e′), i.e., (1) I(e) 7→ I(e′)⇒ e ≺− e′, (2) I(e) ; I(e′)⇒ e ≺+ e′, and
(3) I(e′) ||; I(e)⇒ e′ ||≺ e

If (ec,E′) is an instance of pattern P, we also say ec satisfies P.

The behavior specified by a pattern are preserved in the instances of the pattern.
Fig. 4(b), (c), (e) and (f) exemplify four pattern instances highlighted in their partially
ordered traces: highlighted e11 and e21 satisfy P1; e31 and e41 satisfy P2. It is important
to note that changing the core-event of a pattern does not change the behavioral relations
of the pattern, but does change the instances that match the pattern.

Definition 5 (A Maximal Set of Pattern Instances). Let P = (N, 7→,;, α, c) be a
pattern, L an event log, ϕ the conversion oracle. A maximal set of pattern instances
PI(P, ϕ(σ)) of trace σ ∈ L is defined as a largest set of all instances of P in ϕ(σ) that
differ in their core-event, i.e., for any instance (e′,E′) of P, if (e′,E′) 6∈ PI(P, ϕ(σ))
then there exist (e′,E′′) ∈ PI(P, ϕ(σ)). We write PI(P,L, ϕ) =

⋃
σ∈L PI(P, ϕ(σ))

for the union of a maximal set of pattern instances of all traces in log L. We write
PIC(P,L, ϕ) to denote the set of all core-events that satisfy P, i.e., PIC(P,L, ϕ) = {e |
(e,E′) ∈ PI(P,L, ϕ)}.

We also define the set of anti-pattern instances AntiPIC(P,L, ϕ), which is the set
of core-events that do not satisfy P, i.e., AntiPIC(P,L, ϕ) = {e ∈ EL | πact(e) =
α(c)}\PIC(P,L, ϕ). Note that independent of which maximal set of pattern instances
is returned, the set of all core-events and the set of anti-pattern instances of a pattern
remain the same. Consider for example pattern P2 in Fig. 4(d) and the four partially
ordered traces shown on the right-hand side to be the set of all partially ordered traces
in ϕ(L). A maximal set of pattern instances of P2 in ϕ(L) always contains four pattern
instances with e11, e21, e31 and e41 as the core-events that satisfy P2. As e41 (Injury) in
Fig. 4(f) already satisfies P2 with context-event e43 (Treat), e44 (Treat) is not considered
as a context event. However, if n6 (Treat) was considered as core-event of P2, we would
obtain five instances with the core-events e15, e24, e34, e43, and e44. Furthermore, e31
and e41 are anti-pattern instances of pattern P1.

4.2 Pattern Support, Confidence and Coverage

To help the user assess the pervasiveness of a pattern, we define the following five
measures of a pattern based on the set of all pattern instances. Let P = (N, 7→,;, α, c)
be a pattern. Given a log L and the partially ordered traces ϕ(L), we have the set of all
core-events PIC(P,L, ϕ) = {e1, e2, · · · , en} that satisfy P.

– Pattern support indicates how many distinct events satisfy P. i.e., P-supp(P, L, ϕ) =
| PIC(P, L, ϕ) |.

– Pattern confidence is the number of events that satisfy P divided by the total number
of events that have the same label as the core-event; this measure indicates how
often is the occurrence of the core-event a predictor for the occurrence of the entire
pattern. i.e., P-conf (P,L, ϕ) = P-supp(P,L,ϕ)

|{e∈EL|πact(e)=α(c)}| .
– Case support is the number of traces that have at least one pattern instance satisfy-

ing P, i.e., C-supp(P, L, ϕ) =| {σ ∈ L | ∃ e ∈ PIC(P, L, ϕ), e ∈ Eσ} |.
– Case confidence is the case support of P divided by the number of cases that have

an event with the same label as c, i.e., C-conf (P,L, ϕ) = C-supp(P,L,ϕ)
|{σ∈L|∃ e∈σ,πact(e)=α(c)}| .

– Case coverage is the case support of P divided by the number of cases in the log,
i.e., C-cover(P,L, ϕ) = C-supp(P,L,ϕ)

|L| .
We note that the desirability of pervasiveness measures (highly pervasiveness or oth-

erwise) is context/application dependent. For example, for patterns representing non-
complaint behavior or data quality issues, we would prefer to see low pervasiveness.

5 Pattern Detection and Pattern Instance Matching

We now introduce operations to extract and extend patterns in the context of a log
in an explorative approach. To help the reader envision this explorative approach, we
first briefly introduce the Log Pattern Explorer tool, for which a screenshot is shown
in Fig. 5. The right-hand side panel shows the log patterns, manually or automatically
extracted. The user may create or modify a pattern. On the left-hand side, each log trace
is visualized as a partial order in its own panel: each event is visualized as a square tile;
tiles can be colored based on event attributes; concurrent events are stacked on top of
each other; the labels and arcs are omitted for the sake of simplicity. When a user selects
one or more patterns in the right-hand panel, all pattern instances are highlighted on the
left (by a color-coded frame around the tiles of the satisfying events).

In Sect. 5.1, we discuss various ways to extract, detect, and modify patterns using
supervised, semi-supervised or unsupervised approaches. We then discuss an approach
to compute a maximal set of pattern instances of a pattern (Def. 5) in Sect. 5.2.

5.1 Pattern Detection Approaches - Partially Ordered Traces To Patterns

Definition 3 and the tool allow the user to create any pattern of interest. Nevertheless, as
shown in Fig. 2, we would like to support the user in extracting these patterns from a log
with ease. For example, an expert glances through the partially ordered traces visualized
in Fig. 5 and may observe some events (patterns) reoccur in many traces, e.g., through
the color coding. The user can then extract a pattern by marking all events (tiles) in

1. User select “A_SUBMITTED”,
apply direct-context detector:

Pattern 2

Pattern 3

Pattern 4

2. Select pattern
and highlight instances

Trace 1

Trace 2

Trace 3

Trace 4

…

Pattern 1

Events (squares) ordered left to right;
Concurrent events stacked;
Labels and arcs omitted

Fig. 5: The patterns found using event A SUBMITTED.

Partially ordered trace + User selected events

ArrivalInjury

𝑒1 𝑒2

Admission

𝑒3

Consult
𝑒4

Treat

𝑒5

Arrival

Admission

𝑛1 𝑛2

𝑛3Pattern P1

User selected events

User selected core-event
1. Extract
Pattern

2. Match
Instances

Partially ordered traces
+ User selected Extension

ArrivalInjury

𝑒1 𝑒2

Admission

𝑒3

Consult
𝑒4

Treat

𝑒5

ArrivalInjury

𝑒21 𝑒22

Admission

𝑒23

Treat
𝑒24 Arrival

𝑛21 𝑛22
Admission 𝑛23

Treat

Arrival

𝑛11 𝑛12

Admission

𝑛13

Treat

3. Extend
pattern

3. Extend
pattern

𝑛24

Pattern P3 extends P1
with eventually-cause “Treat”

Pattern P4 extends P1
with directly cause “Treat”Injury

Injury

Injury

𝑛14

* All eventually-cause relations omitted for simplicity

Fig. 6: Iteratively extracting and extending patterns from partially ordered traces.

a trace that make up the pattern. Next, we define an operation for also extracting the
relations between the events from the trace to extract a complete pattern definition.

Supervised Pattern Extraction from Partially Ordered Traces. In essence, each
partially ordered trace or any of its subgraphs could be extracted as a pattern. Let
ϕ = (E,≺) be a partially ordered trace. We use ρ(ϕ, ec) = P to denote a conversion
from a partially ordered trace into a pattern P = (N, 7→,;, α, c) with N = E, 7→=≺−,
;=≺+, α = πact, and c = ec ∈ E is a chosen core-event. Similarly, one may convert
any subgraph of a partially ordered trace into a pattern. Let E′ ⊆ E be a set of interested
events selected from ϕ. We simply project the pattern onto E′ (as defined in Sect. 3.1).
The behavioral pattern induced by E′ and core-event ec ∈ E′ is defined as function
extractPattern(ϕ, ec,E′) = (ρ(ϕ, ec))↓E′= (E′,≺−↓E′ ,≺+↓E′ , πact ↓E′ , ec) = PE′ .
Fig. 6 (Step 1) shows extraction of a pattern from the partially ordered trace shown
in Fig. 3 by selecting events e1(Injury), e2(Arrival) and e3(Admission) and considering
e1 as the core-event. The extracted pattern P1 = (N, 7→,;, α, c) with N = {n1, n2, n3},
n1 7→ n2, n1 7→ n3, n1 ; n2, and n1 ; n3; n2 and n3 are concurrent; for α, the labels

of events remain unchanged. In the tool shown in Fig. 5, the user can select a set of
tiles (events) on the left and apply the pattern extraction function, the first tile is the
core-event; the extracted pattern will appear in the panel on the right.

Creating, Extending and Changing Patterns. Seeing all instances of a pattern in their
larger context, the user may change or extend the current pattern. For example, the user
may want to extend a pattern with another node, or change a directly-cause into an
eventually-cause. Here, we only list the following five groups of operations to change
or create a pattern: (1) Change the core-event; (2) Change the labels; (3) Add (remove)
a node to (from) a pattern; (4) Change directly-cause into eventually-cause, and vice
versa; (5) Add (remove) a relation to (from) a pattern. Step 3 (extend pattern) in Fig. 6
exemplifies two different extensions of P1 that differ in how the added node Treat is
relates to its predecessors.

Semi-Supervised Pattern Detection. To help the user discover interesting patterns,
we propose semi-supervised pattern detectors that identify patterns for a user-chosen
core-event: (1) concurrence detector, (2) direct-predecessor (successor) detector, and
(3) direct-context detector. The concurrence detector runs as follows. Let P be the
set of patterns we have detected so far. Let L be a log, ϕ a conversion oracle, and c
a core-event of interest. Let Ec = {e ∈ EL | πact(e) = α(c)}. For event e ∈ Ec,
let σ be the trace containing e, and let Ce be the events that are concurrent with e
in ϕ(σ). If (e,Ce ∪ {e}) is not an instance of any pattern P ∈ P , then we obtain
a new pattern P′ = extractPattern(ϕ(σ), e,Ce ∪ {e}) and add P′ to P . This allows
to obtain a set of distinct patterns describing different sets of activities that occurred
concurrently. For the direct-predecessor (successor) detector, Ce is the set of events
that are directly-causing (that directly-caused by) core-event e. For the direct-context
detector, Ce contains directly preceding, succeeding and all concurrent events of e. The
relevance of an extracted pattern can be assessed using the measures of Sect. 4.2.

Integrating Unsupervised Pattern Detection. To also leverage on existing unsuper-
vised pattern detection techniques, their output has to be converted to our pattern no-
tion (Def. 3). We discuss this conversion for two techniques [3, 7]. For the technique
in [3], the output patterns are sequences of activities, directly or eventually-follows.
Any such pattern also satisfies our pattern definition (Def. 3). However, originally total-
ordered events may now be independent (concurrent) due to the usage of partially or-
dered traces and may therefore no longer satisfy the converted pattern. In such cases,
the user may find low P-supp and P-conf, explore anti-pattern instances and modify the
pattern accordingly. The output patterns in [7] are partial orders of events in which the
relations represent eventually-follow and no relations represent co-occur. We retain all
eventually-follow relations and choose to consider co-occur as concurrent. Regarding
choosing the core-events, the user may specify an activity (label) of interest to be auto-
matically selected as the core-event; otherwise, a random node is selected. The user can
run such an unsupervised detection in the tool shown in Fig. 5. The returned and con-
verted patterns are shown in the right panel. The user can explore the pattern instances
in the left panel. Note that the pervasiveness of a pattern (such as P-supp and P-conf)
are recomputed in our case, depending on the chosen core-event.

5.2 Computing a Maximal Set of Pattern Instances

We propose the following approach to compute a maximal set of instances of a pattern,
which can be divided into three phases. First, all events that can be matched to core-
event c of pattern P are computed; we call these events the candidates of c and use Ec

to denote this set of events. In the second phase, for each candidate e ∈ Ec, we try to
find a pattern instance for P with e as core-event. This is done through incremental,
exhaustive construction of the mapping I (Def. 4) with backtracking and pruning. If we
can complete the construction of I mapping to events E′ in the trace, then (e,E′) is a
pattern instance and added to the maximal set. Else, e is an anti-pattern instance. The
algorithm(s) for computing the pattern instances are listed below.

Algorithm MatchingPatternInstances(P,L, ϕ)
Input: Pattern P, log L, and conversion function ϕ.
Output: The set of all pattern instances PI.
1. PI ← {}
2. for partially ordered trace (E,≺) ∈ ϕ(L)
3. do Candidates(c)← {e | e ∈ E ∧ πact(e) = α(c)}
4. for event ec ∈ Candidates(c)
5. do I ← {}, and I(ec)← c
6. isInstance←RecursivelyTryCombinations(P, I, (E,≺))
7. if isInstance
8. then PI ← PI ∪ {(ec,Dom(I))}
9. else AntiPIC← AntiPIC ∪ {ec}
10. return PI

Algorithm RecursivelyTryCombinations(P, I, (E,≺))
Input: Pattern P, mapping I : E → N, and partially ordered trace (E,≺).
Output: Whether (ec,Dom(I)) is an instance of P↓Rng(I).
1. (∗ Base case ∗)
2. if N\Rng(I) is empty
3. then return true
4. (∗ Recursion ∗)
5. select n ∈ N\Rng(I), and Candidates(n)← {e | e ∈ E\Dom(I)∧πact(e) = α(n)}
6. for e ∈ Candidates(n)
7. do (∗ make the choice ∗)
8. I ← I ∪ {e→ n}
9. if (ec,Dom(i)) is an instance of P↓Rng(I)
10. then

isInstance←RecursivelyTryCombinations(P, I, (E,≺))
11. if isInstance
12. then return true
13. I ← I\{e→ n} (∗ undo the choice ∗)
14. (∗ Has tried all candidates for n and has not found a valid solution ∗)
15. return false

The running-time complexity is exponential w.r.t. the size of the pattern (i.e., |N |),
but polynomial in the size of Ec. In the best case, we try one combination and it already

is an instance, then the algorithm runs in linear time. In the worst case, one may have
to try every combination, then the algorithm runs in exponential time. However, we can
incrementally check the validity of the chosen candidates so far throught the projection
function and efficiently prune the search space. Moreover, note that by only searching
for a maximal set of pattern instances instead of all pattern instances, we evade explor-
ing exponentially many matches for the same core-event.

6 Evaluation and Discussion

We implemented our approach as a visualizer called Log Pattern Explorer in the Log-
PatternExplorer package in the ProM framework3. We conducted two case studies to
show how our semi-supervised approach supports the user in detecting complex pat-
terns of interest and gaining important insights into a process while exploring pattern
instances. In this section we present our evaluation results.

6.1 Evaluation using BPI Challenge 2012 Log

The BPI Challenge 2012 event log5 was recorded for a loan application process in
a Dutch financial institute. There are 13,087 cases in the log having in total 262,200
events and 36 activities. We used the default oracle ϕtime(L, dt), with dt = 0 sec (e.g.,
events are concurrent if they happened within a second), to obtain partially ordered
traces. We discuss our main findings and compare our results with existing tools.

Scenario: Distinct Contexts. Using the direct-context detector, we first investigate the
events A SUBMITTED. We obtained six patterns, of which four are shown in Fig. 5. We
viewed the pattern instances of each pattern and discuss three interesting observations.
Firstly, the instances of Pattern 1 ended immediately after A DECLINED (A DE). In
contrast, the instances of Pattern 2 and 3 are sometimes eventually followed by A DE,
as shown in Fig. 7 and 8. However, glancing through the instances, there is a signif-
icant difference in the number of the events A DE between these two patterns, which
is our second observation. To verify this observation, we extend the two patterns with
eventually-causing A DE, leading to P2a and P3a in Figs. 7 and 8. The measures of the
extended patterns show that there is indeed a difference: 67.8% of the instances of Pat-
tern 2 eventually caused A DE (i.e., P-supp(pattern2+A DE)

P-supp(pattern2) = 2841
4189 = 67.8%); whereas, only

19.3% of the instances of Pattern 3 eventually caused A DE (i.e., P-supp(pattern3+A DE)
P-supp(pattern3) =

835
4320 = 19.3%). Thirdly, we observed the same difference between the two patterns
in eventually-causing O ACCEPTED (O AC) (concurrent with three other activities
as shown in P3b in Fig. 8). Following the same steps as before, we find that P3 is
eventually-followed by O AC in 35% of all instances which happened for P2 only in
11.8% of all instances. These observations suggest that a partly submitted application
that is pre-accepted is much less likely to be declined (P3a) and more likely to be ac-
cepted (P3b) than those that have to go through W Afhandelen leads (P2a).

5 10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

http://dx.doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f

View Instances
of pattern 2

Pattern 2

Extend Pattern 2
with “A_DECLINED” by extract

P2a

* The first four characters of the label of an event are shown.

Fig. 7: Viewing the instances of Pattern 2, we observed a significant number of
A DECLINED (A DE), extended Pattern 2 with eventually-cause A DE.

Pattern 3
View Instances

Extend Pattern 3
with “A_ACTIVATED” and etc.

Extend Pattern 3 with “A_DECLINED”

P3a

P3b

…

…

…

…

Fig. 8: Viewing instances of Pattern 3 and extended it into two different patterns.

Scenario: Directly-Cause versus Eventually-Cause. We further investigated Pattern
4 in Fig. 5 and found another interesting observation. Glancing through the instances
of Pattern 4, we see only 1 of the 59 instances eventually causes O AC, see Fig. 9.
Observing that in some cases W Beoordelen fraude (Fraud) does not directly follow,
but eventually follows its core-event, we modify P4 by changing the two directly-
cause relations into eventually-cause. We then obtained 92 pattern instances. Glanc-
ing through these new instances, we suddenly observed many more O AC, and in-
deed the P-supp shows 26 instances eventually-cause O AC. Coloring the events based
on their resources showed that the directly-caused Fraud’s are executed by resource
112, known to be the system, whereas the eventually-caused (and not directly-caused)
Fraud’s events are executed by human resources. This difference (i.e., 1/59 versus
(26− 1)/(92− 59)) may suggest that the system user is able to help human resources
identify and filter fraudulent cases (which are eventually not accepted). Note that unsu-
pervised approaches not distinguishing directly-cause and eventually-cause will not be
able to detect these two patterns [7].

Scenario: Infrequent Patterns and Anti-Pattern Instances. We then focused on the
A ACTIVATED, using concurrent detector. A ACTIVATED is concurrently executed
with A APPROVED (A AP) and A REGISTERED in 2246 cases (P-conf is 1.0). In
2243 of the 2246 cases they are also concurrent with O AC. Inspecting the 3 anti-

Only 1 accept

Many more
accepts

Fig. 9: Significant difference in the number of O ACCEPTED between
the patterns “directly-cause W Beoordelen fraude” and “eventually-cause
W Beoordelen fraude”.

Fig. 10: Three anti-pattern instances of A ACTIVATED.

pattern instances in which A ACTIVATED is not concurrent with O AC, no O AC is
found, see Fig. 10. Verified with the data-owner, we understood that these three cases
could have severe financial impact. We quote the data-owner “in these cases the ac-
tivity O ACCEPTED (O AC) was skipped, while A ACTIVATED was executed. From
a business point of view, this implies that the customer never accepted an offer on a
loan application, but the money was transferred nonetheless. In total, for 63,000 euro in
these three cases.” We also observed in 99.7% of the 2050 cases A AP directly-caused
W Valideren aanvraag (VA) and ended after that immediately; inspection of the 0.3%
where this pattern is not observed shows that 3 additional activities were repeatedly

Fig. 11: Six instances of an infrequent pattern.

Fig. 12: The EventFlow drawn an overview of the BPI challenge 2012 log.

executed by human resources after A AP, see Fig. 11. This may suggest that the case
status was not up-to-date, causing more unnecessary work.

6.2 Results of Existing Approaches Using BPI Challenge Log

We applied existing techniques (for which an implementation is available in Java) on
the same BPI Challenge log and discuss the results. Overall, existing approaches have
difficulties with detecting patterns that contain a large set of concurrent (independent)
events and retrieving their instances, such as pattern P3b. Both LTLChecker [6] and
EventFlow [2] have difficulties supporting querying or detecting the instances of pat-
tern P3b for example. Although the user observed some instances of the four concur-
rent activities (i.e., A ACTIVATED, A AP, A REGISTERED, O AC) in the visualization
shown by EventFlow, see Fig. 12, the user has difficulties expressing this as a pattern
(query) and retrieving all traces that contain the pattern. Furthermore, another differ-
ence we observed is that both techniques only retrieve (anti-)pattern instances retrieved
on the case level, instead of events.

For the Dotted Chart [13], we found three versions of in the ProM framework. Ap-
plying them on the same log, the three Dotted Chart plugins have shown similar results;
the visualization is competent in drawing an overview of the log and helping the ana-
lyst to observe high level patterns such as the weekend effect and seasonal patterns in
the log. However, the technique is less suitable to observe concrete behavioral patterns.
This is because the dots (representing events) drawn are almost indistinguishable, espe-
cially when they occurred closely to each other, see Fig. 13. Even manually assigning
colors to dots have not helped, see Fig. 14.

For unsupervised approaches, the patterns that are (and can be) detected are limited
to their definition of patterns. Applying Pattern Abstraction [3] on the BPI challenge

Zoom in

Zoom in

Fig. 13: The Dotted Chart 3 drawn an overview of the BPI challenge 2012 log; unable
to distinguish individual dots that occurred closely after eachother.

Fig. 14: The dotted chart with color manually assigned to find the concurrent pattern.

Fig. 15: 52116 patterns found by EpisodeMiner, only the first 100 most frequent are
accessible.

2012 log, it detected 231 sets of activities and 5744 patterns using the default set-
ting. However, Pattern Abstraction defines patterns as sequence of activities directly-
followed each other, therefore, it cannot detect for example P2a, P3a, and P3b.

Episodes Miner [7] returned 12 frequent patterns (all of the same set of activities)
using the default setting. In attempts to find infrequent patterns (e.g., P3b), we lower
the frequency threshold and obtained up-to 52116 patterns; however, only the first 100
most frequent patterns are shown, which remain the same set of patterns; no infrequent
pattern surfaced, see Fig. 15. As Episodes Miner do not distinguish directly-follows
and eventually-follows, it is unable to distinguish for example the two patterns shown
in Fig. 9.

6.3 Evaluation using an Insurance Log

We also performed a second evaluation using a claims log from a leading Queens-
land (Australia) insurance provider. The log for this evaluation was extracted from the
claims processing system of a leading Queensland (Australia) provider of Compulsory
Third Party (CTP) insurance. The log included 863,828 events comprising 2,584 cases
(claims finalised between January 2012 and July 2015 where the claimants‘ injury
severity was minimal). To facilitate investigation, the log was filtered to include a ran-
dom sample of 285 cases, with 144 distinct activities from 50,566 events representing
activity completions. Unlike the previous evaluation, this case study exploited a stand-
out feature of the Log Pattern Explorer tool, which is its ability to visually highlight
concurrent events, to detect concurrency-related data quality (DQ) issues.

Scenario: Form-based Event Capture. A form-based DQ issue [9] refers to a set of
events, within the same case, that were recorded with the same timestamp. This is a
problem as these events did not all occur at the same time in reality, but were recorded
simultaneously due to certain actions that a user may perform on a form. For example,
a user may tick the ‘check all’ checkbox to indicate the completion of a set of tasks,
triggering the system to record the completion of all these tasks in the log at the time
the user clicked ‘save’; rather than the actual times the user completed the individual
tasks.

To demonstrate the advantage of the tool, this component of the evaluation was
conceived as a double-blind test in which two different researchers used different meth-
ods to independently identify frequently occurring sets of concurrent events in the log:
researcher A used the Log Pattern Explorer and researcher B used RapidMiner’s6 FP-
Growth and Create Association Rules operators). Researcher A had neither domain
knowledge about the insurer’s processes nor prior exposure to the log, while researcher
B had substantial prior knowledge. Yet, researcher A managed to detect and replicate
the concurrency-related issues in a quicker manner than researcher B (due to the over-
heads of data preparation and results interpretation imposed by the data mining tools).
Below, we detail how we successfully detected form-based DQ issue [9] using the tool.

In preparation for mining association rules, researcher B filtered a set of all events
EC ∈ EL having timestamps within 1 second of another event in the same case (i.e.
deemed to be concurrent with another event in the same case) from the insurance claims

6 https://rapidminer.com/

log, EL. Let T = {(t1, e1), ..., (tm, em)} be the set of timestamp, event pairs of events
e ∈ EC where ti = πtime(ei), A = {a1, ..., an} be the set of activity labels of events
e ∈ EC and γ(a, πact(e)) be a function that returns true if the value of the activity label
attribute of event e, πact(e), is a or false otherwise. EC was ’pivoted’ to form tuples
of the form (ti, γ(a1, πact(ei)), ..., γ(an, πact(ei)) and used as input to RapidMiner’s FP-
Growth and Create Association Rules operators. The association rules identified by
using the RapidMiner operators are shown in table 2 from which the manifestations of
the Form-based DQ issue shown in table 3 may be distilled. (Note, we include columns
representing the pattern support and case support metrics to indicate pervasiveness.)

On the other hand, researcher A used the Log Pattern Explorer tool to discover this
DQ issue. With the default oracle ϕtime(L, dt) (where dt = 0 sec) a clue to the existence
of this DQ issue is the presence of recurring stacked tiles across cases. Through colour-
ing of events (based on their activity label) in a stack, we can easily observe frequently
occurring groups of activities. For example, in Figure 16 (left), three concurrent activi-
ties (light blue, deep blue and purple), a manifestation of form-based DQ issue, can be
seen to occur frequently. Through an iterative process of tile colouring, pattern editing
and assessment of pattern pervasiveness, researcher A was able to distill 4 out of the top
6 manifestations of the form-based DQ issues that were independently-discovered by
researcher B.

Form-based pattern
(Pattern Extraction)

Different manifestation of
form-based pattern ("fuzzy")

Fig. 16: Example of form-based DQ issues discovered through Log Pattern Explorer

This experiment also illustrates a ‘fuzzy’ way to detect variations of DQ patterns
of interest. Using the ‘pattern fitting’ approach (described above) can still be rather
limiting in finding patterns when one is in the exploration stage. For example, in Fig-
ure 16 (right), we see another instance of this DQ issue: the three activities of interest
happened repeatedly and could occur in ‘close proximity’ to each other (either concur-
rently, directly-followed, or directly-succeeding one another), thus they did not fit the
‘same timestamp’ definition that was originally defined in [9] for the form-based DQ
issue. These variations are unlikely to be known by process analysts in the early stage
of analysis. The Log Pattern Explorer tool thus allows one to discover the possible vari-
ations of a particular event log quality issue, such that a more comprehensive approach
can be taken in the subsequent cleaning of the log.

Scenario: Collateral Events. The collateral events DQ issue [9] is an event log quality
issue that manifests itself when the occurrence of one event triggered the firing of other
events within a short amount of time (for example, within seconds or minutes). These
subsequent events being fired may not be meaningful or important from the perspective
of the process being analysed (e.g. automated notification emails being sent to various
parties upon the receipt of an insurance claim).

Premise Conclusion Confidence Lift
Complete Initial Claim Estimate Request Initial Claim Evidence 0.985 79.259
Request Initial Claim Evidence Complete Initial Claim Estimate 0.942 79.259
EST Estimate submitted for Approval 0.994 31.914
Estimate submitted for Approval EST 1.0 31.914
Review Outstanding Accounts Commence Settlement Assessment 0.721 26.689
Commence Settlement Assessment Review Outstanding Accounts 0.620 26.689
Pay Settlement Assessment Commence Settlement Assessment 0.610 2.573

QUANT
Quantum submitted for Rationale
Review and Quantum Approval

0.576 11.545

Quantum submitted for Rationale
Review and Quantum Approval

QUANT 1.0 11.545

Review and Action new Discharge
document

Review and Action new
Statutory Bodies document

0.560 7.936

Review and Action Uploaded
Rehabilitation Document
Consider Referral to RSA,
Action Rehab Treatment Plan

Review and Action ERP 0.733 5.096

Review and Action ERP Action Rehab Treatment Plan 0.683 5.080
Action Rehab Treatment Plan Review and Action ERP 0.731 5.078
Review and Action Uploaded
Rehabilitation Document
Consider Referral to RSA,
Review and Action ERP

Action Rehab Treatment Plan 0.619 4.600

Review and Action Uploaded
Rehabilitation Document
Consider Referral to RSA

Review and Action ERP 0.562 3.908

Review and Action ERP
Review and Action Uploaded
Rehabilitation Document
Consider Referral to RSA

0.706 3.908

Review and Action new
Employment document

Review and Action new
Correspondence document

0.746 3.792

Review and Action new
Legal document

Review and Action new
Correspondence document

0.701 3.565

Review and Action ERP,
Action Rehab Treatment Plan

Review and Action Uploaded
Rehabilitation Document
Consider Referral to RSA

0.639 3.539

Action Rehab Treatment Plan
Review and Action Uploaded
Rehabilitation Document
Consider Referral to RSA

0.637 3.528

Review Correspondence
Review and Action new
Correspondence document

0.667 3.390

Review and Action Scanned
Rehabilitation Document
Consider Referral to RSA

Review and Action Uploaded
Rehabilitation Document
Consider Referral to RSA

0.569 3.151

Review and Action new
Statutory Bodies document

Review and Action new
Correspondence document

0.614 3.122

Review and Action new
Discharge document

Review and Action new
Correspondence document

0.596 3.031

Table 2: Association rules mined using RapidMiner

Frequently occurring concurrent activities Pattern
support

Case
support

QUANT,
Quantum submitted for Rationale Review and Quantum Approval

303 185

Review and Action Uploaded Rehabilitation Document
Consider Referral to RSA,
Review and Action ERP,
Action Rehab Treatment Plan

297 71

EST,
Estimate submitted for Approval

184 131

Review Outstanding Accounts,
Commence Settlement Assessment

126 126

Pay Settlement Asessment,
Commence Settlement Assessment

98 98

Complete Initial Claim Estimate,
Request Initial Claim Evidence

66 66

Table 3: Manifestations of the Form-based DQ issue distilled from association rules

The existence of collateral events DQ issue can be easily detected using the Log
Pattern Explorer tool. In particular, using the ‘same timestamp’ layout, one can adjust
the time window for two events to be considered concurrent and observe the changes in
the layout of the events, if any, with any small increase in the concurrent time window.

+30 seconds +30 seconds

Fig. 17: Changes in the layout of events, each with a 30-second increase in the con-
currency time window.

Figure 17 shows three screenshots capturing the changes in the tile layout for the
same event log as the concurrency time window changes from 0 seconds (left win-
dow), to 30 seconds (middle figure), and to 60 seconds (right figure). We can see that
the change from 0 to 30 seconds resulted in a substantial change in the shape of the
layout for the same log. This simple, yet powerful, information tells us that the event
log contains many events within a case that were separated by fewer than 30-second
difference between them - a symptom of the existence of the collateral events pattern.
Equally interesting, as we increase the time window to 60 seconds, we noticed only mi-
nor changes in the layout of the tiles. An interesting observation here, therefore, is that

the 30-second (or shorter) window may be an measure of the internal system latency.
This insight can be further used to determine if two events separated by less than 30
seconds are indeed sequential or a result of the delay in the logging of the events.

To conclusively detect if collateral patterns do exist, one needs to understand the
make up of those events that are stacked together (that is, there needs to be an expla-
nation as to why the occurrence of one event triggered the firing of other events within
a short amount of time). In this situation, a similar approach to detecting form-based
pattern (as described above) can be taken.

Scenario:Homonymous Label A homonymous label DQ issue [9] refers to a situation
whereby two or more events within a case have the same label; however, the interpre-
tation of those labels are different due to the changes in the context of the case. For
example, in a hospital setting, an activity labeled ‘Triage Patient’ may be interpreted
as a nurse triaging a patient as he/she arrives in an emergency department. However,
in a log, we may see this activity being recorded a second time after the patient was
discharged. This second triage activity actually refers to a nurse or a doctor reviewing
the triage activity of a patient, instead of triaging the patient again. Therefore, the inter-
pretation of the same event label between the first and second occurrences is different.

In this section, we described how we used the Log Pattern Explorer tool to discover
the presence of the homonymous label DQ issue. Some domain knowledge is required
as we need to know the activity label that is likely to cause this DQ issue. Through
domain expert’s knowledge, it was noted that the activity ‘Complete Initial Estimate
Workflow’, which mostly happens at the beginning of a case (see Figure 18) could
sometimes occur later in a case. However, when it occurs for the second or subsequent
time, it does not mean that another ‘initial’ claim estimate was performed. Rather, it
often occurs when the insurance company determines that the other party’s insurer (in a
multi-party accident insurance claim) is responsible for the claim. Therefore, the claim
is now being transferred to the other insurance company (this is reflected by the occur-
rence of the ‘Recover Claim and/or Management costs upon transfer of claim to another
insurer’ - coloured as red in the bottom part of Figure 18. The second occurrence of the
‘Complete Initial Estimate Workflow’, in this context, actually refers to the original in-
surance company estimating the cost that they have incurred thus far so that they can
recover it from the insurance company to whom the claim is being transferred.

Using the Log Pattern Explorer tool, it is interesting to note that such behaviour
can be easily seen by highlighting activities of interest, the recurrence of the ‘Complete
Initial Estimate Workflow’ is clearly unfolded in the visualisation. Note that the sec-
ond occurrence of this activity, in light of the changing context of the case, would not
be easily observed through the analysis of a process model as most process discovery
techniques would create a single node for this activity.

7 Conclusion and Future work

In this paper, we proposed a semi-supervised approach for log pattern detection. We
defined our patterns as partial orders and distinguished a core-event to help the user
detect patterns of interest. We use concurrency and contextual information of the core-
events and support the user in extracting, modifying, and extending patterns. The two

'Complete Initial Estimate Workflow' activity

Homonymous Label DQ issue:
same activity (blue colour) occurred at different location in a case.
The red-coloured activity signifies the change in the context of the case.

Fig. 18: The activity ‘Complete Initial Estimate Workflow’ (coloured as blue) often
occurs early in a case (top). This activity can also be the source for a Homonymous
Label DQ issue

case studies show that our approach is successful in assisting process analysts in finding
complex patterns and infrequent patterns of interest. Future work aims at empirically
evaluating the approach and the tool with process analysts. Moreover, we would like
to integrate log cleaning operations, such as event abstraction, event relabeling, event
filtering etc., and recommend such operations for the patterns detected.

References

1. Bautista, A.D., Wangikar, L., Akbar, S.M.K.: Process mining-driven optimization of a con-
sumer loan approvals process - the BPIC 2012 challenge case study. In: BPM Workshops.
(2012) 219–220

2. Monroe, M., Lan, R., Lee, H., Plaisant, C., Shneiderman, B.: Temporal event sequence
simplification. IEEE Trans. Vis. Comput. Graph. 19(12) (2013) 2227–2236

3. Bose, R.J.C., van der Aalst, W.M.: Abstractions in process mining: A taxonomy of patterns.
In: BPM. Volume 5701 of LNCS., Springer (2009) 159–175

4. Günther, C., Rozinat, A., van der Aalst W.M.P.: Activity mining by global trace segmenta-
tion. In: BPM. Volume 43 of LNBIP., Springer (2009) 128–139

5. Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P., Toussaint, P.J.: From
low-level events to activities - A pattern-based approach. In: BPM. Volume 9850 of LNCS.,
Springer (2016) 125–141

6. Maggi, F.M., Montali, M., Westergaard, M., van der Aalst, W.M.P.: Monitoring business
constraints with linear temporal logic: An approach based on colored automata. In: BPM
2011. (2011) 132–147

7. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs. In:
SIMPDA. Volume 1293 of CEUR., CEUR-WS.org (2014) 31–45

8. Diamantini, C., Genga, L., Potena, D.: Behavioral process mining for unstructured processes.
J. Intell. Inf. Syst. 47(1) (2016) 5–32

9. Suriadi, S., Andrews, R., ter Hofstede, A.H., Wynn, M.T.: Event log imperfection patterns for
process mining: Towards a systematic approach to cleaning event logs. Information Systems
64 (2017) 132–150

10. Ferreira, D.R., Szimanski, F., Ralha, C.G.: Improving process models by mining mappings
of low-level events to high-level activities. J. Intell. Inf. Syst. 43(2) (2014) 379–407

11. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process models. J.
Innovation in Digital Ecosystems 3(2) (2016) 183–196

12. Baier, T., Rogge-Solti, A., Mendling, J., Weske, M.: Matching of events and activities: an
approach based on behavioral constraint satisfaction. In: SAC, ACM (2015) 1225–1230

13. Song, M., van der Aalst, W.M.: Supporting process mining by showing events at a glance.
In: Proceedings of WITS. (2007) 139–145

14. Lu, X., Fahland, D., van der Aalst, W.M.: Conformance checking based on partially ordered
event data. In: BPM Workshops. Volume 202 of LNBIP., Springer (2014) 75–88

15. Ponce de León, H., Rodrı́guez, C., Carmona, J., Heljanko, K., Haar, S.: Unfolding-based
process discovery. In: ATVA. Volume 9364 of LNCS., Springer (2015) 31–47

16. Mokhov, A., Carmona, J., Beaumont, J.: Mining conditional partial order graphs from event
logs. T. Petri Nets and Other Models of Concurrency 11 (2016) 114–136

17. Diamantini, C., Genga, L., Potena, D., van der Aalst, W.M.: Towards process instances
building for spaghetti processes. In: Proceedings of SEBD. (2015) 256–263

18. Armas-Cervantes, A., Dumas, M., La Rosa, M.: Discovering local concurrency relations in
business process event logs. (2016)

	Semi-Supervised Log Pattern Detection and Exploration Using Event Concurrence and Contextual Information (Extended Version)

