
ar
X

iv
:1

70
3.

06
73

3v
1

 [
cs

.D
S]

 1
7

M
ar

 2
01

7

Discovering Relaxed Sound Workflow Nets using

Integer Linear Programming

S.J. van Zelst∗, B.F. van Dongen, W.M.P. van der Aalst, and

H.M.W. Verbeek

Department of Mathematics and Computer Science

Eindhoven University of Technology

P.O. Box 513, 5600 MB Eindhoven, The Netherlands

2017-03-21

Abstract

Process mining is concerned with the analysis, understanding and im-
provement of business processes. Process discovery, i.e. discovering a
process model based on an event log, is considered the most challeng-
ing process mining task. State-of-the-art process discovery algorithms
only discover local control-flow patterns and are unable to discover com-
plex, non-local patterns. Region theory based techniques, i.e. an estab-
lished class of process discovery techniques, do allow for discovering such
patterns. However, applying region theory directly results in complex,
over-fitting models, which is less desirable. Moreover, region theory does
not cope with guarantees provided by state-of-the-art process discovery
algorithms, both w.r.t. structural and behavioural properties of the dis-
covered process models. In this paper we present an ILP-based process
discovery approach, based on region theory, that guarantees to discover
relaxed sound workflow nets. Moreover, we devise a filtering algorithm,
based on the internal working of the ILP-formulation, that is able to cope
with the presence of infrequent behaviour. We have extensively evaluated
the technique using different event logs with different levels of exceptional
behaviour. Our experiments show that the presented approach allow us
to leverage the inherent shortcomings of existing region-based approaches.
The techniques presented are implemented and readily available in the Hy-
bridILPMiner package in the open-source process mining tool-kits ProM
and RapidProM.1

∗Corresponding Author: s.j.v.zelst@tue.nl
1http://promtools.org; http://rapidprom.org

1

http://arxiv.org/abs/1703.06733v1
http://promtools.org
http://rapidprom.org

1 Introduction

The execution of business processes within a company generates traces of event
data in its supporting information system. The goal of process mining [2] is
to turn this data, recorded in event logs, into actionable knowledge. Three
core branches form the basis of process mining: process discovery, conformance
checking and process enhancement. In process discovery, this paper’s focus, the
goal is to construct a process model based on an event log. In conformance
checking the goal is to assess whether a given process model and event log
conform with respect to each other in terms of described behaviour. In process
enhancement the goal is to improve processes models, primarily, though not
exhaustively, using the two aforementioned fields.

Several different process models exist that (largely) describe the behaviour
in an event log. Hence, we need means to rank and compare these different pro-
cess models. In process mining we typically judge the quality of process models
based on four essential quality dimensions: replay-fitness, precision, generaliza-
tion and simplicity [2, 3, 18]. Replay-fitness describes the fraction of behaviour
in the event log that is also described by the model. Precision describes the
fraction of behaviour described by the model that is also present in the event
log. Generalization indicates a model’s ability to account for behaviour not part
of the event log, e.g. in case of parallelism, it is often impossible to observe all
behaviour in the event log. Simplicity refers to a model’s interpretability by a
human analyst. A process discovery result ideally strikes and adequate balance
between these four quality dimensions.

A field closely related to process discovery is Petri net synthesis [11]. Here
the problem is to, given a behavioural system description, decide whether there
exists a Petri net [34] that allows for all behaviour of the system description.
Moreover, it needs to minimize additional behaviour. Most Petri net synthesis
approaches use region theory [12] which comes in two forms: state-based region
theory [15, 23, 24] (using transition systems), and language-based region the-
ory [10, 21] (using languages). Applying classical region theory using an event
log as a system description results in Petri nets with maximal replay-fitness.
Moreover, precision is maximized. An implicit consequence is poor generaliza-
tion and poor simplicity. Using these techniques directly on real event logs
therefore results in process models that are not an adequate representation of
the event log and do not allow us to reach the global goal of process mining, i.e.
turning data into actionable knowledge.

In [44] a process discovery algorithm is proposed on top of language-based
region theory. The core of the algorithm is an Integer Linear Programming
(ILP)-formulation that is solved multiple times using slight variations. The main
contribution is a relaxation of the precision maximization property of language-
based region theory. The algorithm still guarantees that the resulting Process
model is able to replay all behaviour in the event log. Opposed to state-of-
the-art process discovery algorithms, the algorithm provides limited guarantees
w.r.t. structural and behavioural properties of the resulting process models.
Moreover, the algorithm only works well under the assumption that the event

2

log only holds frequent behaviour that fits nicely into some underlying process
model.

Real event logs typically include low-frequent exceptional behaviour, e.g.
caused by people deviating from the normative process, cases that require spe-
cial treatment, employees solving unexpected issues in an ad-hoc fashion etc.
Considering all irregularities together with “normal behaviour” yields incom-
prehensible models, both in classical region-based synthesis and region-based
process discovery techniques. In this paper we tackle these problems by ex-
tending and improving existing, region theory based, algorithms [44–46]. This
paper’s contributions are summarized as follows:

1. We show that our approach is able discover relaxed sound workflow nets.

2. We present an effective, integrated, filtering algorithm that results in pro-
cess models that abstract from infrequent and/or exceptional behaviour.

The proposed algorithm is implemented in the process mining framework
ProM [38] (HybridILPMiner package) and is available in RapidProM [4, 16]. We
have compared our technique with two state-of-the-art filtering techniques [20,
26]. We additionally validated the applicability of our approach on two real
life event logs [27, 30]. Our experiments confirm the effectiveness of the pro-
posed approach, both in terms of resulting model quality and computational
complexity.

The remainder of this paper is organized as follows. In section 2 we motivate
the need to further develop ILP-based process discovery. In section 3 we discuss
related work. In section 4 we present background related to event logs, Petri
nets and region theory. In section 5 we show how to incorporate regions within
process discovery. In section 6 we show that we are able to guarantee discovery
of relax sound workflow nets. In section 7 we present an integrated effective
algorithm to eliminate infrequent exceptional behaviour. In section 8 we present
an evaluation of the proposed approach. section 9 concludes the paper.

2 Motivation

A multitude of process discovery algorithms exists [2, 22, 39]. Some notable
algorithms concern the α-Miner Family [8, 32, 42, 43], the Heuristics Miner [40,
41], the Evolutionary Tree Miner (ETM) [17] and the Inductive Miner [25, 26].
However, there are good reasons to study and develop region-based techniques.
Most prominently because they allow us to discover complex non-local control-
flow patterns.

Consider the following set of sequences of executed business process activi-
ties: 〈a, c, d, e, f〉, 〈a, c, b, d, f〉, 〈a, c, e, d, f〉 and 〈a, e, c, d, f〉. If we apply ILP-
Based process discovery [44], i.e. using region theory, we obtain the process
model in Figure 1.

The model describes that activity a is always executed first. After activity
a we are able to execute activity c and e in any order, i.e. they are in a parallel

3

construct. However, after executing activity c we are able to perform activity b
instead of e. However, this is only possible as long as we do not execute activity
d, which we are able to execute after we have executed c. Finally we always
execute activity f . In the model, the choice of executing activity b instead of e is
influenced by the global state of the system. Such pattern is called a milestone
pattern [6].

If we apply the aforementioned state-of-the-art discovery algorithms on these
same data, we obtain the models depicted in Figure 2. None of the models
adequately describes the milestone pattern. Some models do not even guaran-
tee perfect replay-fitness, i.e. Figure 2a. Other models, such as the model in
Figure 2c have very low precision. The only model that actually describes the
same behaviour is the model in Figure 2d. However, the model does not capture
the milestone pattern, i.e. we need to analyse the behaviour of the model to
derive the conclusion that it describes the behaviour of a milestone pattern.

As the example shows there is a clear incentive for process discovery algo-
rithms based on (language-based) region theory. However, the state-of-the-art
technique based on language-based region theory [44] has a number of deficien-
cies. It is not able to guarantee that the resulting Petri net is a workflow net,
i.e. a Petri net with favourable graph-theoretical properties. For example, the
Petri net in Figure 1 does not have a unique sink place. The Inductive Miner
for example does guarantee to return (sound) workflow nets. Moreover, ILP-
based process discovery greatly suffers from the presence of infrequent and/or
exceptional behaviour. Assume we have an event log containing thousands of
repetitions of the aforementioned sequences 〈a, c, d, e, f〉, 〈a, c, b, d, f〉, 〈a, c, e, d,
f〉 and 〈a, e, c, d, f〉. If we inject just one exceptional sequence, e.g. 〈a, b, c, d, f〉,
and apply the current state-of-art region-based discovery algorithm, we obtain
the model depicted in Figure 3. Within the model, activity b is now able to
occur in parallel with activity c. Thus, by adding one infrequent, exceptional
sequence, the algorithm is no longer able to detect the milestone pattern.

In this paper we solve the two aforementioned issues. Firstly, we present
an approach that guarantees to find relaxed sound workflow nets. Secondly,
we present an effective integrated filtering technique that identifies and ignores
infrequent and/or exceptional behaviour.

Figure 1: Result of ILP Based Discovery [44], containing a milestone pattern.

4

(a) α-, α+-, α++-Miner [8,32,42].

(b) α♯-Miner [43].

(c) Inductive-Miner [25].

(d) Evolutionary Tree Miner [17].

(e) Heuristics Miner [40,41].

Figure 2: Results of several state-of-the-art discovery algorithms in the ProM
Framework [38], when given sequences containing a milestone pattern.

3 Related Work

We predominantly focus on related work in the area of region theory and its
application to process discovery. We also focus on filtering techniques for process
discovery. For a detailed overview of process discovery algorithms we refer
to [2, 22, 39].

Region Theory and Petri Net Synthesis Region theory is a solution to
the Petri net synthesis problem [35]. The two terms are therefore often used
interchangeably. The synthesis problem is to, given a behavioural system de-
scription, decide whether there exists a Petri net that allows for all behaviour
described by the system description, and, at the same time minimizes addi-
tional behaviour. Initial work focused on solving the synthesis problem using
transition systems as a system description [15, 23, 24], i.e. state-based region

5

Figure 3: Result of applying ILP Based Discovery [44] on an event log containing
a milestone pattern, and, infrequent (faulty) behaviour.

theory. A set of states within the transition system forms a region, which de-
fines a place in the resulting Petri net. Region theory has also been applied
using a prefix-closed language as a system description [10, 21], i.e. language-
based region theory. Here, a region is an assignment of decision variables over
the language’s alphabet, again defining a place in the resulting Petri net. Fi-
nally, language-based region theory has also been extended for labelled partial
orders [14, 28, 29].

Process Discovery In contrast to Petri net synthesis, process discovery aims
at extracting a generalizing process model from an incomplete behavioural sys-
tem description, i.e. an event log. Additionally, we typically need to abstract
from infrequent behaviour in order to focus on the mainstream behaviour in the
event log.

In [7] a process discovery approach is presented that transforms an event
log into a transition system, after which state-based region theory is applied.
Constructing the transition system is strongly parametrized, i.e. using different
parameters yields different process discovery results. In [37] a similar approach is
presented. The main contribution is a complexity reduction w.r.t. conventional
region-based techniques.

In [13] a process discovery approach is presented based on language-based
region theory. The method finds a minimal linear basis of a polyhedral cone
of integer points, based on the event log. It guarantees perfect replay-fitness,
whereas it does not maximize precision. The worst-case time complexity of the
approach is exponential in the size of the event log. In [19] a process discovery
algorithm is proposed based on the concept of numerical abstract domains.
Based on the event log’s prefix-closure a convex polyhedron is approximated
by means of calculating a convex hull. The convex hull is used to compute
causalities within the input log by deducing a set of linear inequalities which
represent places. In [44] a first design of a process discovery ILP-formulation
is presented. An objective function is presented, which is generalized in [46],
that allows for expressing a preference for finding certain Petri net places. The
work also presents means to formulate ILP-constraints that help finding more
advanced Petri net-types, e.g. Petri nets with reset- and inhibitor arcs.

All aforementioned techniques leverage the strict implications of region the-

6

ory w.r.t. process discovery, i.e. precision maximization, poor generalization
and poor simplicity, to some extend. However, the techniques still perform sub-
optimal. Since the techniques guarantee perfect replay-fitness, they tend to fail
if exceptional behaviour is present in the event log, i.e. they produce models
that are incorporating infrequent behaviour (outliers).

Filtering Infrequent Behaviour Little work has been done regarding fil-
tering of infrequent behaviour in context of process mining. The majority of
work concerns unpublished/undocumented ad-hoc filtering implementations in
the ProM framework [38].

In [20] an event log filtering technique is presented that filters on event level.
Events within the event log are removed in case they do not fit an underlying,
event log based, automaton. The technique can be used as a pre-processing step
prior to invoking a discovery algorithm.

In [26] Leemans et al. show how to extend the Inductive Miner [25] with
filtering capabilities to handle infrequent behaviour. The technique is tailored
towards the internal working of the Inductive Miner algorithm and considers
three different types of filters. Moreover, the technique exploits the inductive
nature of the underlying algorithm, i.e. filters are applied on multiple levels.

4 Background

In this section we present basic notational conventions, event logs and workflow
nets.

4.1 Bags, Sequences and Vectors

X = {e1, e2, ..., en} denotes a set. P(X) denotes the power set of X . N denotes
the set of positive integers including 0 whereas N

+ excludes 0. R denotes the
set of real numbers. A bag (bag) over X is a function B : X → N which we
write as [ev11 , e

v2
2 , ..., e

vn
n], where for 1 ≤ i ≤ n we have ei ∈ X , vi ∈ N

+ and
evii ≡ B(ei) = vi. If for some element e, B(e) = 1, we omit its superscript. An
empty bag is denoted as ∅. Element inclusion applies to bags: if e ∈ X and
B(e) > 0 then also e ∈ B. Set operations, i.e. ⊎, \, ∩, extend to bags. The set
of all bags over X is denoted B(X).

A sequence σ of length k relates positions to elements e ∈ X , i.e. σ : {1,
2, ..., k} → X . An empty sequence is denoted as ǫ. We write every non-empty
sequence as 〈e1, e2, ..., ek〉. The set of all possible sequences over a set X is
denoted as X∗. We define concatenation of sequences σ1 and σ2 as σ1 · σ2, e.g.,
〈a, b〉 · 〈c, d〉 = 〈a, b, c, d〉. Let X ′ ⊆ X , we define ↓X′ : X∗ → X ′∗ recursively
with ↓X′ (ǫ) = ǫ and ↓X′ (〈x〉·σ) = 〈x〉· ↓X′ (σ) if x ∈ X ′ and ↓X′ (σ) otherwise.
We write σ↓X′ for ↓X′ (σ).

Given X ′ ⊆ X∗, the prefix-closure of X ′ is: X ′ = {σ1 ∈ X∗|∃σ2∈X∗(σ1 ·σ2 ∈
X ′)}. We extend the notion of a prefix-closure on bags of sequences. Let
X ′ ⊆ X∗ and BX′ : X ′ → N we define BX′ : X ′ → N, such that: BX′(σ) =

7

Table 1: Fragment of a fictional event log (each line corresponds to an event).

Case-id Activity Resource Time-stamp
...
1 register request (a) John 2015-05-08:08.45
1 examine thoroughly (b) Lucy 2015-05-08:09.13
2 register request (a) John 2015-05-08:09.14
2 check ticket (d) Pete 2015-05-08:10.11
1 check ticket (d) Pete 2015-05-08:10.28
2 examine causally (b) Rob 2015-05-08:10.43
1 decide (e) Rob 2015-05-08:11.14
1 reject request (h) Rob 2015-05-08:11.35
...

BX(σ) +
∑

σ·〈e〉∈X′ BX′(σ · 〈e〉). For example, B2 = [〈a, b〉5, 〈a, c〉3] yields B2 =

[ǫ8, 〈a〉8, 〈a, b〉5, 〈a, c〉3].
Given set X and a range of values R ⊆ R. Vectors are denoted as ~z ∈ R|X|,

where ~z(e) ∈ R and e ∈ X . We assume vectors to be column vectors. For vector
multiplication we assume that vectors agree on their indices. Throughout the
paper we assume a total ordering on sets of the same domain. Given X = {e1,
e2, ..., en} and ~z1, ~z2 ∈ R|X| we have ~z⊺1~z2 =

∑n
i=1 ~z1(ei)~z2(ei). A Parikh vector

~p represents the number of occurrences of an element within a sequence, i.e.
~p : X∗ → N

|X| with ~p(σ) = (#e1 (σ),#e2 (σ), ...,#en(σ)) where #ei(σ) = |{i′ ∈
{1, 2, ..., |σ|} | σ(i′) = ei}|.

4.2 Event Logs and Workflow Nets

In process discovery an event log acts as a main source of input and describes
the actual execution of activities in context of a business process. An example
event log, adopted from [2], is presented in Table 1. Consider all activities
related to Case-id 1. John registers a request, after which Lucy examines it
thoroughly. Pete checks the ticket after which Rob decides to reject the request.
The execution of an activity in context of a business process is referred to as
an event. A sequence of events, e.g. the sequence of events related to case 1, is
referred to as a trace.

Let A denote the universe of all possible activities. An event log L is a
bag of sequences over A, i.e., L ∈ B(A∗). Typically, there exists AL ⊂ A of
activities that are actually present in L. In some cases we refer to an event
log as L ∈ B(A∗

L). A sequence σ ∈ L represents a trace. We write case 1 as
trace 〈“register request”,“examine thoroughly”, “check ticket”, “decide”, “reject
request”〉. In the remainder of the paper we use simple characters for activity
names, e.g. we write case 1 as 〈a, b, d, e, h〉.

The goal within process discovery is to discover a process model based on

8

Figure 4: Example WF-net W1, adopted from [2].

an event log. In this paper we consider workflow nets (WF-nets) [1], based on
Petri nets [34], to describe process models. We first introduce Petri nets and
their execution semantics, after which we define workflow nets.

A Petri net is a bipartite graph consisting of a set of vertices called places
and a set of vertices called transitions. Arcs connect places with transitions and
vice versa. Additionally, transitions have a (possibly unobservable) label which
describes the activity that the transition represents. A Petri net is a quadruple
N = (P, T, F, λ), where P is a set of places and T is a set of transitions with
P∩T = ∅. F denotes the flow relation ofN , i.e., F ⊆ (P×T)∪(T×P). λ denotes
the label function, i.e. given a set of activities Λ ⊂ A and an unobservable
activity τ /∈ Λ, it is defined as λ : T → Λ ∪ {τ}. For a node x ∈ P ∪ T ,
the pre-set of x in N is defined as •x = {y | (y, x) ∈ F} and x• = {y | (x,
y) ∈ F} denotes the post-set of x. Graphically we represent places as circles
and transitions as boxes. For every (x, y) ∈ F we draw an arc from x to y. An
example Petri net (which is also a WF-net) is depicted in Figure 4. Observe
that we have •d = {c2}, d• = {c4} and λ(d) =“reject request”. The Petri net
does not contain any silent transition.

The execution semantics of Petri nets are based on the concept of markings
A marking M is a bag of tokens, i.e. M ∈ B(P). Graphically, a place p’s
marking is visualized by drawingM(p) number of dots inside place p, e.g. place
“start” in Figure 4. A marked Petri net is a 2-tuple (N,M), whereM represents
N ’s marking. We let Mi denote N ’s initial marking. Transition t ∈ T is
enabled in marking M if ∀p∈•t(M(p) > 0). Enabled transition t in marking
M , may fire, which results in new marking M ′. If t fires, denoted as (N,

M)
t
−→ (N,M ′), then for each p ∈ P we have M ′(p) = M(p) − 1 if p ∈ •t \ t•,

M ′(p) =M(p)+ 1 if p ∈ t • \ • t, and, M ′(p) =M(p) otherwise, e.g. in Figure 4

we have (W1, [start])
a
−→ (W1, [c1, c2]). Given sequence σ = 〈t1, t2, ..., tn〉 ∈ T ∗,

σ is a firing sequence of (N,M), written as (N,M)
σ
−→→ (N,M ′) if and only if for

n = |σ| there exist markings M1,M2, ...,Mn−1 such that (N,M)
t1−→ (N,M1),

(N,M1)
t2−→ (N,M2), ..., (N,Mn−1)

tn−→ (N,M ′). We write (N,M)
σ
−→→ ∗ if there

9

exists a marking M ′ s.t. (N,M)
σ
−→→ (N,M ′). We write (N,M) (N,M ′)

if there exists σ ∈ T ∗ s.t. (N,M)
σ
−→→ (N,M ′). We define N ’s language as

L(N,Mi) = {σ ∈ T ∗ | Mi
σ
−→→ ∗}, i.e. L(N,Mi) is prefix-closed. We define

N ’s labelled language as LΛ(N,Mi) = {σ ∈ Λ∗ | ∃σ′∈T∗,σ′′∈(Λ∪{τ})∗(σ
′ ∈ L(N,

Mi) ∧ |σ′| = |σ′′| ∧ ∀i∈{1,2,...,|σ′|}(λ(σ
′(i)) = σ′′(i)) ∧ σ′′

↓Λ
= σ}. Given a final

marking Mf , we define N ’s execution language w.r.t. Mf as LMf
(N,Mi) =

{σ ∈ T ∗ | (N,Mi)
σ
−→→ (N,Mf)}. We define N ’s labelled execution language

as LΛ
Mf

(N,Mi) = {σ ∈ Λ∗ | ∃σ′∈T∗,σ′′∈(Λ∪{τ})∗(σ
′ ∈ LMf

(N,Mi) ∧ |σ′| =

|σ′′| ∧ ∀i∈{1,2,...,|σ′|}(λ(σ
′(i)) = σ′′(i)) ∧ σ′′

↓Λ
= σ}

WF-nets extend Petri nets and require the existence of a unique source- and
sink place which describe the start, respectively end, of a case. Moreover, each
element within the WF-net needs to be on a path from the source to the sink
place.

Definition 1 (Workflow net [1]). Let N = (P, T, F, λ) be a Petri net. Let
pi, po ∈ P with pi 6= po. Let Λ ⊂ A be a set of activities, let τ /∈ Λ and let
λ : T → Λ ∪ {τ}. Tuple W = (P, T, F, pi, po, λ) is a workflow net (WF-net) if
and only if:

1. •pi = ∅

2. po• = ∅

3. Each element x ∈ P ∪ T is on a path from pi to po.

The execution semantics defined for Petri nets can directly be applied on the
elements P , T and F of W = (P, T, F, pi, po, λ). Notation-wise we substitute W

for its underlying net structure N = (P, T, F), e.g. (W,M)
t
−→ (W,M ′), L(W,

Mi) etc. In context of WF-nets, we assume Mi = [pi] and Mf = [po] unless
mentioned otherwise.

We compute metrics such as replay-fitness and precision, as introduced in
the introduction, based on an event log. Several behavioural quality metrics,
that do not need any form of domain knowledge, exist for WF-nets. Several
notions of soundness of WF-nets are defined [5]. For example, classical sound
WF-nets are guaranteed to be free of livelocks, deadlocks, and other anomalies
that can be detected automatically. In this paper we consider the weaker notion
of relaxed soundness. Relaxed soundness requires that each transition is at some
point enabled, and, after firing such transition we are able to eventually reach
the final marking.

Definition 2 (Relaxed Soundness [5]). LetW = (P, T, F, pi, po, λ) be a WF-net.
W is relaxed sound if and only if: ∀t∈T (∃M,M ′∈B(P)((W, [pi]) (W,M) ∧ (W,

M)
t
−→ (W,M ′) ∧ (W,M ′) (W, [po]))).

Reconsider W1 (Figure 4) and assume we are given an event log with one
trace: 〈a, b, d, e, h〉. It is quite easy to see that W1 is relaxed sound. Moreover,
replay-fitness is perfect, i.e. 〈a, b, d, e, h〉 is in the WF-net’s labelled execution
language. Precision is not perfect as the WF-net can produce a lot more traces
than just 〈a, b, d, e, h〉.

10

Table 2: Linear inequalities corresponding to event log L1 based on
Equation 5.1.

m− ~y(a) ≥ 0 〈a〉
m+ ~x(a)− ~y(a)− ~y(b) ≥ 0 〈a, b〉
m+ ~x(a)− ~y(a)− ~y(c) ≥ 0 〈a, c〉
m+ ~x(a) + ~x(b)− ~y(a)− ~y(b)− ~y(d) ≥ 0 〈a, b, d〉
...

...
m+ ~x(a) + ~x(b) + ~x(c) + 2~x(d) + 2~x(e) + ~x(f)− ~y(a)− ~y(b)− ~y(c)− 2~y(d) − 2~y(e)− ~y(f)− ~y(h) ≥ 0 〈a, d, c, e, f, b, d, e, h〉

5 Discovering Petri Net Places using Integer Lin-

ear Programming

In this section we show how to, given an event log as an input, discover multiple
places of a Petri net using language based regions.

5.1 Regions

Conceptually, a region represents a place in a Petri net that, given the prefix-
closure of an event log, does not block the execution of any sequence within
the prefix-closure. We represent a region as an assignment of binary decision
variables describing the incoming and outgoing arcs of its corresponding place,
as well as its marking.

Definition 3 (Region). Given an event log L over a set of activities AL. Let
m ∈ {0, 1} and ~x, ~y ∈ {0, 1}|AL|. A triple r = (m,~x, ~y) is a region if and only
if:

∀σ=σ′·〈a〉∈L(m+ ~p(σ′)⊺~x− ~p(σ)⊺~y ≥ 0) (5.1)

Variable m indicates whether or not the region’s corresponding place con-
tains a token, ~x denotes incoming arcs and ~y denotes outgoing arcs. Consider
event log L1 = [〈a, b, d, e, g〉10, 〈a, c, d, e, f, d, b, e, g〉12, 〈a, d, c, e, h〉9, 〈a, b, d, e, f,
c, d, e, g〉11, 〈a, d, c, e, f, b, d, e, h〉13]. In Table 2 we depict a part of the corre-
sponding set of linear inequalities based on Definition 3. For every non-empty
sequence in L1, i.e. 〈a〉, 〈a, b〉, ..., 〈a, d, c, e, f, b, d, e, h〉 there is an associated
linear inequality in terms of the variables m, ~x and ~y. For example, 〈a〉 leads to
m− ~y(a), 〈a, b〉 leads to m+ ~x(a)− ~y(a) − ~y(b) etc. Note that the inequalities
abstract from the ordering of activities in traces, e.g. 〈a, c, d, e〉 and 〈a, d, c, e〉
both map to m+ ~x(a) + ~x(c) + ~x(d) − ~y(a)− ~y(c)− ~y(d)− ~y(e).

A region r is translated to a Petri net place p as follows. Given a Petri net
that has a unique transition ta for each a ∈ AL such that λ(ta) = a. If, for
a ∈ AL ~x(a) = 1, we add ta to •p. Symmetrically, if for a ∈ AL ~y(a) = 1, we add
ta to p•. Finally, if m = 1, place p is initially marked. Since translating a region
to a place is deterministic, we are also able to translate a place to a region, e.g.
place c2 in Figure 4 corresponds to a region with ~x(a) = 1, ~x(f) = 1, ~y(d) = 1
and all other variables set to zero.

11

From a formal perspective, consider an event log L over a set of activities
AL, a Petri net N = (P, T, F, λ) and marking Mi s.t. L ⊆ LΛ(N,Mi). After
adding a place, based on any possible region w.r.t. L, to N (and updating Mi

if m = 1) still L ⊆ LΛ(N,Mi) holds. However, adding the region potentially
decreases the size of LΛ(N,Mi) \ L.

Triples r~0 = (0,~0,~0) and r~1 = (1,~1,~1) are always regions and hence are
trivial regions. We let R(L) denote the set of non-trivial regions based on event
log L.

5.2 A Basic ILP Formulation

Set R(L) represents a huge set of regions. However, when using L1 as an input
for process discovery, our goal is to find (a very similar WF-net to) the WF-net
in Figure 4. Several regions exist in R(L1) that are not a place in Figure 4. For
example, a variable assignment with ~x(a) = 1 and ~y(e) = 1 (all other variables
zero), i.e. representing a place connecting transitions a and e, is a region. We
therefore need means to search through the solution space to find regions that
are of interest.

Firstly, we are only interested in minimal regions, i.e. regions that are not
expressible as a non-negative linear combination of two other regions, because
non-minimal regions correspond to implicit places [44]. Hence, when applying
region-based techniques in terms of process discovery, we only search for min-
imal regions. Finding all minimal regions does however not suffice, e.g. the
aforementioned region with ~x(a) = 1 and ~y(e) = 1 is minimal yet implicit.
To this end we define an Integer Linear Programming (ILP) [36] formulation
using the region definition as a constraint body [44]. ILP is a mathematical
optimization problem defined over a set of integer variables. The objective and
constraints of an ILP-problem are an expression in terms of the variables of
linear form. Before introducing the basic ILP-formulation for the purpose of
process discovery, we reformulate regions in terms of matrices.

Definition 4 (Region (Matrix Form)). Given an event log L over a set of
activities AL, let m ∈ {0, 1} and let ~x, ~y ∈ {0, 1}|AL|. Let M and M′ be two
|L\{ǫ}|×|AL| matrices with M(σ, a) = ~p(σ)(a) and M′(σ, a) = ~p(σ′)(a) (where
σ = σ′ · 〈a′〉 ∈ L). Tuple r = (m,~x, ~y) is a region if and only if:

m~1 +M′~x−M~y ≥ ~0 (5.2)

We additionally define matrix ML which is an |L|× |AL| matrix with ML(σ,
a) = ~p(σ)(a) for σ ∈ L, i.e., ML is the equivalent of M for all traces in the event
log. We define a general process discovery ILP-formulation that guarantees to
find a non-trivial region with the additional property that the corresponding
place is always empty after replaying each trace within the event log.

Definition 5 (Process Discovery ILP-formulation). Given an event log L over
a set of activities AL and corresponding matrices M, M′ and ML. Let cm ∈ R

and ~cx, ~cy ∈ R
|AL|. The process discovery ILP-formulation, ILPL, is defined as:

12

minimize z = cmm+ ~cx
⊺~x+ ~cy

⊺~y objective function

such that m~1 +M′~x−M~y ≥ ~0 theory of regions

and m~1 +ML(~x− ~y) = ~0 corresp. place is empty after each trace
~1⊺~x+ ~1⊺~y ≥ 1 at least one arc connected

~0 ≤ ~x ≤ ~1 i.e. ~x ∈ {0, 1}|A|

~0 ≤ ~y ≤ ~1 i.e. ~y ∈ {0, 1}|A|

0 ≤ m ≤ 1 i.e. m ∈ {0, 1}

Definition 5 acts as a basic formulation for process discovery using ILP. To
actually use the formulation we need to instantiate cm, ~cx and ~cy, i.e. the ob-
jective coefficients, with meaningful values. By varying the actual values for the
objective coefficients we are able to let the ILP favour different solutions. In [44]
an objective function is proposed that minimizes the number of incoming arcs
and maximizes the number of outgoing arcs to a place. In [46] the aforemen-
tioned objective function is extended such that it minimizes the time a token
resides in the corresponding place. Both objective functions are expressible as
a more general function which favours minimal regions [46]. In general we are
able to use any objective function, as long as it favours minimal regions. Hence,
in this paper we assume that one uses such objective function.

Using the basic formulation with some objective function instantiation only
yields one, optimal, result. Hence we need a more structured approach for
finding multiple Petri net places, using the ILP formulation presented as a basis.

5.3 Exploiting Causalities

We need to find multiple regions that together form places of a WF-net, in
line with the behaviour present within the event log. One of the most suitable
techniques to find multiple regions in a controlled, structured manner, is by
exploiting causal relations present within an event log. A causal relation be-
tween activities a and b implies that activity a causes b, i.e. b is likely to follow
(somewhere) after activity a.

Several approaches exist to compute causalities relations [22]. The α-Miner [8]
defines causal relation a→L b from activity a to activity b if, within some event
log L, we find traces of the form 〈..., a, b, ...〉 though we do not find traces of the
form 〈..., b, a, ...〉. Within the Heuristics Miner [40, 41] this relation was further
developed to take frequencies into account as well. Given these multiple defini-
tions, we assume the existence of a causal relation oracle which, given an event
log, produces a set of pairs (a, b) indicating that activity a has a causal relation
with (to) activity b.

Definition 6 (Causal relation oracle). A causal relation oracle γc maps a bag
of traces to a set of activity pairs, i.e. γc : B(A∗) → P(A×A).

A causal oracle maps an event log onto its activities, i.e. γc(L) ∈ P(AL×AL).
It defines a directed graph with AL as vertices and each pair (a, b) ∈ γc(L) as

13

an arc between a and b. Later we exploit this graph-based view, for now we
refer to γc(L) as a collection of pairs.

When adopting a causal-based ILP process discovery strategy, we try to find
net places that represent a causality found in the event log. Given an event log L,
for each pair (a, b) ∈ γc(L) we enrich the constraint body with three constraints:
1.) m = 0, 2.) ~x(a) = 1 and 3.) ~y(b) = 1. The three constraints ensure that
if we find a solution to the ILP it corresponds to a place which is not marked
and connects transition a to transition b. Given pair (a, b) ∈ γc(L) we denote
the corresponding extended causality based ILP-formulation as ILP(L,a→b).

After solving ILP(L,a→b) for each (a, b) ∈ γc(L), we end up with a set of
regions that we are able to transform into places in a resulting Petri net. Since
we enforce m = 0 for each causality, none of these places is initially marked.
Moreover, due to constraints based on m~1+ML(~x− ~y) = ~0, the resulting place
is empty after replaying each trace in the input event log within the net. Since
we additionally enforce ~x(a) = 1 and ~y(b) = 1, if we find a solution to the
ILP, the corresponding place has both input and output arcs and is not eligible
for being a source/sink place. Hence, the approach as-is does not allow us to
find WF-nets. In the next section we show that a simple pre-processing step
performed on the event log, together with specific instances of γc(L), allows us
to discover WF-nets which are relaxed sound.

6 Discovering Relaxed Sound Workflow Nets

Reconsider example event log L1, i.e. L1 = [〈a, b, d, e, g〉10, 〈a, c, d, e, f, d, b, e,
g〉12, 〈a, d, c, e, h〉9, 〈a, b, d, e, f, c, d, e, g〉11, 〈a, d, c, e, f, b, d, e, h〉13]. Let Af ⊆ AL

denote the set of final activities, i.e. activities af s.t. there exists a trace of the
form 〈..., af 〉 in the event log. For example, for L1, Af = {g, h}. After solving
each ILPL,a→b instance based on γc(L) and adding corresponding places, we
know that when we exactly replay any trace from L1, after firing g or h, the
net is empty. Since g and h never co-occur in a trace, it is trivial to add a sink
place po, s.t. after replay each trace in L1, po is the only place marked, i.e.
•po = {f, g} and po• = ∅ (place “end” in Figure 4). In general, such decision is
not trivial. However, a trivial case for adding a sink po is the case when there
is only one end activity that uniquely occurs once, at the end of each trace, i.e.
Af = {af} and there exists no trace of the form 〈..., af , ..., af 〉. In such case we
have •po = {af}, po• = ∅.

A similar rationale holds for adding a source place. We define a set As that
denotes the set of start activities, i.e. activities as s.t. there exists a trace of
the form 〈as, ...〉 in the event log. For each activity as in As we know that for
some traces in the event log, these are the first ones to be executed. Thus, we
know that the source place pi must connect, in some way, to the elements of
As. Like in the case of final transitions, creating a source place is trivial when
As = {as} and there exists no trace of the form 〈as, ..., as, ...〉, i.e. the start
activity uniquely occurs once in each trace. In such case we create place pi with
•pi = ∅, pi• = {as}.

14

In order to be able to find a source and a sink place, it suffices to guarantee
that sets As and Af are of size one and their elements always occur uniquely
at the start, respectively, end of a trace. We formalize this idea through the
notion of unique start/end event logs, after which we show that transforming an
arbitrary event log to such unique start/end event log is trivial.

Definition 7 (Unique start/end event log). Let L be an event log over a set
of activities AL. L is a Unique Start/End event Log (USE-Log) if there exist
as, af ∈ AL s.t. as 6= af , ∀σ∈L(σ(1) = as ∧ ∀i∈{2,3,...,|σ|}(σ(i) 6= as)) and
∀σ∈L(σ(|σ|) = af ∧ ∀i∈{1,2,...,|σ|−1}(σ(i) 6= af)).

Since the set of activities AL is finite, it is trivial to transform any event log
to a USE-log. Assume we have an event log L over AL that is not a USE-log.
We generate two “fresh” activities as, af ∈ A s.t. as, af /∈ AL and create a new
event log L′ over AL ∪ {as, af}, by adding 〈as〉 · σ · 〈af 〉 to L for each σ ∈ L.
We let π : B(A∗) → B(A∗) denote such USE-transformation. We omit as and
af from the domain of π and assume that given some USE-transformation the
two symbols are known.

Clearly, after applying a USE-transformation, finding a unique source and
sink place is trivial. It also provides an additional advantage considering the
ability to find WF-nets. In fact, an ILP instance ILPL,a→b always has a solution
if L is a USE-log. We provide a proof of this property in Lemma 1, after which
we present an algorithm that, given specific instantiations of γc, discovers WF-
nets.

Lemma 1 (A USE-Log based causality has a solution). Let L be an event
log over a set of activities AL. Let π : B(A∗) → B(A∗) denote a USE-
transformation function and let as, af denote the start and end activities. For
every (a, b) ∈ γc(π(L)) with a 6= af and b 6= as, ILP(π(L),a→b) has a solution.

Constructive. We consider the case a 6= as and b 6= af . We show that variable
assignment ~x(as) = ~x(a) = ~x(b) = ~y(a) = ~y(b) = ~y(af) = 1, all other variables
0 (Figure 5a), adheres to all constraints of ILP(π(L),a→b).

Consider constraints of the form ∀
σ=σ′·〈a〉∈π(L)(m + ~p(σ′)⊺~x − ~p(σ)⊺~y ≥ 0)

(m~1 +M′~x−M~y ≥ ~0) and let σ = σ′ · 〈x〉 ∈ π(L).
Case I: x 6= a, x 6= b, x 6= af . Since x 6= af we know ~p(σ)(af) = 0. Moreover,

since x 6= a, x 6= b, we know that ~p(σ′)(a) = ~p(σ)(a) and ~p(σ′)(b) = ~p(σ)(b),
and hence ~p(σ′)(a)~x(a) − ~p(σ)(a)~y(a) = 0 and ~p(σ′)(b)~x(b) − ~p(σ)(b)~y(b) = 0.
Since ~x(as) = 1 and as occurs uniquely at the start of each trace, if σ′ = ǫ such
constraint equals 0, and, 1 otherwise.

Case II: x = a. We know ~p(σ)(af) = 0 and ~p(σ′)(b) = ~p(σ)(b). Now
~p(σ′)(a) = ~p(σ)(a)− 1 and thus ~p(σ′)(a)~x(a)− ~p(σ)(a)~y(a) = −1. Since as ∈ σ′

we have ~p(σ′)(as)~x(as) = 1, and thus the constraint equals 0.
Case III: x = b Similar to Case II.
Case IV: x = af . We again have ~p(σ′)(a) = ~p(σ)(a) and ~p(σ′)(b) = ~p(σ)(b).

Since ~p(σ)(af)~y(af) = ~p(σ′)(as)~x(as) = 1, each constraint equals 0.

15

p
as af

a

b

(a) Solution in case a 6= as
and b 6= af .

p
as af

a/b

(b) Solution in case a = as
and b 6= af or a 6= as and
b = af .

p
as af

(c) Solution in case a = as
and b = af .

Figure 5: Visualizations of trivial solutions to ILP(π(L),a→b) in terms of Petri
net places.

The constraints of the form: ~1⊺~x + ~1⊺~y ≥ 1, ~0 ≤ ~x ≤ ~1, ~0 ≤ ~y ≤ ~1 and
0 ≤ m ≤ 1 are trivially satisfied. From Case IV combined with ~x(af) =
0 it follows that all constraints of the form ∀σ∈π(L)(m + ~p(σ)⊺(~x − ~y) = 0)

(m~1+ML(~x−~y) = ~0) hold. Finally the assignment adheres to m = 0, ~x(a) = 1
and ~y(b) = 1.

In case we have a = as and b 6= af the region ~x(as) = ~x(a) = ~y(a) = ~y(af) =
1, all other variables 0 (Figure 5b), is a solution. The proof is similar to the
proof of the previous case.

In case we have a 6= as and b = af the region ~x(as) = ~x(b) = ~y(b) = ~y(af) =
1, all other variables 0 (Figure 5b), is a solution. Again the proof is similar to
the proof in the first case.

Finally in case we have a = as and b = af the region ~x(as) = ~y(af) = 1,
all other variables 0 (Figure 5c), is a solution. Again the proof is similar to the
proof in the first case.

In Algorithm 1 we present an ILP-Based process discovery approach that
uses a USE-log internally in order to find multiple Petri net places. For every
(a, b) ∈ γc(π(L)) with a 6= af and b 6= as it solves ILP(π(L),a→b). Moreover, it
finds a unique source and sink place.

The algorithm constructs an initially empty Petri net N = (P, T, F). Sub-
sequently for each a ∈ AL ∪ {as, af} a transition ta is added to T . For each
causal pair in the USE-variant of input event log L, a place p(a,b) is discovered
by solving ILP(π(L),a→b) after which P and F are updated accordingly. The
algorithm adds an initial place pi and connects it to tas

and similarly creates
sink place po which is connected to taf

. For transition ta related to a ∈ AL, we
have λ(ta) = a, whereas λ(tas

) = λ(taf
) = τ .

The algorithm is guaranteed to always find a solution to ILP(π(L),a→b), hence
for each causal relation a place is found. Additionally, a unique source and sink
place are constructed. However, the algorithm does not guarantee that we
find a connected component, i.e. requirement 3 of Definition 1. In fact, the
nature of γc determines whether or not we discover a WF-net. In Theorem 1
we characterize this nature and prove, by exploiting Lemma 1, that we are able
to discover WF-nets.

16

Algorithm 1: ILP-Based Process Discovery

input : L ∈ B(A∗

L), γc : B(A
∗)→ P(A×A)

output: W = (P, T, F, pi, po, λ)
begin

1 P, T, F ← ∅;
2 let as, af /∈ AL;
3 T ← {ta | a ∈ AL ∪ {as, af}};
4 foreach (a, b) ∈ γc(π(L)) do
5 (m,~x, ~y)← solution to ILP(π(L),a→b);
6 let p(a,b) /∈ P ;
7 P ← P ∪ p(a,b);
8 foreach a′ ∈ AL ∪ {as, af} do
9 if ~x(a′) = 1 then

10 F ← F ∪ {(ta′ , p(a,b)};

11 if ~y(a′) = 1 then

12 F ← F ∪ {(p(a,b), ta′)};

13 let pi, po /∈ P ;
14 P ← P ∪ {pi, po};
15 F ← F ∪ {(pi, tas)};
16 F ← F ∪ {(taf

, po)};

17 let λ : T → A ∪ {τ};
18 foreach a ∈ AL do

19 λ(ta)← a ;

20 λ(tas), λ(taf
)← τ ;

21 return (P, T, F, pi, po, λ);

Theorem 1 (There exist sufficient conditions for finding WF-nets). Let L be
an event log over a set of activities AL. Let π : B(A∗) → B(A∗) denote a
USE-transformation function. Let as, af denote the unique start- and end ac-
tivity of π(L). Let γc : B(A∗) → P(A × A) be a causal oracle and consider
γc(π(L)) as a directed graph. If each a ∈ AL is on a path from as to af in
γc(π(L)), and there is no path from as to itself, nor a path from af to itself,
then ILP-Based Process Discovery(L, γc) returns a WF-net.

On the structure of γc(π(L)). By the requirements on γc(π(L)) and Lemma 1,
we know that for each (a, b) ∈ γc(π(L)) a corresponding place will be found
that has a transition labelled with a as an input and a transition labelled b as
an output. Hence every path in γc(π(L)) corresponds to a path in the resulting
net and as a consequence, every transition is on a path from as to af . As every
place that is added has input transition (~x(a) = 1) and an output transition
(~y(b) = 1), every place is also on a path from as to af . By construction this
then also holds from pi to po.

Theorem 1 proves that if we use a causal structure that, when interpreting
it as a graph, has the property that each a ∈ AL is on a path from as to

17

af , the result of ILP-Based Process Discovery(L, γc) is a WF-net. Although
this seems a rather strict property of the causal structure, there exists a specific
causal graph definition that guarantees this property [41]. Hence we are able to
use this definition as an instantiation for γc.

Theorem 1 does not provide any behavioural guarantees, i.e. a WF-net is a
purely graph-theoretical property. Recall that the premise of a region is that it
does not block the execution of any sequence within the prefix-closure of an event
log. Intuitively we deduce that we are therefore able to fire each transition in the
WF-net at least once. Moreover, since we know that af is the final transition
of each sequence in π(L), and after firing the transition each place based on
any ILPπ(L),a→b is empty, we know that we are able to mark po. These two
observations hint on the fact that the WF-net is relaxed sound, which we prove
in Theorem 2

Theorem 2. Let L be an event log over a set of activities AL. Let π : B(A∗) →
B(A∗) denote a USE-transformation function and let as, af denote the unique
start- and end activity of π(L). Let γc : B(A∗) → P(A×A) be a causal oracle.
Let W = (P, T, F, pi, po, λ) = ILP-Based Process Discovery(L, γc). If W is
a WF-net, then W is relaxed sound.

By construction of traces in the event log. Recall that W is relaxed sound if

and only if: ∀t∈T (∃M,M ′∈B(P)((W, [pi]) (W,M) ∧ (W,M)
t
−→ (W,M ′) ∧ (W,

M ′) (W, [po]))).
Observe that tas

is trivially enabled in Mi = [pi] since •tas
= {pi}. Consider

arbitrary t ∈ T \ {tas
, taf

}. We know ∃σ∈π(L)(σ = 〈as〉 · σ
′ · 〈λ(t)〉 · σ′′ · 〈af 〉).

Let 〈t′1, t
′
2, ..., t

′
n〉 s.t. 〈λ(t′1), λ(t

′
2), ..., λ(t

′
n)〉 = σ′. The fact that each place

p ∈ P \ {pi, po} corresponds to a region yields that we may deduce [pi]
tas−−→

M ′
1,M

′
1

t′1−→M ′
2,...,M

′
n

t′n−→ M ′ s.t. M ′ ⊇ •t (if there exists p ∈ •t s.t. M ′(p) = 0,
then p does not correspond to a region). Hence for any t ∈ T \ {tas

, taf
} there

exists a marking reachable from [pi] that enables t.
Now let 〈t′′1 , t

′′
2 , ..., t

′′
n〉 s.t. 〈λ(t

′′
1), λ(t

′′
2), ..., λ(t

′′
n)〉 = σ′′. Note that also, again

by the fact that each place p ∈ P \ {pi, po} corresponds to a region, we may

deduceM ′ t′′1−→M ′′
1 ,M

′′
1

t′′2−→M ′′
2 ,...,M

′′
n−1

t′′n−→M ′′
n . Clearly we haveM ′′

n

taf
−−→Mf

with Mf (po) = 1 since taf
• = {po}, and this is the first time we fire taf

, i.e.,
af /∈ 〈as〉 · σ′ · 〈λ(t)〉 · σ′′. Clearly Mf(pi) = 0 and because of constraints of the

form m~1 +ML(~x − ~y) = ~0 we have ∀p∈P\{pi,po}(Mf (p) = 0). Hence Mf = [po]
and thus after firing t there exists a firing sequence that leads to marking [po]
which proves W is relaxed sound.

We have shown that with a few pre- and post-processing steps and a spe-
cific class of causal structures we are able to guarantee to find WF-nets that
are relaxed sound. These results are interesting since several process mining
techniques require WF-nets as an input. The ILP problems solved still require
their solutions to allow for all possible behaviour in the event log. As a result,
the algorithm incorporates all infrequent exceptional behaviour and still results

18

in over-fitting complex WF-nets. Hence, in the upcoming section we show how
to efficiently prune the ILP constraint body to identify and eliminate infrequent
exceptional behaviour.

7 Dealing with Infrequent Behaviour

In this section we present an efficient pruning technique that identifies and
eliminates constraints related to infrequent exceptional behaviour. We first
present the impact of infrequent exceptional behaviour after which we present
the pruning technique.

7.1 The Impact of Infrequent Exceptional Behaviour

In section 2 we already indicated the impact of infrequent behaviour on the
results of ILP-based process discovery. In this section we highlight the main
cause of ILP-based discovery’s inability to handle infrequent behaviour and we
devise a filtering mechanism that exploits the nature of the underlying body of
constraints.

Let us again reconsider example event log L1, i.e., L1 = [〈a, b, d, e, g〉10, 〈a, c,
d, e, f, d, b, e, g〉12, 〈a, d, c, e, h〉9, 〈a, b, d, e, f, c, d, e, g〉11, 〈a, d, c, e, f, b, d, e, h〉13]. Us-
ing an implementation of Algorithm 1 in ProM [38], with a suitable causal struc-
ture γc, we find the WF-net depicted in Figure 6a. The WF-net describes the
same behaviour as the model presented in Figure 4 and has perfect replay-fitness
w.r.t. L1. However, if we create event log L′ by simply adding one instance
of the trace 〈a, b, c, d, e, g〉, we obtain the result depicted in Figure 6b. Due to
one exceptional trace, the model allows us, after executing a or f to execute
an arbitrary number of b- and c-labelled transitions. This is undesirable since
precision of the resulting process model drops significantly. Thus, the addition
of one exceptional trace results in a less comprehensible WF-net and reduces
the precision of the resulting WF-net.

When analysing the two models we observe that they share some equal
places, e.g. both models have a place p({a,f},{d}) with •p({a,f},{d}) = {a, f} and
p({a,f},{d})• = {d}. However, the two places p({a,f},{b,c}) with •p({a,f},{b,c}) =
{a, f} and p({a,f},{b,c})• = {b, c} and p({b,c},{e}) with •p({b,c},{e}) = {b, c} and
p({b,c},{e})• = {e} in Figure 6a, are not present in Figure 6b. These are “re-
placed” by the less desirable places containing self-loops in Figure 6b. This is
caused by the fact that L′

1 contains all traces present in L1, combined with the
additional constraints depicted in Table 3.

For place p({a,f},{b,c}) in Figure 6a we define a corresponding tuple r = (m,
~x, ~y) with ~x(a) = 1, ~x(f) = 1, ~y(b) = 1 and ~y(c) = 1 (all other variables 0). The
additional constraints in Table 3 all evaluate to −1 for r, e.g. constraint m +
~x(as)+~x(a)+~x(b)−~y(as)−~y(a)−~y(b)−~y(c) evaluates to 0+0+1+0−0−0−1−1 =
−1. In case of place p({b,c},{e}) we observe that the corresponding tuple r = (m,
~x, ~y) with ~x(b) = 1, ~x(c) = 1 and ~y(e) = 1, yields a value of 1 for all constraints
generated by trace 〈a, b, c, d, e, g〉. For all constraints having a “≥ 0 right hand

19

(a) Result based on event log L1

(b) Result based on event log L′

1

Figure 6: Results of applying Algorithm 1 (HybridILPMiner package in the
ProM Framework [38]) based on L1 and L′

1.

Table 3: Some of the newly added constraints based on trace 〈a, b, c, d, e, g〉 in
event log L′

1, starting from prefix 〈a, b, c〉 which is not present in L1.

m+ ~x(as) + ~x(a) + ~x(b)− ~y(as)− ~y(a)− ~y(b)− ~y(c) ≥ 0
m+ ~x(as) + ~x(a) + ~x(b) + ~x(c)− ~y(as)− ~y(a)− ~y(b)− ~y(c)− ~y(d) ≥ 0
...
m+ ~x(as) + ~x(a) + ~x(b) + ~x(c) + ~x(d) + ~x(e) + ~x(g)− ~y(as)− ~y(a)− ~y(b)− ~y(c)− ~y(d)− ~y(e)− ~y(g)− ~y(af) ≥ 0
m+ ~x(as) + ~x(a) + ~x(b) + ~x(c) + ~x(d) + ~x(e) + ~x(g) + ~x(af)− ~y(as)− ~y(a)− ~y(b)− ~y(c)− ~y(d)− ~y(e)− ~y(g)− ~y(af) = 0

side” this is valid, however, for constraintm+~x(as)+~x(a)+~x(b)+~x(c)+~x(d)+
~x(e) + ~x(g) + ~x(af)− ~y(as)− ~y(a)− ~y(b)− ~y(c)− ~y(d)− ~y(e)− ~y(g)− ~y(af) = 0
this is not valid.

The example shows that the addition of 〈a, b, c, d, e, g〉 yields constraints that
invalidate places p({a,f},{b,c}) and p({b,c},{e}). As a result the WF-net based on
event log L′

1 contains places with self-loops on both b and c which greatly reduces
its precision and simplicity. Due to the relative infrequency of trace 〈a, b, c, d,
e, g〉 it is arguably acceptable to trade-off the perfect replay-fitness guarantee
of ILP-Based process discovery and return the WF-net of Figure 6a, given L′

1.
Hence, we need filtering techniques and/or trace clustering techniques in order
to remove exceptional behaviour. However, apart from simple pre-processing,
we aim at adapting the ILP-based process discovery approach itself to be able
to cope with infrequent behaviour.

20

By manipulating the constraint body such that it no longer allows for all
behaviour present in the input event log, we are able to deal with infrequent
behaviour within event logs. Given the problems that arise because of the
presence of exceptional traces, a natural next step is to leave out the constraints
related to the problematic traces. An advantage of filtering the constraint body
is the fact that the constraints are based on the prefix-closure of the event log.
Thus, even if all traces are unique yet they do share prefixes, we are able to filter.
Additionally, leaving out constraints decreases the size of the ILP’s constraint
body, which has a potential positive effect on the time needed to solve an ILP.
We devise a graph-based filtering technique, i.e., sequence encoding filtering,
that allows us to prune constraints based on trace frequency information.

7.2 Sequence Encoding Graphs

As a first step towards sequence encoding filtering we define the relationship
between sequences and constraints. We do this in terms of sequence encodings.
A sequence encoding is a vector-based representation of a sequence in terms of
region theory, i.e., representing the sequence’s corresponding constraint.

Definition 8 (Sequence encoding). Given a set of activities A = {a1, a2, ...,

an}. ~φ : A∗ → N
2|A|+1 denotes the sequence encoding function mapping every

σ ∈ A∗ to a 2 · |A|+ 1-sized vector. We define ~φ as:

~φ(σ′ · 〈a〉) =

1
~p(σ′)

−~p(σ′ · 〈a〉)

~φ(ǫ) =

1
0
...
0

As an example of a sequence encoding vector consider sequence 〈as, a, b〉

originating from π(L′
1), for which we have ~φ(〈as, a, b〉)⊺ = (1, 1, 1, 0, 0, 0, 0, 0, 0,

0, 0,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0). Sequence encoding vectors directly correspond
to region theory based constraints, e.g. if we are given m ∈ {0, 1} and ~x, ~y ∈ {0,
1}|A| and create a vector ~r where ~r(1) = m, ~r(2) = ~x(as), ~r(3) = ~x(a), ...,

~r(10) = ~x(h), ~r(11) = ~x(af), ~r(12) = ~y(af), ..., ~r(21) = ~y(af), then ~φ(〈as, a,
b〉)⊺~r = m+~x(as)+~x(a)−~y(as)−~y(a)−~y(b). As compact notation for σ = σ′ ·〈a〉

we write ~φ(σ) as a pair of the bag representation of the Parikh vector of σ′ and

a, i.e. ~φ(〈as, a, b〉) is written as ([as, a], b) whereas ~φ(〈as, a, b, c〉) is written as

([as, a, b], c). For ~φ(ǫ) we write ([],⊥).
Consider the prefix-closure of π(L′

1) which generates the linear inequalities
presented in Table 4. The table shows each sequence present in π(L′

1) accompa-

nied by its ~φ-value and the number of occurrences of the sequence in π(L′
1), e.g.

π(L′
1)(〈as, a〉) = 56. Observe that there is a relation between the occurrence

of a sequence and its corresponding postfixes, i.e. after the 56 times that se-
quence 〈as, a〉 occurred, 〈as, a, b〉 occurred 22 times, 〈as, a, c〉 occurred 12 times
and 〈as, a, d〉 occurred 22 times (note: 56 = 22 + 12 + 22). Due to coupling of

21

Table 4: Schematic overview of sequence encodings based on π(L′
1).

σ ∈ π(L′
1)

~φ(σ)⊺, i.e. (m,~x(as), ~x(a), ..., ~y(h), ~y(af)) ~φ(σ) (shorthand) π(L′
1)(σ)

ǫ (1, 0) ([],⊥) 56
〈as〉 (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1, 0, 0, 0, 0, 0, 0, 0, 0, 0) ([], as) 56
〈as, a〉 (1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0, 0, 0, 0, 0, 0, 0) ([as], a) 56
〈as, a, b〉 (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1,−1, 0, 0, 0, 0, 0, 0, 0) ([as, a], b) 22
〈as, a, c〉 (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0,−1, 0, 0, 0, 0, 0, 0) ([as, a], c) 12
〈as, a, d〉 (1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0,−1,−1, 0, 0,−1, 0, 0, 0, 0, 0) ([as, a], d) 22
〈as, a, b, c〉 (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,−1,−1,−1,−1, 0, 0, 0, 0, 0, 0) ([as, a, b], c) 1
〈as, a, b, d〉 (1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0,−1,−1,−1, 0,−1, 0, 0, 0, 0, 0) ([as, a, b], d) 21
〈as, a, c, d〉 (1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0,−1,−1, 0,−1,−1, 0, 0, 0, 0, 0) ([as, a, c], b) 12
〈as, a, d, c〉 (1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0,−1,−1, 0,−1,−1, 0, 0, 0, 0, 0) ([as, a, d], c) 22
〈as, a, b, c, d〉 (1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1, 0, 0, 0, 0, 0) ([as, a, b, c], d) 1
〈as, a, b, d, e〉 (1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0,−1,−1,−1, 0,−1,−1, 0, 0, 0, 0) ([as, a, b, d], e) 21
〈as, a, c, d, e〉 (1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0,−1,−1, 0,−1,−1,−1, 0, 0, 0, 0) ([as, a, c, d], e) 12
〈as, a, d, c, e〉 (1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0,−1,−1, 0,−1,−1,−1, 0, 0, 0, 0) ([as, a, c, d], e) 22
〈as, a, b, c, d, e〉 (1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0,−1,−1,−1,−1,−1,−1, 0, 0, 0, 0) ([as, a, b, c, d], e) 1
〈as, a, b, d, e, f〉 (1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0,−1,−1,−1, 0,−1,−1,−1, 0, 0, 0) ([as, a, b, d, e], f) 11
〈as, a, b, d, e, g〉 (1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0,−1,−1,−1, 0,−1,−1, 0,−1, 0, 0) ([as, a, b, d, e], g) 10
〈as, a, c, d, e, f〉 (1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,−1,−1, 0,−1,−1,−1,−1, 0, 0, 0) ([as, a, c, d, e], f) 12
〈as, a, d, c, e, f〉 (1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,−1,−1, 0,−1,−1,−1,−1, 0, 0, 0) ([as, a, c, d, e], f) 13
〈as, a, d, c, e, h〉 (1, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0,−1,−1, 0,−1,−1,−1, 0, 0,−1, 0) ([as, a, c, d, e], h) 9
〈as, a, b, c, d, e, g〉 (1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,−1,−1,−1,−1,−1,−1, 0,−1, 0, 0) ([as, a, b, c, d, e], g) 1
〈as, a, b, d, e, f, c〉 (1, 1, 1, 1, 0, 1, 1, 1, 0, 0, 0,−1,−1,−1,−1,−1,−1,−1, 0, 0, 0) ([as, a, b, d, e, f], c) 11
〈as, a, b, d, e, g, af〉 (1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0,−1,−1,−1, 0,−1,−1, 0,−1, 0,−1) ([as, a, b, d, e, g], af) 10
〈as, a, c, d, e, f, d〉 (1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0,−1,−1, 0,−1,−2,−1,−1, 0, 0, 0) ([as, a, c, d, e, f], d) 12
〈as, a, d, c, e, f, b〉 (1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0,−1,−1,−1,−1,−1,−1,−1, 0, 0, 0) ([as, a, c, d, e, f], b) 13
〈as, a, d, c, e, h, af〉 (1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 0,−1,−1, 0,−1,−1,−1, 0, 0,−1,−1) ([as, a, c, d, e, h], af) 9
〈as, a, b, c, d, e, g, af〉 (1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0,−1,−1,−1,−1,−1,−1, 0,−1, 0,−1) ([as, a, b, c, d, e, g], af) 1
〈as, a, b, d, e, f, c, d〉 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,−1,−1,−1,−1,−2,−1,−1, 0, 0, 0) ([as, a, b, c, d, e, f], d) 11
〈as, a, c, d, e, f, d, b〉 (1, 1, 1, 0, 1, 2, 1, 1, 0, 0, 0,−1,−1,−1,−1,−2,−1,−1, 0, 0, 0) ([as, a, c, d

2, e, f], b) 12
〈as, a, d, c, e, f, b, d〉 (1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0,−1,−1,−1,−1,−2,−1,−1, 0, 0, 0) ([as, a, b, c, d, e, f], d) 13
〈as, a, b, d, e, f, c, d, e〉 (1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0,−1,−1,−1,−1,−2,−2,−1, 0, 0, 0) ([as, a, b, c, d

2, e, f], e) 11
〈as, a, c, d, e, f, d, b, e〉 (1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0,−1,−1,−1,−1,−2,−2,−1, 0, 0, 0) ([as, a, b, c, d

2, e, f], e) 12
〈as, a, d, c, e, f, b, d, e〉 (1, 1, 1, 1, 1, 2, 1, 1, 0, 0, 0,−1,−1,−1,−1,−2,−2,−1, 0, 0, 0) ([as, a, b, c, d

2, e, f], e) 13
〈as, a, b, d, e, f, c, d, e, g〉 (1, 1, 1, 1, 1, 2, 2, 1, 0, 0, 0,−1,−1,−1,−1,−2,−2,−1,−1, 0, 0) ([as, a, b, c, d

2, e2, f], g) 11
〈as, a, c, d, e, f, d, b, e, g〉 (1, 1, 1, 1, 1, 2, 2, 1, 0, 0, 0,−1,−1,−1,−1,−2,−2,−1,−1, 0, 0) ([as, a, b, c, d

2, e2, f], g) 12
〈as, a, d, c, e, f, b, d, e, h〉 (1, 1, 1, 1, 1, 2, 2, 1, 0, 0, 0,−1,−1,−1,−1,−2,−2,−1, 0,−1, 0) ([as, a, b, c, d

2, e2, f], h) 13
〈as, a, b, d, e, f, c, d, e, g, af〉 (1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 0,−1,−1,−1,−1,−2,−2,−1,−1, 0,−1) ([as, a, b, c, d

2, e2, f, g], af) 11
〈as, a, c, d, e, f, d, b, e, g, af〉 (1, 1, 1, 1, 1, 2, 2, 1, 1, 0, 0,−1,−1,−1,−1,−2,−2,−1,−1, 0,−1) ([as, a, b, c, d

2, e2, f, g], af) 12
〈as, a, d, c, e, f, b, d, e, h, af〉 (1, 1, 1, 1, 1, 2, 2, 1, 0, 1, 0,−1,−1,−1,−1,−2,−2,−1, 0,−1,−1) ([as, a, b, c, d

2, e2, f, h], af) 13

sequences to constraints, i.e. by means of sequence encoding, we can now apply
the aforementioned reasoning to constraints as well. The frequencies in π(L′

1)
allow us to decide whether the presence of a certain constraint is in line with
predominant behaviour in the event log. For example, in Table 4, ~φ(〈as, a, b, c〉)
seems to relate to infrequent behaviour as it appears only once.

To apply filtering, we construct a weighted directed graph in which each
sequence encoding acts as a vertex. We connect two vertices by means of an arc
if the source constraint corresponds to a sequence that is a prefix of a sequence
corresponding to the target constraint, i.e., we connect ~φ(〈as, a〉) to ~φ(〈as, a, b〉)
as 〈as, a〉 is a prefix of 〈as, a, b〉. Arc weight is based on trace frequency in the
input event log.

Definition 9 (Sequence encoding graph). Given event log L over set of activ-
ities AL. A sequence encoding graph is a directed graph G = (V,E, ψ) where

V = {~φ(σ) | σ ∈ L}, E ⊆ V × V s.t. (~φ(σ′), ~φ(σ)) ∈ E ⇔ ∃a∈A(σ
′ · 〈a〉 = σ)

22

and ψ : E → N where:

ψ(v1, v2) =
∑

σ ∈ L
~φ(σ) = v2

L(σ) −
∑

σ′ ∈ L

σ′ · 〈a〉 ∈ L
~φ(σ′ · 〈a〉) = v2

~φ(σ′) 6= v1

L(σ′)

Consider the sequence encoding graph in Figure 7, based on π(L′
1), as an

example. By definition, ([],⊥) is the root node of the graph and connects to all
one-sized sequences. Within the graph we observe the relation among different
constraints, combined with their absolute frequencies based on L′

1

7.3 Filtering

Given a sequence encoding graph we are able to filter out constraints. In
Algorithm 2 we devise a simple breadth-first traversal algorithm, i.e. Sequence
Encoding Filtering - Breadth First Search (SEF-BFS), that traverses the
sequence encoding graph and concurrently constructs a set of ILP constraints.
The algorithm needs a function as an input that is able to determine, given a
vertex in the sequence encoding graph, what portion of adjacent vertices remains
in the graph and which are removed.

Definition 10 (Sequence encoding filter). Given event log L over set of activi-
ties AL and a corresponding sequence encoding graph G = (V,E, ψ). A sequence
encoding filter is a function κ : V → P(V).

([],⊥)

([], as)

([as], a)([as, a], b)

([as, a], c)

([as, a], d)([as, a, b], c)

([as, a, b], d)

([as, a, c], d)

([as, a, d], c)([as, a, b, c], d)

([as, a, b, d], e)

([as, a, c, d], e)

([as, a, b, c, d], e)

([as, a, b, d, e], f)

([as, a, b, d, e], g)

([as, a, c, d, e], f) ([as, a, c, d, e], h)

([as, a, b, c, d, e], g)

([as, a, b, d, e, f], c)

([as, a, b, d, e, g], af)

([as, a, c, d, e, f], b) ([as, a, c, d, e, f], d) ([as, a, c, d, e, h], af)

([as, a, b, c, d, e, g], af)

([as, a, b, d, e, f, c], d)

([as, a, b, c, d, e, f], d)

([as, a, c, d
2, e, f], b)

([as, a, b, c, d
2, e, f], e)

([as, a, b, c, d
2, e2, f], g) ([as, a, b, c, d

2, e2, f], h)
([as, a, b, c, d

2, e2, f, g], af) ([as, a, b, c, d
2, e2, f, h], af)

56

56

22

12

22

21

12

22

21

12

22

11
10

25 9

11

10

13 12 9

11

13
12

11

13
12

23 13

23 13

11

1

1

1

Figure 7: An example sequence encoding graph G′
1, based on example event log

L′
1.

23

Algorithm 2: SEF-BFS

input : G = (V,E, ψ), κ : V → P(V)
output: C ⊆ V
begin

1 C ← ∅
2 Let Q be a FIFO queue
3 Q.enqueue(([],⊥))
4 while Q 6= ∅ do
5 v ← Q.dequeue()
6 for v′ ∈ κ(v) do
7 C ← C ∪ {v′}
8 Q.enqueue(v′)

Note that κ is an abstract function and might be parametrized As an example
consider καmax which we define as:

καmax(v) = {v′ | (v, v′) ∈ E ∧ ψ(v, v′) ≥ (1− α) · max
v′′∈V

ψ(v, v′′)}, α ∈ [0, 1]

Other instantiations of κ are possible as well and hence κ is a parameter of the
general approach. It is however desirable that κ(v) ⊆ {v′ | (v, v′) ∈ E}, i.e. it
only considers vertices reached by v by means of an arc. Given an instantiation
of κ, it is straightforward to construct a filtering algorithm based on breadth-
first graph traversal, i.e. SEF-BFS.

The algorithm inherits its worst-case complexity of breadth first search, mul-
tiplied by the worst-case complexity of κ. Thus, in case κ’s worst-case complex-
ity is O(1) then we have O(|V |+ |E|) for the SEF-BFS-algorithm. It is trivial to
prove, by means of induction on the length of a sequence encoding’s correspond-
ing sequence, that a sequence encoding graph is acyclic. Hence, termination is
guaranteed.

As an example of executing the SEF-BFS algorithm, reconsider Figure 7.
Assume we use κ0.75max. Vertex ([],⊥) is initially present in Q and will be analyzed.
Since ([], as) is the only child of ([],⊥), it is added to Q. Vertex ([],⊥) is
removed from the queue and is never inserted in the queue again due to the
acyclic property of the graph. Similarly, since ([as], a) is the only child of ([], as)
it is added to Q. All children of ([as], a), i.e. ([as, a], b), ([as, a], c) and ([as,
a], d), are added to the queue since the maximum corresponding arc value is
22, and, (1 − 0.75) ∗ 22 = 5.5, which is smaller than the lowest arc value 12.
When analysing ([as, a], b) we observe a maximum outgoing arc with value 21
to vertex ([as, a, b], d) which is enqueued in Q. Since (1− 0.25) ∗ 21 = 5.25, the
algorithm does not enqueue ([as, a, b], c). Note that the whole path of vertices
from ([as, a, b], c) to ([as, a, b, c, d, e, g], af) is never analysed and is stripped from
the constraint body.

When applying ILP-based process discovery based on event log L′
1 with se-

quence encoding filtering and κ0.75max, we obtain the WF-net depicted in Figure 6a.

24

As explained, the filter leaves out all constraints related to vertices on the path
from ([as, a, b], c) to ([as, a, b, c, d, e, g], af). Hence, we find a similar model to
the model found on event log L1 and are able to filter out infrequent exceptional
behaviour.

8 Evaluation

Algorithm 1 and Algorithm 2 (sequence encoding filtering) are implemented in
theHybridILPMiner (http://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/
package within the ProM framework [38] (http://www.promtools.org) and
RapidProM framework [4].23 Using this implementation we validated the ap-
proach. In an artificial setting we evaluated the quality of models discovered
and the efficiency of applying sequence encoding filtering. We also compare
sequence encoding to the IMi [26] algorithm and automaton-based filtering [20].
Finally, we assess the performance of sequence encoding filtering on real event
data [27, 30].

8.1 Model Quality

The event logs used in the empirical evaluation of model quality are artificially
generated event logs and originate from a study related to the impact of excep-
tional behaviour to rule-based approaches in process discovery [31]. Three event
logs where generated out of three different process models, i.e. the ground truth
event logs. These event logs do not consist of any exceptional behaviour, i.e.
every trace fits the originating model. The ground truth event logs are called
a12f0n00, a22f0n00 and a32f0n00. The two digits behind the a character in-
dicate the number of activities present in the event log, i.e. a12f0n00 contains
12 different activities. From each ground truth event log, by means of trace
manipulation, four other event logs are created that do contain exceptional be-
haviour. Manipulation concerns tail/head of trace removal, random part of the
trace body removal and interchanging two randomly chosen events [31]. The
percentages of trace manipulation are 5%, 10%, 20% and 50%. The manipula-
tion percentage is incorporated in the last two digits of the event log’s name,
i.e. the 5% manipulation version of the a22f0n00 event log is called a22f0n05.

The existence of ground truth event logs, free of exceptional behaviour, is
of utmost importance for evaluation. We need to be able to distinguish normal
from exceptional behaviour in an unambiguous manner. Within evaluation,
these event logs, combined with the quality dimension precision, allow us to
judge how well a technique is able to filter out exceptional behaviour. Recall
that precision is defined as the number of traces producible by the process model
that are also present in the event log. Thus if all traces producible by a process

2Experiments are performed with source code available at:

https://github.com/rapidprom/rapidprom-source/tree/2017_computing_ilp_1
3Experiments are conducted on machines with 8 Intel Xeon CPU E5-2407 v2 2.40 GHz

processors and 64 GB RAM

25

http://svn.win.tue.nl/repos/prom/Packages/HybridILPMiner/
http://www.promtools.org
https://github.com/rapidprom/rapidprom-source/tree/2017_computing_ilp_1

model are present in an event log, precision is maximal, i.e. the precision value
is 1. If the model allows for traces that are not present in the event log, precision
is lower than 1.

If exceptional behaviour is present in an event log, the conventional ILP-
based process discovery algorithm produces a WF-net that allows for all excep-
tional behaviour. As a result, the algorithm is unable to find any meaningful
patterns within the event log. This typically leads to places with a lot of self-
loops. The acceptance of exceptional behaviour by the WF-net, combined with
the inability to find meaningful patterns yields a low level of precision, when
using the ground truth log as a basis for precision computation. On the other
hand, if we discover models using an algorithm that is more able to handle the
presence of exceptional behaviour, we expect the algorithm to allow for less ex-
ceptional behaviour and find more meaningful patterns. Thus, w.r.t. the ground
truth model, we expect higher precision values.

To evaluate the sequence encoding filtering approach, we have applied the
ILP-based process discovery algorithm with sequence encoding filtering using
καmax and α = 0, 0.05, 0.1, ..., 0.95, 1. Moreover, we performed similar experi-
ments for the IMi [26]4 and the automaton based event log filter of [20]5. After
applying the automaton based filter we applied ILP-based process discovery as
a process discovery algorithm. We measured precision [33] and replay-fitness [3]
based on the ground truth event logs.

In Figure 8 we present the replay-fitness results of the experiments with the
a12f0nXX event logs. In the charts we plot replay-fitness against the noise
level and filter threshold. We additionally use a colour scheme to highlight the
differences in value. Sequence Encoding Filtering has low replay-fitness values
for all event logs when using a filter threshold of 0. The replay-fitness value of
the models found quickly rises to 1 and remains 1 for all filter threshold above
0.2. In case of IMi, for a filter value of 1.0 (comparable to 0.0 for sequence
encoding) we observe some values of 1 for replay-fitness. Non-perfect replay-
fitness seems to be more local, concentrated around noise levels 5% and 10% with
corresponding threshold levels in-between 0.4 and 0.8. Finally, automaton-based

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sequence Encoding

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(b) IMi [26]

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(c) ILP with Automaton
Filter [20]

Figure 8: Replay-fitness measurements based on a12f0nXX.

4http://svn.win.tue.nl/repos/prom/Packages/InductiveMiner/
5http://svn.win.tue.nl/repos/prom/Packages/NoiseFiltering/

26

http://svn.win.tue.nl/repos/prom/Packages/InductiveMiner/
http://svn.win.tue.nl/repos/prom/Packages/NoiseFiltering/

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sequence Encoding

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(b) IMi [26]

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(c) ILP with Automaton
Filter [20]

Figure 9: Precision measurements based on a12f0nXX.

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sequence Encoding

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(b) IMi [26]

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(c) ILP with Automaton
Filter [20]

Figure 10: Replay-fitness measurements based on a22f0nXX.

filtering rapidly loses perfect replay-fitness when the filter threshold exceeds 0.2.
Only for a noise-level of 0 it seems to retain high replay-values. Upon inspection
it turns out the filter returns empty event logs for the corresponding threshold
and noise levels.

In Figure 9 we present the precision results of the experiments with the
a12f0nXX event logs. For sequence encoding the chart shows expected be-
haviour, i.e. with high noise levels and high filter thresholds precision is low.
There is however an unexpected drop in precision for noise-level 0 with a filter
threshold around 0.2. The IMi filter behaves a bit more unexpected since the
drop in precision seems mainly depending on the noise level rather than the
filter setting. We expect the precision to be higher in case a filter threshold of
1.0 is chosen. There is only a slight increase for the 50% noise log when com-
paring a filter threshold of 0 to a filter threshold of 1. Finally, precision of the
automaton filter behaves as expected, i.e., precision rapidly increases together
with an increase in the filter threshold.

The replay-fitness results of the experiments with the a22f0nXX event logs
are presented in Figure 10. The charts very similar behaviour to the results re-
ported for the a12f0nXX event logs. The sequence encoding filter in Figure 10a
has a replay-fitness value of around 0.6 when applying it as rigorous as possible,
i.e. using α = 0. This implies that the filter even removes behaviour that is
present in the ground-truth event log. For increasing filter thresholds the replay-

27

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sequence Encoding

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(b) IMi [26]

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(c) ILP with Automaton
Filter [20]

Figure 11: Precision measurements based on a22f0nXX.

fitness value reaches a value of 1 rapidly, i.e., the model is able to reproduce
all traces in the event log. For IMi (Figure 10b) we observe similar behaviour
(note that the filter threshold works inverted w.r.t. sequence encoding filtering,
i.e. a value of 1 implies most rigorous filtering). However, replay-fitness drops a
little earlier compared to sequence encoding filtering. Finally, automaton based
filtering, depicted in Figure 10b, rapidly drops to 0. Again this is due to the
fact that the filter tends to return empty logs for high threshold values. Hence,
the filter seems to be very sensitive around a threshold value in-between 0 and
0.2.

The precision results of the experiments with the a22f0nXX event logs are
presented in Figure 11. For both the sequence encoding (Figure 11a) and IMi
(Figure 11b) we observe a precision value of around 0.6 based on the event logs
without any noise. This is due to the fact that the originating model contains
a loop which leads to imprecision. We observe that both sequence encoding
filtering as well as IMi follow the same pattern in terms of precision. However,
the drop in precision of sequence encoding filtering is more smooth than the
drop in precision of IMi, i.e. there exist some spikes within the graph. Hence,
the applying filtering within IMi seems to be less deterministic. Finally, the
precision results for the automaton based filter are as expected. With a low
threshold value we have very low precision, except when we have a 0% noise level.
Towards a threshold level of 0.2 precision increases after which it maximizes out
to a value of 1. This is in line with the replay-fitness measurements.

In Figure 12 we present the replay-fitness results of the experiments with the
a32f0nXX event logs. Due to excessive computation time the automaton based
filter [20] is left out of the analysis. We observe that sequence encoding filtering
behaves similar to the experiments performed with the a12f0nXX and a22f0nXX
event logs. The replay-fitness again quickly increase to 1 for increasing filter
threshold values. We observe that IMi seems to filter out more behaviour related
to the underlying system model when the filter threshold increases.

In Figure 13 we present the precision results of the experiments with the
a32f0nXX event logs. Observe that, due to loop structures, the precision of a
model that equals the originating model is only roughly 0.6. Sequence encod-
ing filtering shows a smooth decrease in precision when both noise and filter-

28

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sequence Encoding

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)
Filter

 Thresh
old

F
it

n
es

s

0.0

0.2

0.4

0.6

0.8

1.0

(b) IMi [26]

Figure 12: Replay-fitness measurements based on a32f0nXX.

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)
Filter

 Thresh
old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sequence Encoding

0
10

20

30

40

500.0
0.2

0.4
0.6

0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

N
oise Level (%

)

Filter
 Thresh

old

P
re

ci
si

on

0.0

0.2

0.4

0.6

0.8

1.0

(b) IMi [26]

Figure 13: Precision measurements based on a32f0nXX.

thresholds are increased, which is as expected. With low noise levels and a
low threshold sequence encoding seems to be able to filter out the infrequent
behaviour, however, if there is too much noise and too little is removed we start
finding WF-nets with self-loop places. IMi seems to result in models with a
sightly higher precision compared to sequence encoding filtering. As is the case
in the a22f0nXX event logs, we observe spike behaviour in precision of IMi
based models hinting at non-deterministic behaviour of the filter.

Based on our experiments, we conclude that the sequence encoding filter
and IMi give comparable results. However, the sequence encoding filter provides
more expected results, i.e. IMi behaves somewhat deterministic. The automaton
based filter does provide good results, however, sensibility of the filter threshold
is much higher compared to sequence encoding filtering and IMi.

29

Computation Time (ms.)

T
h
re

sh
o
ld

0

0.25

0.5

0.75

1
10

^
2.

5
10

^
3.

0
10

^
3.

5
10

^
4.

0
10

^
4.

5
10

^
5.

0

Noise

1
0
^
2
.5

1
0
^
3
.0

1
0
^
3
.5

1
0
^
4
.0

1
0
^
4
.5

1
0
^
5
.0

Noise

10
^
2.

5
10

^
3.

0
10

^
3.

5
10

^
4.

0
10

^
4.

5
10

^
5.

0

Noise

1
0
^
2
.5

1
0
^
3
.0

1
0
^
3
.5

1
0
^
4
.0

1
0
^
4
.5

1
0
^
5
.0

Noise

10
^
2.

5
10

^
3.

0
10

^
3.

5
10

^
4.

0
10

^
4.

5
10

^
5.

0

Noise

Sequence Encoding
IMi
Automaton

Figure 14: CPU-Execution Time (ms.) for a22f0nXX event logs (logarithmic
scale).

8.2 Computation time

The core of sequence encoding filtering is leaving out constraints that are likely
to refer to exceptional behaviour. Thus, we reduce the size of the core ILP
constraint body. Hence, we expect a decrease in computation time when ap-
plying rigorous filtering, i.e. καmax with α towards 0. Using RapidMiner we
repeated similar experiments to the experiments performed for model quality,
and measured cpu-execution time for the three techniques. However, we only
use threshold values 0, 0.25, 0.75 and 1.

In Figure 14 we present the average cpu-execution time, based on 50 ex-
periment repetitions, needed to obtain a process model from an event log. For
each level of noise we depict computation time for different filter threshold set-
tings, 0% noise is depicted in the left-most figure, 50% in the right-most figure.
For IMi, we measured the inductive miner algorithm with integrated filtering.
For sequence encoding and automaton filtering, we measure the time needed
to filter, discover a causal graph and solve underlying ILP problems. As we
observe in Figure 14, IMi is fastest in all cases except for a threshold of 0 where
sequence encoding tends to outperform IMi and automaton-based filtering. We
observe that in all cases computation time increases when the amount of noise
increases within the event logs. For sequence encoding filtering we observe that

30

Threshold

R
ep

la
y
−

F
it

n
es

s/
P

re
ci

si
on

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fitness
Precision

(a) Fitness and Pre-
cision

Threshold

N
u
m

b
er

 o
f
A

rc
s

20

40

60

80

0.0 0.2 0.4 0.6 0.8 1.0

(b) Number of Arcs

Threshold

R
ep

la
y
−

F
it

n
es

s/
P

re
ci

si
on

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0

Fitness
Precision

(c) Fitness and Pre-
cision

Threshold

N
u
m

b
er

 o
f
A

rc
s

50

100

150

200

250

0.0 0.2 0.4 0.6 0.8 1.0

(d) Number of Arcs

Figure 15: Replay-fitness, precision and complexity based on the Road Fines

log [27] (Figure 15a and Figure 15b) and the Sepsis log [30] (Figure 15c and
Figure 15d).

lower threshold values lead to faster computation times. This is as expected
since a low threshold value removes more constraints from the ILP constraint
body than a high threshold value. The automaton-based filter is slowest in all
cases. The amount of noise seems to have little impact on the computation time
of the automaton-based filter, it seems to be predominantly depending on the
filter threshold. From Figure 14 we conclude that IMi in general out-performs
sequence encoding in terms of computation time. However, sequence encoding,
in turn out-performs automaton-based filtering, specifically for higher threshold
settings.

8.3 Application to Real-Life Event Logs

We additionally tested the applicability of sequence encoding filtering using
real-life event logs. We used two event logs, one related to the administration
process of handling road fines [27] and one regarding the patient treatment of
patients suspected to have sepsis [30].

The results are presented in Figure 15. In case of the Road Fines event
log (figures on the left-hand side of Figure 15) we observe that replay-fitness
is around 0.46 whereas precision is around 0.4 for α-values from 0 to 0.5. The
number of arcs for the models of these α-values remains constant (as well as
the number of places and the number of transitions) suggesting that the models
found are the same. After this the replay-fitness increases further to around 0.8
and reaches 1 for an α-level of 1. Interestingly, precision shows a little increase
around α-levels between 0.5 and 0.75 after which it drops slightly below its initial
value. In this case, an α-level in-between 0.5 and 0.75 seems most appropriate
in terms of replay-fitness, precision and simplicity.

In case of the Sepsis event log (figures on the left-hand side of Figure 15) we
observe that replay-fitness and precision are roughly behaving as each-other’s
inverse, i.e. replay-fitness increases whereas precision decreases for increasing α-
levels. We moreover observe that the number of arcs within the process models
is steadily increasing for increasing α-levels. In this case, an α-level in-between

31

0.1 and 0.4 seems most appropriate in terms of replay-fitness, precision and
simplicity.

Finally, for each experiment we measured the associated computation time
of solving all ILP problems. In case of the Road Fines event log, solving all ILP
problems takes roughly 5 seconds. In case of the Sepsis event log, obtaining a
model ILP problems takes less than 1 second.

9 Conclusion

The work presented in this paper is motivated by the observation that existing
region-based process discovery techniques are useful, as they are able to find non-
local complex control-flow patterns. However, the techniques do not provide any
structural guarantees w.r.t. the resulting process models, and, they are unable
to cope with infrequent, exceptional behaviour in event logs.

The approach presented in this paper extends techniques presented in [44–
46]. We have proven that our approach is able to discover relaxed sound work-
flow nets, i.e. we are now able to guarantee structural properties of the result-
ing process model. Additionally, we presented the sequence encoding filtering
technique which enables us to apply filtering exceptional behaviour within the
ILP-based process discovery algorithm. Our experiments confirm that the tech-
nique enables us to find Petri net structures in data consisting of exceptional
behaviour, using ILP-based process discovery as an underlying technique. Se-
quence encoding filtering proves to be comparable to the IMi [26] approach, i.e.
an integrated filter of the Inductive Miner [25], in terms of filtering behaviour.
It is considerably faster than the general purpose filtering approach of [20] and
less sensible to variations in the filter threshold.

Future Work An interesting direction for future work concerns combining
ILP-based process discovery techniques with other process discovery techniques.
The Inductive Miner discovers sound workflow nets, however, these models are
lack the ability to express complex control flow patterns such as a milestone
pattern. Some of these patterns are however reconstructible using ILP-based
process discovery. Hence, it is interesting to combine these approaches with
possibly synergetic effects w.r.t. the process mining quality dimensions.

Another interesting approach is the development of more advanced general
purpose filtering techniques. Most discovery algorithms assume the input event
logs to be free of noise, infrequent and/or exceptional behaviour. Real-life event
logs however typically contain a lot of such behaviour. Surprisingly, little re-
search is performed towards filtering techniques that greatly enhance process
discovery results, independent of the discovery algorithm used.

References

[1] Aalst, W.M.P. van der: The Application of Petri Nets to Work-

32

flow Management. Journal of Circuits, Systems, and Comput-
ers 8(1), 21–66 (1998). DOI 10.1142/S0218126698000043. URL
http://dx.doi.org/10.1142/S0218126698000043

[2] Aalst, W.M.P. van der: Process Mining - Data Science in Action, Sec-
ond Edition. Springer (2016). DOI 10.1007/978-3-662-49851-4. URL
http://dx.doi.org/10.1007/978-3-662-49851-4

[3] Aalst, W.M.P. van der, Adriansyah, A., Dongen, B.F. van: Replay-
ing History on Process Models for Conformance Checking and Per-
formance Analysis. Wiley Interdisc. Rew.: Data Mining and Knowl-
edge Discovery 2(2), 182–192 (2012). DOI 10.1002/widm.1045. URL
http://dx.doi.org/10.1002/widm.1045

[4] Aalst, W.M.P. van der, Bolt, A., Zelst, S.J. van : RapidProM: Mine Your
Processes and Not Just Your Data. CoRR abs/1703.03740 (2017). URL
http://arxiv.org/abs/1703.03740

[5] Aalst, W.M.P. van der, Hee, K.M. van, Hofstede, A.H.M. ter, Sidorova,
N., Verbeek, H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of Work-
flow Nets: Classification, Decidability, and Analysis. Formal Asp. Com-
put. 23(3), 333–363 (2011). DOI 10.1007/s00165-010-0161-4. URL
http://dx.doi.org/10.1007/s00165-010-0161-4

[6] Aalst, W.M.P. van der, Hofstede, A.H.M. ter, Kiepuszewski,
B., Barros, A.P.: Workflow Patterns. Distributed and Parallel
Databases 14(1), 5–51 (2003). DOI 10.1023/A:1022883727209. URL
http://dx.doi.org/10.1023/A:1022883727209

[7] Aalst, W.M.P. van der, Rubin, V., Verbeek, H. M. W., Dongen, B. F.
van, Kindler, E., Günther, C. W.: Process Mining: A Two-Step Approach
to Balance Between Underfitting and Overfitting. Software and System
Modeling 9(1), 87–111 (2010). DOI 10.1007/s10270-008-0106-z. URL
http://dx.doi.org/10.1007/s10270-008-0106-z

[8] Aalst, W.M.P. van der, Weijters, A.J.M.M., Maruster, L.: Workflow Min-
ing: Discovering Process Models from Event Logs. IEEE Trans. Knowl.
Data Eng. 16(9), 1128–1142 (2004). DOI 10.1109/TKDE.2004.47. URL
http://dx.doi.org/10.1109/TKDE.2004.47

[9] Adriansyah, A.: Aligning observed and modeled behavior. Ph.D. thesis,
Eindhoven University of Technology (2014). DOI 10.6100/IR770080. URL
http://dx.doi.org/10.6100/IR770080

[10] Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial Algorithms
for the Synthesis of Bounded Nets. In: Mosses, P.D., Nielsen, M.,
Schwartzbach, M.I. (ed.) TAPSOFT’95: Theory and Practice of Software
Development, 6th International Joint Conference CAAP/FASE, Aarhus,

33

http://dx.doi.org/10.1142/S0218126698000043
http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.1002/widm.1045
http://arxiv.org/abs/1703.03740
http://dx.doi.org/10.1007/s00165-010-0161-4
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.1007/s10270-008-0106-z
http://dx.doi.org/10.1109/TKDE.2004.47
http://dx.doi.org/10.6100/IR770080

Denmark, May 22-26, 1995, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 915, pp. 364–378. Springer (1995). DOI 10.1007/3-540-59293-8
207. URL http://dx.doi.org/10.1007/3-540-59293-8_207

[11] Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Syn-
thesis. Texts in Theoretical Computer Science. An EATCS Se-
ries. Springer (2015). DOI 10.1007/978-3-662-47967-4. URL
http://dx.doi.org/10.1007/978-3-662-47967-4

[12] Badouel, E., Darondeau, P.: Theory of Regions. In: Reisig, W., Rozen-
berg, G. (ed.) Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, the volumes are based on the Advanced Course on Petri Nets, held
in Dagstuhl, September 1996, Lecture Notes in Computer Science, vol.
1491, pp. 529–586. Springer (1996). DOI 10.1007/3-540-65306-6 22. URL
http://dx.doi.org/10.1007/3-540-65306-6_22

[13] Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Min-
ing Based on Regions of Languages. In: Alonso, G., Dadam,
P., Rosemann, M. (ed.) Business Process Management, 5th Interna-
tional Conference, BPM 2007, Brisbane, Australia, September 24-28,
2007, Proceedings, Lecture Notes in Computer Science, vol. 4714, pp.
375–383. Springer (2007). DOI 10.1007/978-3-540-75183-0 27. URL
http://dx.doi.org/10.1007/978-3-540-75183-0_27

[14] Bergenthum, R., Desel, J., Lorenz, R., Mauser,
S.: Synthesis of Petri Nets from Finite Partial Lan-
guages. Fundam. Inform. 88(4), 437–468 (2008). URL
http://content.iospress.com/articles/fundamenta-informaticae/fi88-4-03

[15] Bernardinello, L.: Synthesis of Net Systems. In: Marsan,
M.A. (ed.) Application and Theory of Petri Nets 1993, 14th In-
ternational Conference, Chicago, Illinois, USA, June 21-25, 1993,
Proceedings, Lecture Notes in Computer Science, vol. 691, pp.
89–105. Springer (1993). DOI 10.1007/3-540-56863-8 42. URL
http://dx.doi.org/10.1007/3-540-56863-8_42

[16] Bolt, A., Leoni, M. de, Aalst, W.M.P. van der: Scientific Workflows
for Process Mining: Building Blocks, Scenarios, and Implementation.
STTT 18(6), 607–628 (2016). DOI 10.1007/s10009-015-0399-5. URL
http://dx.doi.org/10.1007/s10009-015-0399-5

[17] Buijs, J.C.A.M., Dongen, B.F. van, Aalst, W.M.P. van der: A Genetic
Algorithm for Discovering Process Trees. In: Proceedings of the IEEE
Congress on Evolutionary Computation, CEC 2012, Brisbane, Australia,
June 10-15, 2012, pp. 1–8. IEEE (2012). DOI 10.1109/CEC.2012.6256458.
URL http://dx.doi.org/10.1109/CEC.2012.6256458

[18] Buijs, J.C.A.M., Dongen, B.F. van, Aalst, W.M.P. van der: On the
Role of Fitness, Precision, Generalization and Simplicity in Process

34

http://dx.doi.org/10.1007/3-540-59293-8_207
http://dx.doi.org/10.1007/978-3-662-47967-4
http://dx.doi.org/10.1007/3-540-65306-6_22
http://dx.doi.org/10.1007/978-3-540-75183-0_27
http://content.iospress.com/articles/fundamenta-informaticae/fi88-4-03
http://dx.doi.org/10.1007/3-540-56863-8_42
http://dx.doi.org/10.1007/s10009-015-0399-5
http://dx.doi.org/10.1109/CEC.2012.6256458

Discovery. In: Meersman, R., Panetto, H., Dillon, T.S., Rinderle-
Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergam-
aschi, S., Crux, I.F. (ed.) On the Move to Meaningful Internet Sys-
tems: OTM 2012, Confederated International Conferences: CoopIS, DOA-
SVI, and ODBASE 2012, Rome, Italy, September 10-14, 2012. Pro-
ceedings, Part I, Lecture Notes in Computer Science, vol. 7565, pp.
305–322. Springer (2012). DOI 10.1007/978-3-642-33606-5 19. URL
http://dx.doi.org/10.1007/978-3-642-33606-5_19

[19] Carmona, J., Cortadella, J.: Process Discovery Algorithms Us-
ing Numerical Abstract Domains. IEEE Trans. Knowl. Data Eng.
26(12), 3064–3076 (2014). DOI 10.1109/TKDE.2013.156. URL
http://dx.doi.org/10.1109/TKDE.2013.156

[20] Conforti, R., Rosa, M. La, Hofstede, A.H.M. ter: Filtering Out Infrequent
Behavior from Business Process Event Logs. IEEE Trans. Knowl. Data
Eng. 29(2), 300–314 (2017). DOI 10.1109/TKDE.2016.2614680. URL
http://dx.doi.org/10.1109/TKDE.2016.2614680

[21] Darondeau, P.: Deriving Unbounded Petri Nets from Formal Lan-
guages. In: Sangiorgi, D., Simone, R. de (ed.) CONCUR ’98: Con-
currency Theory, 9th International Conference, Nice, France, Septem-
ber 8-11, 1998, Proceedings, Lecture Notes in Computer Science, vol.
1466, pp. 533–548. Springer (1998). DOI 10.1007/BFb0055646. URL
http://dx.doi.org/10.1007/BFb0055646

[22] Dongen, B.F. van, Medeiros, A.K.A. de, Wen, L.: Process
Mining: Overview and Outlook of Petri Net Discovery Algo-
rithms. Trans. Petri Nets and Other Models of Concurrency
2, 225–242 (2009). DOI 10.1007/978-3-642-00899-3 13. URL
http://dx.doi.org/10.1007/978-3-642-00899-3_13

[23] Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures.
Part I: Basic Notions and the Representation Problem. Acta
Inf. 27(4), 315–342 (1990). DOI 10.1007/BF00264611. URL
http://dx.doi.org/10.1007/BF00264611

[24] Ehrenfeucht, A., Rozenberg, G.: Partial (Set) 2-Structures. Part II: State
Spaces of Concurrent Systems. Acta Inf. 27(4), 343–368 (1990). DOI
10.1007/BF00264612. URL http://dx.doi.org/10.1007/BF00264612

[25] Leemans, S.J.J., Fahland, D., Aalst, W.M.P. van der: Discovering Block-
Structured Process Models from Event Logs - A Constructive Approach.
In: Colom, J.M., Desel, J. (ed.) Application and Theory of Petri Nets and
Concurrency - 34th International Conference, PETRI NETS 2013, Milan,
Italy, June 24-28, 2013. Proceedings, Lecture Notes in Computer Science,
vol. 7927, pp. 311–329. Springer (2013). DOI 10.1007/978-3-642-38697-8
17. URL http://dx.doi.org/10.1007/978-3-642-38697-8_17

35

http://dx.doi.org/10.1007/978-3-642-33606-5_19
http://dx.doi.org/10.1109/TKDE.2013.156
http://dx.doi.org/10.1109/TKDE.2016.2614680
http://dx.doi.org/10.1007/BFb0055646
http://dx.doi.org/10.1007/978-3-642-00899-3_13
http://dx.doi.org/10.1007/BF00264611
http://dx.doi.org/10.1007/BF00264612
http://dx.doi.org/10.1007/978-3-642-38697-8_17

[26] Leemans, S.J.J., Fahland, D., Aalst, W.M.P. van der: Discover-
ing Block-Structured Process Models from Event Logs Containing In-
frequent Behaviour. In: Lohmann, N., Song, M., Wohed, P.
(ed.) Business Process Management Workshops - BPM 2013 Inter-
national Workshops, Beijing, China, August 26, 2013, Revised Pa-
pers, Lecture Notes in Business Information Processing, vol. 171, pp.
66–78. Springer (2013). DOI 10.1007/978-3-319-06257-0 6. URL
http://dx.doi.org/10.1007/978-3-319-06257-0_6

[27] Leoni, M. de, Mannhardt, F.: Road Traffic Fine Management Process
(2015). DOI 10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5. URL
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

[28] Lorenz, R., Juhás, G.: Towards Synthesis of Petri Nets from Scenarios. In:
Donatelli, S., Thiagarajan, P.S. (ed.) Petri Nets and Other Models of Con-
currency - ICATPN 2006, 27th International Conference on Applications
and Theory of Petri Nets and Other Models of Concurrency, Turku, Fin-
land, June 26-30, 2006, Proceedings, Lecture Notes in Computer Science,
vol. 4024, pp. 302–321. Springer (2006). DOI 10.1007/11767589 17. URL
http://dx.doi.org/10.1007/11767589_17

[29] Lorenz, R., Mauser, S., Juhás, G.: How to Synthesize Nets from Lan-
guages - A Survey. In: Henderson, S.G., Biller, B., Hsieh, M.H., Shortle,
J., Tew, J.D., Barton, R.R. (ed.) Proceedings of the Winter Simula-
tion Conference, WSC 2007, Washington, DC, USA, December 9-12,
2007, pp. 637–647. WSC (2007). DOI 10.1109/WSC.2007.4419657. URL
http://dx.doi.org/10.1109/WSC.2007.4419657

[30] Mannhardt, F: Sepsis Cases - Event Log (2016). DOI
10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460. URL
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460

[31] Maruster, L., Weijters, A.J.M.M., Aalst, W.M.P. van der, Bosch,
A. van den: A Rule-Based Approach for Process Discovery: Deal-
ing with Noise and Imbalance in Process Logs. Data Min. Knowl.
Discov. 13(1), 67–87 (2006). DOI 10.1007/s10618-005-0029-z. URL
http://dx.doi.org/10.1007/s10618-005-0029-z

[32] Medeiros, A.K.A. de, Dongen, B.F. van, Aalst, W.M.P. van der, Weijters,
A.J.M.M.: Process Mining for Ubiquitous Mobile Systems: An Overview
and a Concrete Algorithm. In: Baresi, L., Dustar, S., Gall, H.C., Mat-
era, M. (ed.) Ubiquitous Mobile Information and Collaboration Systems,
Second CAiSE Workshop, UMICS 2004, Riga, Latvia, June 7-8, 2004,
Revised Selected Papers, Lecture Notes in Computer Science, vol. 3272,
pp. 151–165. Springer (2004). DOI 10.1007/978-3-540-30188-2 12. URL
http://dx.doi.org/10.1007/978-3-540-30188-2_12

36

http://dx.doi.org/10.1007/978-3-319-06257-0_6
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
http://dx.doi.org/10.1007/11767589_17
http://dx.doi.org/10.1109/WSC.2007.4419657
https://doi.org/10.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
http://dx.doi.org/10.1007/s10618-005-0029-z
http://dx.doi.org/10.1007/978-3-540-30188-2_12

[33] Munoz-Gama, J.: Conformance Checking and Diagnosis in
Process Mining - Comparing Observed and Modeled Pro-
cesses, Lecture Notes in Business Information Processing, vol.
270. Springer (2016). DOI 10.1007/978-3-319-49451-7. URL
http://dx.doi.org/10.1007/978-3-319-49451-7

[34] Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceed-
ings of the IEEE 77(4), 541–580 (1989). DOI 10.1109/5.24143

[35] Reisig, W.: The Synthesis Problem. Trans. Petri Nets and Other Models of
Concurrency 7, 300–313 (2013). DOI 10.1007/978-3-642-38143-0 8. URL
http://dx.doi.org/10.1007/978-3-642-38143-0_8

[36] Schrijver, A.: Theory of Linear and Integer Programming. Wiley-
Interscience series in discrete mathematics and optimization. Wiley (1999)

[37] Solé, M., Carmona, J.: Process Mining from a Basis of State Regions.
In: Lilius, J., Penczek, W. (ed.) Applications and Theory of Petri Nets,
31st International Conference, PETRI NETS 2010, Braga, Portugal, June
21-25, 2010. Proceedings, Lecture Notes in Computer Science, vol. 6128,
pp. 226–245. Springer (2010). DOI 10.1007/978-3-642-13675-7 14. URL
http://dx.doi.org/10.1007/978-3-642-13675-7_14

[38] Verbeek, H.M.W., Buijs, J.C.A.M., Dongen, B.F. van, Aalst, W.M.P.
van der: XES, XESame, and ProM 6. In: Soffer, P., Proper,
E. (ed.) Information Systems Evolution - CAiSE Forum 2010, Ham-
mamet, Tunisia, June 7-9, 2010, Selected Extended Papers, Lec-
ture Notes in Business Information Processing, vol. 72, pp. 60–
75. Springer (2010). DOI 10.1007/978-3-642-17722-4 5. URL
http://dx.doi.org/10.1007/978-3-642-17722-4_5

[39] Weerdt, J. de, Backer, M. de, Vanthienen, J., Baesens, B.:
A Multi-Dimensional Quality Assessment of State-Of-The-Art Pro-
cess Discovery Algorithms using Real-Life Event Logs. Inf. Syst.
37(7), 654–676 (2012). DOI 10.1016/j.is.2012.02.004. URL
http://dx.doi.org/10.1016/j.is.2012.02.004

[40] Weijters, A.J.M.M., Aalst, W.M.P. van der: Rediscovering Work-
flow Models from Event-Based Data using Little Thumb. Inte-
grated Computer-Aided Engineering 10(2), 151–162 (2003). URL
http://content.iospress.com/articles/integrated-computer-aided-engineering/ica00143

[41] Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible Heuristics Miner (FHM).
In: Proceedings of the IEEE Symposium on Computational Intelligence
and Data Mining, CIDM 2011, part of the IEEE Symposium Series
on Computational Intelligence 2011, April 11-15, 2011, Paris, France,
pp. 310–317. IEEE (2011). DOI 10.1109/CIDM.2011.5949453. URL
http://dx.doi.org/10.1109/CIDM.2011.5949453

37

http://dx.doi.org/10.1007/978-3-319-49451-7
http://dx.doi.org/10.1007/978-3-642-38143-0_8
http://dx.doi.org/10.1007/978-3-642-13675-7_14
http://dx.doi.org/10.1007/978-3-642-17722-4_5
http://dx.doi.org/10.1016/j.is.2012.02.004
http://content.iospress.com/articles/integrated-computer-aided-engineering/ica00143
http://dx.doi.org/10.1109/CIDM.2011.5949453

[42] Wen, L, Aalst, W.M.P. van der, Wang, J., Sun, J.: Mining Pro-
cess Models with Non-Free-Choice Constructs. Data Min. Knowl. Dis-
cov. 15(2), 145–180 (2007). DOI 10.1007/s10618-007-0065-y. URL
http://dx.doi.org/10.1007/s10618-007-0065-y

[43] Wen, L., Wang. J., Aalst, W.M.P. van der, Huang, B., Sun, J.: Min-
ing Process Models with Prime Invisible Tasks. Data Knowl. Eng.
69(10), 999–1021 (2010). DOI 10.1016/j.datak.2010.06.001. URL
http://dx.doi.org/10.1016/j.datak.2010.06.001

[44] Werf, J.M.E.M. van der, Dongen, B.F. van, Hurkens, C.A.J., Sere-
brenik, A.: Process Discovery using Integer Linear Programming. Fun-
dam. Inform. 94(3-4), 387–412 (2009). DOI 10.3233/FI-2009-136. URL
http://dx.doi.org/10.3233/FI-2009-136

[45] Zelst, S.J. van, Dongen, B.F. van, Aalst, W.M.P. van der: Avoiding
Over-Fitting in ILP-Based Process Discovery. In: Motahari-Nezhad, H.R.,
Recker, J. Weidlich, M. (ed.) Business Process Management - 13th Inter-
national Conference, BPM 2015, Innsbruck, Austria, August 31 - Septem-
ber 3, 2015, Proceedings, Lecture Notes in Computer Science, vol. 9253,
pp. 163–171. Springer (2015). DOI 10.1007/978-3-319-23063-4 10. URL
http://dx.doi.org/10.1007/978-3-319-23063-4_10

[46] Zelst, S.J. van, Dongen, B.F. van, Aalst, W.M.P. van der: ILP-Based Pro-
cess Discovery Using Hybrid Regions. In: Aalst, W.M.P. van der, Bergen-
thum, R., Carmona, J. (ed.) Proceedings of the ATAED 2015 Workshop,
Satellite event of Petri Nets/ACSD 2015, Brussels, Belgium, June 22-23,
2015., CEUR Workshop Proceedings, vol. 1371, pp. 47–61. CEUR-WS.org
(2015). URL http://ceur-ws.org/Vol-1371/paper04.pdf

38

http://dx.doi.org/10.1007/s10618-007-0065-y
http://dx.doi.org/10.1016/j.datak.2010.06.001
http://dx.doi.org/10.3233/FI-2009-136
http://dx.doi.org/10.1007/978-3-319-23063-4_10
http://ceur-ws.org/Vol-1371/paper04.pdf

	1 Introduction
	2 Motivation
	3 Related Work
	4 Background
	4.1 Bags, Sequences and Vectors
	4.2 Event Logs and Workflow Nets

	5 Discovering Petri Net Places using Integer Linear Programming
	5.1 Regions
	5.2 A Basic ILP Formulation
	5.3 Exploiting Causalities

	6 Discovering Relaxed Sound Workflow Nets
	7 Dealing with Infrequent Behaviour
	7.1 The Impact of Infrequent Exceptional Behaviour
	7.2 Sequence Encoding Graphs
	7.3 Filtering

	8 Evaluation
	8.1 Model Quality
	8.2 Computation time
	8.3 Application to Real-Life Event Logs

	9 Conclusion

