
Discovering work prioritisation patterns from event logs

Suriadi, S.; Wynn, M.T.; Xu, J.; van der Aalst, W.M.P.; ter Hofstede, A.H.M.

Published in:
Decision Support Systems

DOI:
10.1016/j.dss.2017.02.002

Published: 01/08/2017

Document Version
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the author's version of the article upon submission and before peer-review. There can be important differences
between the submitted version and the official published version of record. People interested in the research are advised to contact the
author for the final version of the publication, or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

Citation for published version (APA):
Suriadi, S., Wynn, M. T., Xu, J., van der Aalst, W. M. P., & ter Hofstede, A. H. M. (2017). Discovering work
prioritisation patterns from event logs. Decision Support Systems, 100, 77-92. DOI: 10.1016/j.dss.2017.02.002

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 14. Jan. 2018

http://dx.doi.org/10.1016/j.dss.2017.02.002
https://pure.tue.nl/en/publications/discovering-work-prioritisation-patterns-from-event-logs(57e8cd40-3585-4e71-b39d-eee14462b0cd).html

Decision Support Systems 100 (2017) 77–92

Contents lists available at ScienceDirect

Decision Support Systems

j ourna l homepage: www.e lsev ie r .com/ locate /dss

Discovering work prioritisation patterns from event logs

Suriadi Suriadia,*, Moe T. Wynna, Jingxin Xua, Wil M.P. van der Aalstb, a, Arthur H.M. ter Hofstedea, b

aQueensland University of Technology, Australia
bEindhoven University of Technology, The Netherlands

A R T I C L E I N F O

Available online 8 February 2017

Keywords:
Resource behaviour mining
Queuing
Process mining

A B S T R A C T

Business process improvement initiatives typically employ various process analysis techniques, including
evidence-based analysis techniques such as process mining, to identify new ways to streamline current
business processes. While plenty of process mining techniques have been proposed to extract insights about
the way in which activities within processes are conducted, techniques to understand resource behaviour
are limited. At the same time, an understanding of resources behaviour is critical to enable intelligent and
effective resource management - an important factor which can significantly impact overall process per-
formance. The presence of detailed records kept by today’s organisations, including data about who, how,
what, and when various activities were carried out by resources, open up the possibility for real behaviours
of resources to be studied. This paper proposes an approach to analyse one aspect of resource behaviour:
the manner in which a resource prioritises his/her work. The proposed approach has been formalised,
implemented, and evaluated using a number of synthetic and real datasets.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Business process management (BPM) enables organisations to
improvetheeffectivenessandefficiencyoftheirbusinessoperationsby
systematically documenting, managing, automating and optimising
their business processes [1]. To achieve more with less, organisations
need to focus on process efficiency, i.e., how their business operations
could be improved. A plethora of literature and methodology exists on
how one can improve process efficiency, e.g. Six Sigma [2]. However, as
mostbusinessoperationsrelyonhumanresources,e.g.employees, it is
equally important to investigate whether these resources can be used
inamoreefficientmanner;forexample,howdoemployeesspendtheir
time between productive (e.g., waiting time) and non-productive (e.g.,
idle time) tasks? Are there any opportunities for increased resource
utilisation?

Today’s information systems record a wide variety of “events”.
Events may be generated by human behaviour (e.g., customers and
employees), machines, and software. By leveraging state-of-the-
art data analytics (including data mining, machine learning, and

* Corresponding author.
E-mail addresses: s.suriadi@qut.edu.au (S. Suriadi), m.wynn@qut.edu.au

(M.T. Wynn), j15.xu@qut.edu.au (J. Xu), w.m.p.v.d.aalst@tue.nl (W.M. vander Aalst),
a.terhofstede@qut.edu.au (A.H. ter Hofstede).

statistical techniques), valuable insights about resource behaviour
can be extracted from this data to not only address the questions just
presented, but also facilitate smarter resource management.

Within business processes, while resources are normally guided
by business rules from the organisation and are constrained by the
associated IT systems in terms of how they perform their work,
resources typically have some freedom in prioritising their work,
including the selection of activities (also known as work items) to
perform and the order in which these activities are carried out. The
way in which resources select the tasks to perform essentially forms
the type of queuing discipline he/she applies. A queuing discipline
refers to “the manner in which customers are selected for service
when a queue is formed” [3]. The most common queuing discipline
used in day-to-day life is the first-in-first-out style (FIFO) where
work items that arrive first receive the highest priority, last-in-first-
out (LIFO) where work items that arrive last receive the highest
priority, and priority-based where priority is determined by some
pre-determined rules.

The versatility of the concept of a queue has seen its application in
many domains, from computer networks to business processes. Stud-
ies in the use of queues show that knowledge of queuing disciplines
employed is important to design effective resource management
strategy for ensuring appropriate staffing level [4,5] or performance
stabilization [6,7]. Furthermore, studies show that queuing discipline
may have a significant impact on the overall performance [8–13].
For example, the use of Shortest Process Time first discipline has

http://dx.doi.org/10.1016/j.dss.2017.02.002
0167-9236/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dss.2017.02.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/dss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dss.2017.02.002&domain=pdf
mailto: s.suriadi@qut.edu.au
mailto: m.wynn@qut.edu.au
mailto: j15.xu@qut.edu.au
mailto: w.m.p.v.d.aalst@tue.nl
mailto: a.terhofstede@qut.edu.au
http://dx.doi.org/10.1016/j.dss.2017.02.002

78 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

been shown to reduce cycle time as compared to FIFO in certain
settings [11]. Within business processes, one can draw a parallel
in how queuing discipline employed by resources can substantially
impact overall process performance. For example, a predominantly
LIFO work prioritisation behaviour of resources may very likely lead
to a LIFO case completion trend - a phenomenon that is not desirable
from a customer satisfaction perspective. The interplay between the
assignment of work items to resources and their queuing discipline
also impacts overall process performance. For example, assigning a
work item involving calling customers to a resource who always pri-
oritises the execution of e-mailing customers will easily lead to the
building up of longer (and rather unfair) waiting times for the former
task. This highlights an undesirable situation where the assignment
mechanisms of work items to resources, and the choice of queuing
discipline of the resources in the process are out of sync.

A clear understanding of resource behaviour can assist organisa-
tions in identifying undesirable (and perhaps unexpected) working
patterns which will guide them in investigating contextual factors
(e.g. the way in which a list of tasks is presented to users on their
screens) that may inadvertently encourage the expression of such
behaviours by employees, leading to a clear direction for process
improvement (e.g. changing the default ordering of work items).
As reported in this article, this is precisely one of the insights we
extracted.

The scenarios above clearly demonstrate the importance of
understanding resource behaviour: it allows one to identify individ-
ual resource behaviour (which may be problematic) and to under-
stand their compound effects on overall process performance. Most
importantly, insights about resource behaviour will nicely comple-
ment existing process improvement strategy, enabling intelligent
adaptation of the way in which processes are designed (to achieve
the best process outcomes) to the way in which resources tackle their
tasks in the processes.

In this article, we present a new data-driven approach to learn-
ing the prioritisation order used by a resource to carry out the work
items (in relation to a particular business process). As shown in Fig. 1
(left-hand-side figure), a business process is typically guided by a
process model. A process model captures those activities that need
to be performed, the temporal order in which they are to be exe-
cuted (e.g. sequentially or in parallel), and the resource(s) who can
execute the various activities in the process. The execution of various
instances of a process is often recorded in transactional records (also
known as event logs).

Event logs typically contain information about the activities (or
work items) that have been executed, the time they occurred, and
the identifiers of employees who carried out the activities. By com-
bining process analysis and data mining techniques, the emerging
discipline of process mining provides a collection of novel tech-
niques to exploit and extract process-related insights from raw event
data [14]. Research in the domain of process mining has tradition-
ally been focused on process discovery (i.e., automated discovery of
the control flow of a process from data attributes recorded in an
event log), conformance checking (i.e., detection of where and how
deviances in processes occurred by comparing observation seen in
a log with normative process models or business rules), and perfor-
mance analysis (i.e., identifying bottlenecks and extracting process
performance metrics). Relatively few research studies have been
conducted that focus on the resource perspective [15–20], and to our
knowledge, none of these works focus on discovering resources work
prioritisation order.

Our approach makes use of detailed transactional records of executed
processes (i.e. event logs) to determine the queuing discipline employed
by the resources (Fig. 1 - right-hand-side). Such a data-driven
approach has the advantage of objectively exposing the actual way in
which resources work, which may, and often do, contradict anecdotal
wisdom or recommended business practices.

It is not our goal to monitor and control the way in which resources
work. This paper is about discovering the work prioritisation patterns
of resources and their effects on the overall process which can be
performed in a privacy-preserving manner (see Section 5).

Our approach has been implemented as a plug-in for the open-
source process mining tool ProM1. We evaluate the correctness of
our approach and implementation by testing the tool using synthetic
logs. We demonstrate the usefulness of our approach in a case study
with an Australian-based insurance organisation. In particular, our
case study manages to extract useful insights about behaviours of
resources that may be useful for the stakeholders to design a more
targeted actions.

The rest of the paper is organised as follows. Section 2 presents
the proposed approach for learning work prioritisation patterns.
Section 3 discusses a prototype implementation of the approach
within the open-source process mining tool, ProM. Sections 4 and 5
present findings from the evaluation of the proposed approach using
synthetic and real-life datasets. Section 6 summarises related work
in the areas of organisational mining and queuing theory. Section 7
concludes the paper.

2. Learning work prioritisation patterns

A descriptive overview of our approach is provided in Section 2.1,
and formalised in Section 2.2.

2.1. Approach

The proposed approach is illustrated in Fig. 2. The log shown at
the top of Fig. 2 depicts a snippet of the events performed by two
resources: Carol and Eliza. Each row in the log represents an event.
For example, the first row of the log records an event capturing the
assignment of a work item to the resource named Carol. The work
item in this event is defined by the activity ‘create PO’ that needs to
be executed for a particular process instance of which the identifier
is ‘330’. As a short form, we give an identifier for the work item cap-
tured by every event in the log (e.g. C1 for the work item represented
by the first event in the log).

By observing such an event log, we can build the worklist of a
resource, ordered according to the times the work items are assigned
to the resource (i.e., the in-list) and the corresponding (partial) list
of work items completed by the resource, ordered according to the
time the work items are completed (i.e., the out-list). For example,
the bottom-left part of Fig. 2 depicts an in-list for resource Carol at a
particular timestamp t′

3 (which happened just immediately before t3)
whereby three work items (C1, C2, and C3) have been assigned to her.

From this in-list, we build the expected ordering of work items out-
put at time t3 by assuming a certain queuing discipline. For example,
if we hypothesise that Carol works on a FIFO basis, then we should
expect the order in which the work items are completed to be the
same as the order in which the work items were assigned.

The bottom-right side of Fig. 2 shows the out-list of Carol at time
t3, just after the completion of work item C3. Whenever we see a
work item being completed, we first determine the expected work
item that should be seen at the out-list based on the assumed queu-
ing discipline and extract the in-list position of that work item. Next,
we calculate the distance between the in-list position of the expected
work item and the in-list position of the work item that actually
appears in the out-list. For example, in Fig. 1, if Carol adopts the FIFO
queuing discipline, the expected work item to be seen at time t3 is
C1 (which assumes the first position in Carol’s in-list). However, if
Carol adopts the LIFO discipline, the expected work item to appear
in the out-list at time t3 is C3 (which assumes the third position in

1 www.promtools.org - Resource Queue Behaviour package.

http://www.promtools.org

S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92 79

“process model”

“an outgoing work item”

“a worklist (of a resource)”

F

[c6, cPO][c7, cPO][c2, tPO][c8, cPO]

[c8, cPO][c2, tPO] [c7, cPO]

incoming

outgoing

[c5, mPO][c3, coPO][c4, mPO][c3, coPO]

[c3, coPO][c5, mPO] [c4, mPO]

C

incoming

outgoing

B

[c3, aPO][c1, mPO][c2, aPO][c1, aPO]

[c2, aPO][c1, aPO] [c1, mPO]

incoming

outgoing

cPOstart aPO

approve PO

end

A

A

BA

tPO

terminate PO

mPO

modify PO

confirm PO

coPO

create PO

D

C

F

B
F

C
“an incoming work item”

FIFO

LIFO

Priority

FIFO

“event logs”

F

C

B

Input OutputAnalysis
Data Source

Fig. 1. The left-hand side figure shows an example of a ‘Purchase Order’ (PO) process which is made up of five activities: create PO, approve PO, modify PO, confirm PO, and
terminate PO. The execution of a process leaves traces that are recorded in event logs. Our approach uses information in event logs to determine the prioritisation order employed
by resources in tackling their work items. A work item is represented by the activity name and the case to which the activity belongs (e.g. [c1, aPO] represents an ‘approve PO’
task that needs to be performed for a case identified as ‘c1’. Resource B employs a FIFO discipline. Resource C employs a LIFO discipline. Resource F employs a priority FIFO queue
because work items with the highest priority are executed first. In this case, activity ‘terminate PO’ (tPO) has a higher priority than other activities, thus are executed first, while
work items that share the same priority (all three work items containing activity ‘create PO’ - cPO) are executed in FIFO manner.

Fig. 2. Overview of the approach.

Carol’s in-list). The actual work item that appears on Carol’s out-list
is C3. Therefore, the actual work-item is off by two positions for a
FIFO queuing discipline, while for a LIFO queue, the distance is zero.2

2 Note that the in-list, and the corresponding expected output order list, changes as
work items are added and removed from these lists. As a work item is added to the in-
list, the expected output order is likely to change (depending on the queuing discipline
being analysed). Similarly, when a work item appears on the out-list, that work item
should be removed from the in-list.

It is difficult to learn queuing discipline by just looking at one
distance value. What we need to obtain instead is the trend of the dis-
tance values over time. By calculating the distance value every time
a work item is added to a resource’s out-list and by aggregating these
values, the trend in terms of the fluctuation, or its lack thereof, of the
distance value can be observed. By observing this trend, we can then
predict the queuing discipline employed by resources.

In the remainder of this paper, we use the term resource perspec-
tive to refer to the learning of queuing discipline from the perspective

80 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

of resources, similar to the examples given earlier in this section: a
queue is made up of work items related to one particular resource.

We can also learn the prioritisation order from the perspectives
of activity types (referred to as activity perspective). Here, a queue
is made up of a collection of work items of one particular activity.
Using the same log shown in Fig. 2, the in-list for activity createPO
include C1 (at time t0 only) and C3 (at time t2) (C2 relates to a different
activity, thus cannot be a member in this case). Similarly, for activity
modifyPO, the in-list consists of work items E3 (at time t12), while
the out-list will consist of the same work item E3 but related to the
event at time t14.

Finally, we can also learn work prioritisation order from the per-
spective of a case (referred to as case perspective). In this case, an in-list
queue is made up of the earliest activity per case, and the out-list
queue is made up of the latest activity per case. For example, using the
log shown in Fig. 2, an in-list built from a case perspective will consist
of work items C1 (for case 330 at time t0) and C3 (for case 663 at time
t2) because createPO is the activity that signifies the start of a case as
per process model in Fig. 1. The out-list corresponding to this in-list
will consist of work items C8 and C9 (for cases 330 and 664 at time t5

and t6 respectively) because they represented possible end activities
of a case. Note that for analysis from the case perspective, the pair of
in-list and out-list members are of different work items though they
relate to the same case.

2.2. Formalisations

An event log consists of a set of events. Each event has a times-
tamp. The timestamp of an event is one of a range of attributes of an
event. These attributes can be mandatory or optional.

Definition 1 (Event, attribute). Let E be the event universe, i.e., the
set of all possible event identifiers. An event may be characterised
by various attributes, e.g., an event has a timestamp, corresponds to
an activity, and belongs to a particular case. Let AN be a set of all
possible attribute names. For any event e ∈ E and an attribute name
a ∈ AN : #a(e) is the value of attribute named a for event e. If an event
e does not have an attribute a, then we write #a(e) = ⊥ (null value).

Let Dcase be the set of case identifiers (case ID), Dact be the
set of activities, Dtime be the set of timestamps, Dres be
the set of resources, Dtype = {schedule, assign, start, resume, suspend,
manual−skip, auto−skip, complete} be the set of event transaction
types, and Ddata be the set of data values (these may have a complex
structure).

For each event e ∈ E , we define a number of standard attributes:
#case(e) ∈ Dcase (the case ID of e), #act(e) ∈ Dact (the activity of e),
#time(e) ∈ Dtime (the timestamp of e), #res(e) ∈ Dres (the resource who
triggered the occurrence of e), and #type(e) ∈ Dtype (the transaction
type of e).

Definition 2 (Event log). An event log L ⊆ E is a set of events.

The timestamps associated with events in L naturally provide a
partial order of events (it is partial because more than one event can
occur at the same time). To establish a total order of events, we define
an event order identifier.

Definition 3 (Event order identifier). Let L ⊆ E be an event log. idL :
L → {1, . . . , |L|} is a bijective function that maps each event e ∈ L
to a unique natural number whereby for all e1, e2 ∈ L: if #time(e1) <
#time(e2), then idL(e1) < idL(e2), i.e. function idL provides a total
order of events.

Definition 4 (Case). Let L ⊆ E be an event log. A finite sequence of
events over L of length n ∈ Z>0 is a mapping a ∈ {1, 2, ..., n} → L.

We represent such a sequence as a string a = 〈e1, e2, ..., en〉 where
a(i) = ei for 1 ≤ i ≤ n.

Let cid ∈ Dcase be a case identifier. A case with cid as its case
identifier (denoted as acid) is a finite sequence of events over L of
length n ∈ Z>0 such that for any i, j ∈ {1, 2, ..., n} (where i < j),
idL(a(i)) < idL(a(j)) and #case(a(i)) = #case(a(j)) = cid.

As mentioned in Section 1, an activity that is executed within a
case is referred to as a work item. A process may allow the same activ-
ity to be repeated within a case. For example, in the process model
shown in Fig. 1, the activity modifyPO is allowed to be repeated.
In Fig. 2, we can see that this same activity was assigned twice to
Eliza in the case number 1625. Therefore, it is possible that two or
more work items within the same case may refer to the same activ-
ity. To uniquely identify multiple instantiations of the same activity
within the same case, we introduce the notion of work item identifier.
Two work items of the same activity executed within the same case
have different work item identifiers. For example, in Fig. 2, the two
work items related to the activity modifyPO for case 1625 have two
different work item identifiers (E3 and E4).

Definition 5 (Work item). Let L ⊆ E be an event log, Dwid be a set
of possible work item identifiers, and t : L → Dwid be a function
that assigns a work item identifier to an event such that for any two
events e1, e2 ∈ L where idL(e1)
= idL(e2), e1 and e2 refer to the same
work item if and only if: #case(e1) = #case(e2) and #act(e1) = #act(e2)
and t(e1) = t(e2). A work item can therefore be uniquely identified
as a tuple of Dcase × Dact × Dwid.

Definition 5 implies that two or more events may refer to the
same work item. This is possible because a work item goes through
a number of states. The states and the corresponding transitions
that a work item traverses are described using a Deterministic Finite
Automata [21] diagram as shown in Fig. 3. The edges of the figure
capture the possible transaction types (i.e. Dtype), while the nodes
capture the possible states of work items. The transition of a work
item from one state to another is captured by an event, and the exact
type of the transition is codified by the value of the transaction type
of the event.

We use the notation tpx ⇒ tpx
′ to say that tpx

′ ∈ Dtype is a
transaction type that can be reached from an earlier transaction type
tpx ∈ Dtype as per Fig. 3.

As explained in Section 2.1, to learn resource work prioritisation
from various perspectives, corresponding in-lists and out-lists need

executing

concluded suspended

scheduled assigned

assign

start

suspendresume

manual-skipauto-skip

complete

schedule

Fig. 3. Possible transaction types and states of work items (based on XES standard
definition [22]).

S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92 81

to be built. For the resource perspective and activity perspective, the
in-lists and out-lists are built based on the transaction types of the
events in the list. For the case perspective, the corresponding in-lists
and out-lists need to be built based on the first and the last event of
a case. For these purposes, we define event-typed log and case log.

Definition 6 (Event-typed log). Let L ⊆ E be an event log. Given
tp ∈ DType, Ltp = {e ∈ L | #type(e) = tp} is an event-typed log whose
events in L have the same transaction type.

Definition 7 (Case start log, case end log). Let L ⊆ E be an event
log, DstartAct ⊆ Dact be a set of all possible activity names signifying
the start of a case, and DfinalAct ⊆ Dact be a set of all possible activity
names signifying the end of a case.

Lfirst = {e ∈ L | �e′∈L : (idL(e′) < idL(e) ∧ #case(e) = #case(e′) ∧
#act(e′) ∈ DstartAct)} is the case start log of L whereby each event in
Lfirst is the earliest event representing the start of the case to which
the event e belongs. Similarly, Llast = {e ∈ L | �e′′∈L : (idL(e′′) >
idL(e) ∧ #case(e) = #case(e′′) ∧ #act(e′′) ∈ DfinalAct)} is the case end log
of L whereby each event in Llast is the latest event representing the
end of the case to which the event e belongs.

To capture the pairing of two events representing the entry of
a particular work item into a queue and its corresponding exit, we
define the concept of segment.

Definition 8 (Work item segment). Let L ⊆ E be an event log,
tpin, tpout ∈ Dtype be event transaction types, and Ltpin ,Ltpout ⊆ L be
event-typed logs. SLtpin

,Ltpout
= {(ei, eo) ∈ Ltpin × Ltpout | idL(ei) <

idL(eo) ∧ (#case(ei), #act(ei), t(ei)) = (#case(eo), #act(eo), t(eo)) ∧ tpin ⇒
tpout} is a set of work item segments which are defined by pairs of two
events (ei, eo) with ei marking the beginning of a particular work item
segment and eo marking the end of the corresponding segment.

An event log may not contain information for all transaction types
of a work item. Definition 8 only requires that an event log records
two particular transaction types for each work item (e.g. tpin= start
and tpout = complete). A limitation of this requirement is that our
approach may not work when the event log used only records one
particular transaction type per work item.3

Definition 9 (Cluster of work item segments). Let L ⊆ E be an event
log, tpin, tpout ∈ Dtype be event transaction types, Ltpin ,Ltpout ⊆ L be
event-typed logs, SLtpin

,Ltpout
be a set of work item segments, a ∈ AN

be an attribute name, Da be the possible values for attribute a, and
va ∈ Da be a particular value of the attribute a.

We define SLtpin
,Ltpout

�a
va

= {(ei, eo) ∈ SLtpin
,Ltpout

| #a(ei) =
#a(eo) = va } as a cluster of work item segments where all seg-
ments within the cluster share the same attribute value for the given
attribute a.

For example, let res ∈ AN be an attribute referring to resource
identifier, r1 ∈ Dres be a particular resource identifier value, and
assign, start ∈ Dtype be two specific transaction types.SLassign ,Lstart�res

r1
=

{(ei, eo) ∈ SLassign ,Lstart | #res(ei) = #res(eo) = r1} refers to a cluster of
work item segments whereby all segments within the cluster share
the same resource identifier value and the transaction types that
signify the entry and exit of a work item to/from a segment are
assign and start respectively.

Using Definition 9, we can see that the concept of resource
perspective (mentioned towards the end of Section 2.1) is in fact

3 Nevertheless, through other types of process mining analysis, e.g., [23], it is pos-
sible to derive a new transaction type for a work item form a row event log that only
contains one transaction type.

captured by SLtpin
,Ltpout

�res
ri

for any ri ∈ Dres. Similarly, the con-
cept of activity perspective applies when segments are defined as:
SLtpin

,Ltpout
�act

ai
for any ai ∈ Dact where act ∈ AN is an attribute

representing activity name, and ai ∈ Dact is a possible activity name.

Definition 10 (Case segment). Let L be an event log, Lfirst be the
case start log for L, and Llast be the case end log of L. SLfirst ,Llast =
{(eci, eco) ∈ Lfirst×Llast | #case(eci) = #case(eco)} is a set of case segments
which are defined by pairs of (eci, eco) with eci marking the beginning
of a particular case segment and eco an event referring to the same
case marking the end of the corresponding segment.

The concept of case perspective, mentioned towards the end of
Section 2.1, thus applies when segments are defined as SLfirst ,Llast as
per Definition 10 above.

Definition 11 (Collection of segments). Let L ⊆ E be an event log,
tpin, tpout ∈ Dtype be event transaction types, Ltpin ,Ltpout ⊆ L be
event-typed logs, Lfirst be a case start log, Llast be a case end log,
SLtpin

,Ltpout
be a set of work item segments, SLfirst ,Llast be a set of case

segments, a ∈ AN be a particular attribute name, Da be the set of
all possible values for the attribute a, and va ∈ Da be a value of the
attribute a.

SL = {SLtpin
,Ltpout

} ∪ {SLfirst ,Llast } ∪ SLtpin
,Ltpout

�AN is the set of all
possible sets of segments that may exist in L where

• {SLtpin
,Ltpout

} is a set of the set of all work item segments,
• {SLfirst ,Llast } is a set of the set of all case segments, and
• SLtpin

,Ltpout
�AN =

⋃

a∈AN,va∈Da

{SLtpin
,Ltpout

�a
va

} is a set of the sets of

all possible clusters of work item segments.

Having defined the concept of segment, we can now define the
concept of in-list and out-list.

Definition 12 (In-list, out-list). Let L ⊆ E be an event log and SL
be the set of all possible sets of segments that may exist in L. For
a given S ′ ∈ SL,LS′

in = {ei ∈ L | ∃eo∈L : (ei, eo) ∈ S ′} is an in-list
whose members represent the starting events of segments seen in S ′
(henceforth, referred to as the in-list of S′).

Conversely, LS′
out = {eo ∈ L | ∃ei∈L : (ei, eo) ∈ S ′} is an out-list

whose members represent the ending events of segments seen in S ′
(henceforth, referred to as the out-list of S′).

Definition 13 (Timed in-list, timed out-list). Let L ⊆ E be an event
log, S ′ ∈ S be a set of a particular type of segment, LS′

in be the in-list
of S ′, and LS′

out be the out-list of S ′.
Given a timestamp t ∈ Dtime,

• Lt,S′
out = {eo ∈ LS′

out | #time(eo) ≤ t} is the timed out-list of S′ at time
t whereby all activity instances or cases captured by the events
within the list have completed their segments at or before time t.

• Lt,S ′
in = {ei ∈ LS′

in | ∃(ei ,e
′
o)∈S ′ : #time(ei) ≤ t ∧ #time(e′

o) > t} is the
timed in-list of S′ at time t whereby all activity instances or cases
captured by the events within the list have not yet completed
their segments at, or before, time t.

Definition 14 (Ranking function). Let L ⊆ E be an event log. R is
a set of bijective functions that rank every event in an event log L
based on some criteria, i.e. for any qL ∈ R, q : L → {1, . . . , |L|}.

For example, a FIFO ranking function qLFIFO ∈ R will rank all events
in an event log L such that for any two events ej, ek ∈ L, qLFIFO(ej) <
qLFIFO(ek) if and only if idL(ej) < idL(ek). A LIFO ranking function
qLLIFO ∈ R is the reverse: qLLIFO(ej) < qLLIFO(ek) if and only if idL(ej) >
idL(ek).

More concretely, given an event log L′ ⊆ L that consists of three
events {e1, e2, e3} where idL(e1) < idL(e2) < idL(e3), qL′

FIFO(e1) =

82 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

1,qL
′

FIFO(e2) = 2, and qL′
FIFO(e3) = 3. The converse is true for a LIFO:

qL′
LIFO(e1) = 3, qL

′
LIFO(e2) = 2, and qL

′
LIFO(e3) = 1.

Definition 15 (Priority attribute, priority value, priority class). Let L ⊆
E be an event log, priority ∈ A N be a priority attribute name, Dpriority be
the set of possible priority values, PriorityClass = {1, 2, ..., |Dpriority|}
be a set of possible priority classes with ‘1’ referring to the class with
the highest priority, and x : Dpriority → PriorityClass be a function
that maps each value in Dpriority into a particular priority class. For a
given e ∈ L, #priority(e) ∈ Dpriority is the priority value of event e, and
x(#priority(e)) is the corresponding priority class.

Given an event log L ⊆ E , a priority ranking function qLpriority ∈
R will rank all events in L such that for any two events
ej, ek ∈ L, qL

priority(ej) < qLpriority(ek) if and only if x(#priority(ej)) >
x(#priority(ek)) or x(#priority(ej)) = x(#priority(ek)) and idL(ej) <

idL(ek).

For example, assume an event log L′ ⊆ L that consists of three
events {e1, e2, e3} where idL(e1)< idL(e2)< idL(e3), x(#priority(e1)) =
x(#priority(e3)) = 2, and x(#priority(e2)) = 1. The priority ranking func-
tion qL

′
priority will yield the following: qL

′
priority(e1) = 2, qL

′
priority(e2) = 1,

and qL
′

priority(e3) = 3. This is because e2 has the highest priority class
amongst all events. Furthermore, while e1 and e2 have the same prior-
ity class, the event order identifier for e1 is lower than e3, thus giving
e1 a higher ranking than e3.

Definition 16 (Distance, queue score). Let L ⊆ E be an event log,
S ′ ∈ SL be a set of a particular type of segments that may exist in L,
and LS′

out be the out-list of S ′. Given an output event eo ∈ LS ′
out , we can

determine the following: to (the timestamp of eo which is #time(eo));
Lto ,S ′

in (the timed in-list at time to); ei ∈ Lto ,S ′
in (the corresponding

input event of eo such that (ei, eo) ∈ S ′); qLto ,S′
in ∈ R (a ranking

function over Lto ,S ′
in); and ee ∈ Lto ,S ′

in such that ∀
ek∈Lto ,S′

in
: qL

to ,S′
in (ee) <

qL
to ,S′
in (ek) (i.e. ee is the event representing the work item that is

expected to exit its segment at time to).
We define distance: Lout × P(L) → Z≥0 as a function that

returns a non-negative integer representing the distance between
ei, ee ∈ Lto ,S ′

in . The formula of the distance function is as follows:
distance(eo,L) = |idL(ee) − idL(ei)|.

We also define max_distance: Lout × P(L) → Z≥0 as a function
that returns the maximum distance between any two events in Lto ,S ′

in .
The formula for max_distance function is: max_distance(eo,L) =
idL(emax)−idL(emin) where emin, emax ∈ Lto ,S ′

in such that ∀
el∈Lto ,S′

in \{emin}:
idL(emin) < idL(el), and ∀

el∈Lto ,S′
in \{emax}: idL(emax) > idL(el).

Finally queue_score: Lout × P(L) → R is a function that estimates
the extent to which work items deviate from the expected input and
output ordering. The formula for the queue_score function is as fol-
lows: queue_score(eo,L) = 1 - (distance(eo,L)/max_distance(eo,L)).

The average queue score for LS′
out is the simple mean

of all the queue scores calculated for events in LS′
out :

∑
eo∈LS′

out
(queue score(eo,L))/|LS′

out|.

To account for the changes in resource behaviour over time, one
could adjust distance values using a forget function. Such a function
deliberately gives more weight to events that occurred recently and
lower weight to events that occurred further in the past.

Definition 17 (Forget function). Let L ⊆ E be an event log. We define
S ′ ∈ SL be a set of a particular type of segments that may exist in
L, and Lout be the out-list of S ′. Furthermore, let TLout = {#time(e) ∈
Dtime|e ∈ Lout}, tmin ∈ TLout where �t′min∈TLout

: t′
min < tmin, and tmax ∈

TLout where �t′max∈TLout
: t′

max > tmax.

We define a forget function F : TLout → [0,1] that maps the times-
tamp of all events in Lout to a real number such that F(t1) < F(t2) iff
t1 < t2,F(tmin) = 0, and F(tmax) = 1.

In practice, many cumulative probabilities distribution functions
can be used to represent the function F defined above.

Definition 18 (Adjusted queue score). Let L ⊆ E be an event
log. We define adjusted_queue_score: Lout × P(L) → R as a
function that estimates the extent to which activity instances
deviate from the expected input and output ordering, adjusted with
the forget function. The formula for the adjusted_queue_score func-
tion is as follows: adjusted queue score(eo,L) = F(#time(eo))∗ [1 −
(distance(eo,L)/max distance(eo,L))]. The average adjusted queue
score for LS′

out is the simple mean of all the adjusted queue scores
calculated for events in LS′

out .

3. Implementation

The proposed approach has been implemented as a plug-in to
the ProM framework.4 The input to this plug-in is an event log in
the standard XES format [22], and the output is a panel that consists
of an option panel and a chart panel. The option panel (Fig. 4 - left)
provides an interface for users to configure a number of options,
such as the queue type (i.e., the queuing discipline to test: FIFO,
LIFO, and Priority), the analysis perspectives (i.e., resource, activity,
or case perspectives), the transaction types signifying the entry and
exit of an item into a queue, the attribute name that is to be used
for a priority attribute (if the priority queue type is chosen), and the
type of cumulative probability distribution function that one would
like to use to represent the forget function. Our implementation
supports the following probability cumulative distribution functions:
normal distribution, exponential distribution, poisson distribution,
and logistic distribution.

Based on the chosen perspective, the “Select items to view” list-
box will be populated with the values corresponding to the chosen
“perspective”. For example, if a user chooses “activity” as the desired
perspective, the listbox displays all possible activity names in the log.
Users can then refine the results by choosing only those values that
they want to see. By default, the results for all of the values listed in
the listbox will be shown.

Our implementation also allows user to customise how they want
the queue score to be calculated when the number of items in a
queue (i.e. the queue length) being analysed is one. As discussed
in further details in Section 4.1, when the length of a queue is
one, it is difficult to distinguish if a resource or if a case works in
either FIFO, LIFO, or Priority queue fashion. We therefore allow users
to customise the calculation in this situation to either (1) ignore
the inclusion of that particular queue score, (2) include it in the
calculation as normal, or (3) give a value of 0.5 (indicating no strong
preference for the queue to follow either queuing discipline).

The chart panel (Fig. 4 - right) can be divided into two parts:
the chart area at the top and the chart legend below the chart area.
The chart area displays a time series that shows the trend of the
queue score (y-axis - left) and the queue length (y-axis - right) over a
period of time (x-axis). The queue score used at the y-axis coordinate
(left) is the queue score as defined in Section 2. This queue score (x),
normalised to the range of [0, 1], measures the distance between
the actual queue behaviour (as seen in the log) and the expected
queue behaviour (based on a particular queuing discipline). A higher

4 The plug-in is available in the nightly build version of the ProM Tool http://www.
promtools.org/prom6/nightly/. Installation instruction is available from https://www.
dropbox.com/s/j4boic9tmmm8clb/ResourceQueue_installationInstruction.pdf?dl=0.

http://www.promtools.org/prom6/nightly/
http://www.promtools.org/prom6/nightly/
https://www.dropbox.com/s/j4boic9tmmm8clb/ResourceQueue_installationInstruction.pdf?dl=0
https://www.dropbox.com/s/j4boic9tmmm8clb/ResourceQueue_installationInstruction.pdf?dl=0

S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92 83

Choose queue discipline to test:

FIFO, LIFO, Priority

Analysis perspective: resource,,

activity, or case perspective

Options to choose the transaction

types signifying entry (begin) and

exit (end) of an item to a queue

The possible probability cumulative

distribution function to shape the

forget function

The name of the attribute to

be used to set the priority of

work items (applicable if

Priority queue type is chosen)

How queue score is

to be calculated when

the queue length is only 1

Refine results to just a few series

Options for users to view the type

of graph to be seen: original score

graph, adjusted score graph, or

the moving average graph

(of the adjusted score graph)

Original queue

score graph (red)

Moving average graph of the

Adjusted Queue Score graph

(blue)

Queue length (to be

interpreted against the

y-axis value on the right)

Average Queue Score

Fig. 4. The option panel.

x score indicates a greater match between the expected and the
actual queuing behaviours.

Graphs for queue scores can be displayed using the original queue
score values. However, experience shows that original queue scores
are often volatile, resulting in a rather ‘jagged’ graph. We therefore
allow users to ‘smooth’ the graph out using the moving average func-
tion [24]. The numbers shown on the legend area are the average
queue scores calculated over the whole period captured in the event
log. A higher average queue score indicates a closer match between
the expected and actual queue behaviours.

4. Evaluation using synthetic data

This section presents the evaluation of the proposed approach
using synthetic data sets with known “ground truths” (i.e. expected
queue behaviours). Evaluation of our approach using a real-life data
set with an Australian insurance company is provided in Section 5.

Fifty-five synthetic data sets were used, each with their spe-
cific known ‘ground truths’ and queuing disciplines (see Table 1 for
details). These data sets were generated based on the same business
process model shown in Fig. 5. Four life-cycle transitions are present
in all the dataset: “schedule”, “assign”, “start”, and “complete”. The
event logs contain finalised cases only. Work items in the synthetic
data sets are performed by six resources.5 All cases in these logs are
started within a 24-week period. In the remainder of this article, each
log is identified by its unique identifier per Table 1.

We have generated event logs for all the three perspectives
(“activity”, “resource” and “case”), each with FIFO and LIFO queue
types. For the “resource perspective” logs, we also generated event
logs with “Priority” queue type as the ground truth (Log ID “37” to
“42”).

In the following discussion, we denote a queue as a “sample”. A
queue with a ground truth equal to the tested queue type is referred

5 The synthetic event logs are generated by a Java program developed by
the authors. These logs can be downloaded from https://www.dropbox.com/s/
y30fy6e9t2px9ns/SyntheticEventLogs_FirstRevision.zip?dl=0.

to as a “positive sample”, and a queue with a ground truth that is dif-
ferent from the queue type being tested is referred to as a “negative
sample”. For example, if we test for a FIFO-type queue in the activity
perspective, the event logs “13” to “18” (FIFO ground truth) contain
positive samples, while event logs “19” to “24” (LIFO ground truth)
contain negative samples.

The average queue score (see Definition 16) is used as the primary
metric for estimating the strength of the type of queue being detected:
a higher score indicates a better agreement between the queue
behaviour exhibited by resources seen in an event log and the tested
queue type. Unless specified otherwise, the “assign” and “start”
transitionsareusedasthe“begin”and“end”transactional typesforthe
activityandresourceperspectivestests,andthe“start”and“complete”
transitions are used for the case perspective tests.

Due to space limitation, we summarise the results of our
evaluations using synthetic data sets and elaborate key findings from
these exercises.6

4.1. Logs with varying workload rates

Logs L1 to L42 are used to evaluate the detection of queue styles
under different workload rate (i.e., the number of new cases started
per week). Our experiments not only confirm the fact that our
approach and its implementation manage to detect the correct queuing
disciplines as per the actual ground truths, but also highlight a num-
ber of interesting phenomena. Uncovering such phenomena often
provides valuable information that can be used to improve process
management.

Without refinement in our analysis approach, the average queue
scores will be quite high for any queuing discipline if we frequently
see queues of length 1. For example, the average queue scores for
positive samples (i.e. the tested queuing discipline matches the real
one) in logs L13–L42 are all close to 1; however, the average queue
scores for the negatives samples are also high, ranging from 0.2 to

6 Details about the evaluations and the results are available in the other ver-
sion of this paper https://www.dropbox.com/s/9na8e0ntt7u28ru/Suriadi_et_al_DSS_
SpecialIssue_SmartBPM_FullVersion.pdf?dl=0.

https://www.dropbox.com/s/y30fy6e9t2px9ns/SyntheticEventLogs_FirstRevision.zip?dl=0
https://www.dropbox.com/s/y30fy6e9t2px9ns/SyntheticEventLogs_FirstRevision.zip?dl=0
https://www.dropbox.com/s/9na8e0ntt7u28ru/Suriadi_et_al_DSS_SpecialIssue_SmartBPM_FullVersion.pdf?dl=0
https://www.dropbox.com/s/9na8e0ntt7u28ru/Suriadi_et_al_DSS_SpecialIssue_SmartBPM_FullVersion.pdf?dl=0

84 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

Table 1
Overview of the synthetic data sets. For the “Number of cases” column, we present the total number of cases in the format of X×Y,
where X represents the number of started cases per week (ranges from 50, 100, 150, 200, 300, and 500), and Y is the number of
weeks with started cases.

Log ID Perspective Ground truth Number of cases Noise

L1 – L6 Case FIFO 50 × 24, 100 × 24..., 500 × 24 0%
L7 – L12 Case LIFO 50 × 24, 100 × 24..., 500 × 24 0%
L13 – L18 Activity FIFO 50 × 24, 100 × 24..., 500 × 24 0%
L19 – L24 Activity LIFO 50 × 24, 100 × 24..., 500 × 24 0%
L25 – L30 Resource FIFO 50 × 24, 100 × 24..., 500 × 24 0%
L31 – L36 Resource LIFO 50 × 24, 100 × 24..., 500 × 24 0%
L37 – L42 Resource Priority 50 × 24, 100 × 24..., 500 × 24 0%
L43 Resource FIFO 250 × 24 10%
L44 Resource FIFO 250 × 24 30%
L45 Resource FIFO 250 × 24 50%
L46 Resource FIFO 50 × 24 30%
L47 – L53 Resource First FIFO, then LIFO 50 × 24, 100 × 24..., 500 × 24 0%
L54 Resource Purely random 500 × 24 100%
L55 Resource Alternate between FIFO and LIFO 500 × 24 100%

over 0.8. This phenomenon can be explained by the fact that the
states of the queues in these logs contain, often, only one element.
Thus, when this one element exits its queue, its behaviour is reflected
as both a LIFO style and a FIFO style. In other words, when there is
only one element in the queue, FIFO behaviour is manifested exactly
as LIFO, and vice versa.

As explained in Section 3, the implementation of our approach
allows users to handle the situation of a single item queue, such as
providing options for users to ignore the inclusion of those queue
scores calculated from a single item queue, or to assign a score of 0.5.
Our experiments show that our approach can better decide queue
styles when we ignore those queue scores obtained when the queue
length is 1. In fact, when we ignored queue scores calculated when
the queue length is 1, the average queue scores for negative samples
in our experiments go down and approach 0 (as expected). There are
a few exceptions, however. After ignoring the queue scores obtained
when queue length is 1, we do expect queue scores for negative
samples to be close to 0. However, in some of our experiments, the
average queue scores for some negative samples were still rather
high (sometimes as high as 0.35–0.4). We found that this unexpected
phenomenon is caused by the queue containing items with exactly
the same input or output timestamps. For example, we find that
the unexpected high negative sample queue scores for log L13 exist
when many instances of a particular activity are being started at
the same timestamp. This is a limitation of the proposed approach
as there is no mechanism to effectively handle the situation where
there exist multiple items with the same timestamps in the queue.

Finally, our experiments also demonstrate that a priority queue
of any length can also be interpreted as a FIFO queue or a LIFO queue.
For example, suppose a queue contains two items A and B. Suppose
A arrives earlier than B, and A has a higher priority attribute. The

cPO

start

aPO

approve PO

tPO

terminate PO

mPO

modify PO

confirm PO

coPO

create PO

close

PO

(artificial end)

end

Fig. 5. The process model for the synthetic log.

expected FIFO out-list is “A–B”, which is also the expected order for
Priority queue out-list. Our experiments using logs L37–L42 (logs
with priority ground truth) show precisely this: the average queue
scores for the negative samples are all over 0.3, with some as high
as 0.7.

4.2. Logs with noise

Our experiments using logs containing noise at varying intensity
(L43 to L46) show that the average queue scores for the positive sam-
ples, while still high (above 0.7 in most cases), are generally lower
than our previous experiments (with logs without noise); the scores
for the negative samples (LIFO tests) are still low (all below 0.35).
Furthermore, at a fixed workload rate (250 cases per week - logs L43,
L44, and L45), as the noise level increases, the average queue scores
for positive samples (FIFO tests) generally decrease while the scores
for the negative samples (LIFO tests) generally increases. For a fixed
noise level (30% - logs L44 and L46), we observe that the log with
lower workload rate (L46) produces lower positive samples scores
and higher negative sample scores, as compared with the log with
higher workload rate (L44).

Based on these evaluation results, we can see that our approach
performs as expected in the presence of noise: lower noise level leads
to more accurate results, and vice versa. Furthermore, we can also
see a positive correlation between the workload rate and the queue
detection accuracy level. Again, this is expected: the higher the work-
load is, the longer the queue formed, thus allowing one to better see
the differences between various queuing disciplines.

When resources randomly pick the next work item to perform
(log L54), our approach shows that resources are more likely to
exhibit LIFO behaviour than FIFO (Fig. 6). This may seem unex-
pected but it is actually unsurprising. Assume a worklist of 5 work
items {w1, w2, w3, w4, w5} with their respective event order identifier
of {1,2,3,4,5} (Definition 3 in Section 2.2). At time t1, let’s say the
resource picks the work item located in the second position of the
worklist, i.e. w2, to execute. The resource is seen as choosing the
second-in-line work item to execute, out of 5 that has been assigned
to the resource thus far. This behaviour seems to align with FIFO bet-
ter than LIFO (because the resource chooses a work item from the
first-half of the queue).

Upon completion of w2, at time t2(> t1), the worklist of the
resource is now {w1, w3, w4, w5}. Assume the resource, again, picks
the work item located in the second position of the worklist, i.e.
w3. Historically seen, the resource now picks the third-in-line work
item to execute (from FIFO perspective) . That is, the resource starts
to show preference of executing work items that were assigned

S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92 85

Fig. 6. Experimental results for event logs L54 (randomly picking the next task to perform from a set of ordered worklist) and L55 (alternating between pure FIFO and pure
LIFO behaviour).

later, rather than earlier. At time t3 (upon completion of w3), if the
resource also picks the work item located in the second position
of the worklist (which will be w4), the resource is now executing
the fourth-in-line work item to execute. Here, a drift towards LIFO
behaviour becomes more evident even though the resource still exe-
cutes work item located in the first-half of the worklist. Obviously,
such a drift is even more pronounced if the resource were to pick
work items located on the third or higher positions on each iteration.
Such a drift will only be neutralised if the resource were to pick the
work item located on the first position of the worklist.

When a resource randomly picks the next work item to execute,
each work item at each position in the worklist has an equal proba-
bility to be executed. However, as demonstrated above, it is sufficient
for the resource to pick the second or higher position to execute for
the drift towards LIFO to become visible. Hence, given a worklist of
x-number of work items, there is a 1

x probability that the LIFO drift is
neutralised (that is, picking the work item at position 1), while there
is 1 − 1

x probability that the LIFO drift is exacerbated. Thus, it is not
difficult to see why a drift towards LIFO may be visible even when
resources choose randomly the next work item to execute.

Nevertheless, in a situation where a resource is as likely to behave
in a strictly FIFO manner as in LIFO manner, our approach behaves as
expected: the average queue scores are close to 0.5 for both LIFO and
FIFO assessments for all resources (as shown in Fig. 6 for log L55).

4.3. Logs with concept drift

Event logs L47 to L53 are resource perspective logs generated
with a queue style ground truth that switches from FIFO to LIFO,
thus exhibiting a form of “concept drift” [25]. Here, we use the sce-
nario where the resources start working in the FIFO style, but switch
to the LIFO style after a certain period of time. With the introduc-
tion of concept drift, one cannot rely on average queue scores to
decide the queue style to which a queue belongs as the value takes
into account the behaviour seen for the whole period of the log, not
the behaviour seen at various points in time over which change is
normally detected. Therefore, to detect change, we need to plot the
queue scores over time and observe any change in the trend over
time. Our experiments with logs L47 to L53 confirm that a change in
the queuing disciplines can indeed be detected.7

7 For details of our experiment results, please refer to the other version of this arti-
cle at https://www.dropbox.com/s/9na8e0ntt7u28ru/Suriadi_et_al_DSS_SpecialIssue_
SmartBPM_FullVersion.pdf?dl=0.

5. Evaluation using a real-life dataset

Having established the correctness of our approach and its imple-
mentation in Section 4, this section presents insights gained from
the evaluation of the proposed techniques with a real-life dataset
depicting the claims handling process from an Australian insurance
company, NTI (National Transport Insurance). A brief overview of the
claims handling process is as follows: when a claim notification of
loss is received by the company (e.g., after a truck rolls over or is
involved in an accident), an assessment of the claim is started. Noti-
fications are also sent to the underwriting, recovery and settlement
teams for processing. After the assessment is finalised, the claim
is settled and a number of payments are made (including business
interruption payments).

This data set was used to detect the three different queuing styles
at different perspectives. The results were presented to three stake-
holders (national claims manager, business reporting manager and
national business operations manager) to evaluate the applicability
and usefulness of the proposed approach in an organisational setting.

The stakeholders from NTI are also interested in comparing insur-
ance claims behaviours across different states. Thus, we present not
only analysis results obtained using Australia-wide data, but also
comparative analysis results obtained using data from the states of
QLD and VIC only. The comparative analysis for claims from QLD
and VIC was carried out for the following reasons: (1) these two
states have the largest number of cases, (2) the number of cases
from these two states is comparable, but (3) the total number of
events in QLD is higher than that for the VIC data with slightly
longer mean and median case throughput times - approx. 10% (see
Table 2). Through comparative analysis, we are interested in deter-
mining whether different queuing disciplines could provide insights
into these performance differences.

5.1. Dataset pre-processing

Basic characteristics of the dataset used are provided in Table 2.
There are 129 employees (anonymised) seen in the log, holding a
total of 30 different organisational roles.

To evaluate the likelihood of the priority queuing discipline, each
work item is labelled with a priority attribute whose values include
“Highest”, “High”, “Normal” and “Low”. This labelling is based on the
stakeholders’ input. It is important to know that the user interface of
the claims processing software (that an NTI employee uses) displays
tasks in a worklist that is ordered based on task due dates by default
which could be in conflict with the priority order of tasks.

https://www.dropbox.com/s/9na8e0ntt7u28ru/Suriadi_et_al_DSS_SpecialIssue_SmartBPM_FullVersion.pdf?dl=0
https://www.dropbox.com/s/9na8e0ntt7u28ru/Suriadi_et_al_DSS_SpecialIssue_SmartBPM_FullVersion.pdf?dl=0

86 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

Table 2
Overview of the datasets (Australia vs. QLD vs. VIC).

Australia QLD VIC

Num of events 154,885 43,645 37,008
Num of cases 11,995 3110 3043
Number of activities 45 45 44
Median case duration 71.8 days 76.9 days 69.9 days
Mean case duration 14 weeks 14.9 weeks 13.3 weeks
Time frame 01/07/2012–02/08/2014 03/07/2012–23/07/2014 02/07/2012–11/07/2014

The transaction types “assign” and “complete” are used as the
“begin” and “end” markers in our analysis. Queues with lengths of
one are ignored when calculating the average queue scores.

This remainder of this section presents the results of our analysis
along with the feedback from stakeholders as appropriate and a few
caveats w.r.t. our approach.

5.2. Analyses

We performed three types of analysis according to the three anal-
ysis perspectives that our approach supports: case, resource, and
activity perspectives.

5.2.1. Case perspective analysis
Fig. 7 shows the average queue scores for the FIFO and LIFO styles.

The average queue score for QLD, VIC and Australia are similar: the
average queue scores for FIFO are between 0.2614 and 0.2760 and
the average queue scores for LIFO are between 0.7240 and 0.7433
(out of 1). These results indicate that most cases did not follow the
FIFO queue style and that cases seemed to be completed predomi-
nantly in the LIFO style. This can perhaps be explained by our earlier
observation (Section 4.2) whereby resources who simply pick work
items at random are likely to exhibit LIFO behaviours.

Stakeholders’ feedback. This analysis has extracted an interesting
insight for the stakeholders: it reveals undesirable work prioritisa-
tion styles (from the stakeholders’ perspective), as they would prefer
to see cases that started earlier to be finished first (i.e. a FIFO queue
style), whereas our analysis results (Fig. 7) demonstrate that this is
not the case; instead, we found the LIFO queue style to be more
dominant. Further analysis of resource prioritisation behaviour in the
subsequent sections sheds some light on this phenomenon.

5.2.2. Role/resource perspective analysis
Our analysis in the resource perspective is based on the role

attribute as per the request of the stakeholders. A role is occupied

by one or more employees and employees occupying the same
role in different states is expected to carry out the same type
of activities. Fig. 8 shows the average queue scores for Australia-
wide analysis which reveals that 17 out of the total 21 roles were
likely to follow LIFO queue. A few roles, however, were detected to
execute work items mainly in the FIFO manner (e.g. roles identified
by numbers 13, 6, and 12). However, even the highest FIFO score
is only 0.729 (Role “6”), which is not as high as those scores
obtained from running LIFO queue test. Interestingly, Fig. 8 shows
that (1) roles with a maximum queue length of between 4 to 9
tend to exhibit FIFO-queue behaviour and (2) LIFO-queue behaviour
becomes more dominant as the maximum queue length increases.

Fig. 9 (top and middle) present our role analysis results for QLD
and VIC respectively. In these two states, the LIFO style is more dom-
inant for roles with higher frequencies. Fig. 9 (bottom) shows several
roles that behaved very differently between the two states: role “5”
has different priority queue scores between the two states (QLD:
0.6022; VIC: 0.2286). Both roles “7” and “16” are detected to use the
LIFO style in QLD, but not in VIC. The FIFO scores for role “7” are
0.1644 and 0.6618 in QLD and VIC respectively. Role “16” has a prior-
ity queue score as high as 0.6667 in VIC, while the priority score for
this role is only 0.2296 in QLD. Role “13” is found to be exclusively
using the FIFO/Priority-style queue in QLD (i.e., a score of 1 for both),
whereas in VIC, the queue style adopted by this role is predominantly
FIFO and Priority (0.8 for both).

Interestingly, for roles with high FIFO queue score, their priority
queue scores are also high. For all the three datasets (i.e. Australia,
QLD, and VIC), we can observe that, for a role with a FIFO score
higher than 0.6, the priority queue score for the same role will also
be higher than 0.6. In addition, role “13” in the QLD dataset has both
the FIFO and priority queue scores equal to 1 (Fig. 9 - top). This indi-
cates that the FIFO order and the priority order of the work items for
this role are identical to each other. By further examining the dataset,
we found that, role “13” in QLD has 77.78% work-items with a prior-
ity attribute of “High”, and the remaining work-items with a priority
attribute of “Normal”.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Australia QLD VIC

A
v
e

r
a

g
e

Q

u
e

u
e

S

c
o

r
e

FIFO

LIFO

Fig. 7. Average queue scores (case perspective).

S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92 87

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f=81520f=23569f=19205f=12230 f=4866 f=4092 f=3422 f=1191 f=1119 f=720 f=640 f=530 f=521 f=290 f=263 f=204 f=135 f=134 f=78 f=48 f=47

1 9 3 8 7 27 4 5 10 16 2 23 15 17 18 13 6 11 22 20 12

A
v
e

r
a

g
e

 Q
u

e
u

e
 S

c
o

r
e

f: Frequency

Role ID

FIFO

LIFO

Priority

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L=533 L=265 L=164 L=112 L=93 L=83 L=59 L=47 L=46 L=40 L=27 L=21 L=21 L=17 L=15 L=15 L=12 L=9 L=7 L=6 L=4

1 3 9 8 7 27 4 15 10 5 16 2 17 23 18 11 22 6 20 13 12

A
v
e

r
a

g
e

 Q
u

e
u

e

S

c
o

r
e

L: Maximum Queue Length

Role ID

FIFO

LIFO

Priority

Fig. 8. Role perspective results for Australia, sorted by frequency (top) and maximum queue length (bottom).

For completeness, we also conducted resource-perspective
analysis using the anonymised resource attribute. In this analysis, no
particular queuing discipline stands out across resources in QLD and
VIC. An interesting observation, however, is the fact that the maxi-
mum queue lengths for resources in QLD tend to be longer than those
in VIC. There are no resources with a maximum queue length of over
50 in VIC, while in QLD there are four resources (identified as “FDLN”,
“DIQX”, “PNCS” and “ZGAP”) with maximum queue lengths greater
or equal to 100.

Stakeholders’ feedback. The stakeholders did expect roles “6”, “13”,
and “12” (see Fig. 9 - top and middle) to exhibit different queu-
ing behaviours compared to the rest. Roles “6” and “13” refer to
managerial/senior roles and the tasks to be completed by role
“12” are not driven by specific deadlines unlike other roles in the
organisation.

The differences in the queue styles in QLD and VIC for roles “7”
and “16” (see Fig. 9 - bottom) are interesting to note though the
stakeholders are unable to explain the possible reasons behind the
differences. The stakeholders indicate that role “7” is responsible for
customer service, whereas the tasks for role “16” require more crit-
ical thinking and internal discussion. Further investigation into this
matter is needed in order to explain these differences.

In relation to the longer queue lengths for resources in QLD as
compared to VIC, the stakeholders indicated that the organisation
has a high-functioning, long-time, and task-focused team in VIC,
whereas the turnover rate for the employees in the QLD team is quite

high. Thus, it is not surprising to see a higher number of items in the
worklists of resources in QLD.

5.2.3. Activity perspective analysis
Our analysis in the activity perspective, with a few exceptions,

also shows LIFO to be the dominant queuing discipline for all activity
types Australia-wide, in QLD, and in VIC.

Fig. 10 compares queuing disciplines across two states in the
activity perspective. There are only three activities that were dom-
inantly executed in the FIFO style in both states (Fig. 10 - top):
“Claim Auto Notification of Loss” (FIFO score: 0.6638), “Claim Settle-
ment Consultant Notification” (FIFO score: 0.7672), and “Follow-up
Unaccepted Assessment” (FIFO score: 0.6344). There are 22 activi-
ties executed mainly in the LIFO style with the LIFO scores ranging
from 0.54 to 1. Fig. 10 (middle) shows the results of those activities.
Interestingly, activities “Business Interruption Settlement Payment
Due” and “Fleet Claim Notification Estimate Movement” were exclu-
sively handled in the LIFO manner in VIC, whereas in QLD, they were
sometimes processed in the FIFO style. Most of the activities shown
in Fig. 10 (bottom) were executed in a random manner (as suggested
by average queue scores of around 0.5).

Stakeholders’ feedback. The results of our activity perspective
analysis are well-received by the stakeholders. They found that these
results confirmed their intuition that the way in which work items
are presented to the employees on their computer screens influences
their working style. Work items of the same activity type are sorted
(from the top to the bottom of the screen) from the most recent

88 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f=23029 f=8068 f=5872 f=1806 f=1628 f=878 f=841 f=438 f=363 f=336 f=289 f=34 f=27

1 3 8 9 7 27 4 5 16 10 17 11 13

A
v
e
r
a
g

e
 Q

u
e
u

e

S

c
o

r
e

f: Frequency

Role ID

FIFO

LIFO

Priority

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

f=12318 f=10797 f=6086 f=4691 f=1289 f=1070 f=256 f=249 f=51 f=47 f=40 f=32 f=24

1 9 8 3 4 27 5 10 13 12 16 2 7

A
v
e
r
a
g

e
 Q

u
e
u

e
 S

c
o

r
e

f: Frequency

Role ID

FIFO

LIFO

Priority

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

5 7 13 16

A
v
e
r
a
g

e

Q

u
e
u

e

S

c
o

r
e

Role ID

FIFO (QLD)

LIFO (QLD)

Priority (QLD)

FIFO (VIC)

LIFO (VIC)

Priority (VIC)

Fig. 9. Results at the role perspective for QLD (top) and VIC (middle), sorted by frequency. The bottom figure compares the queue scores for the two states.

ones to the oldest ones. Our analysis results indicate that people in
the organisation mostly execute the tasks that come into their vision
first (which are the most recent ones as they appear at the top of
the screen), rather than scrolling down to the bottom of the screen
to check for all tasks that may have arrived earlier before deciding
on the tasks to be executed first (i.e., FIFO). Furthermore, the bottom
bar chart of Fig. 10 shows the queue behaviours for some activities
to be random - no predominant queuing discipline - as both the FIFO
and LIFO scores are around 0.5. The stakeholders confirm that this
is expected, and is indeed desirable, for some activities such as the
“Assessment Type Changed” activity to be processed not according to
a strict queuing discipline. Therefore, the insight gained here aligns
with the stakeholders’ expectations of those activity types.

Finally, with regards to the exclusively-LIFO queue style for the
activities “Business Interruption Settlement Payment Due” (see the
middle chart in Fig. 10) and “Business Interruption Progress Payment
(Weekly)” (see the bottom chart in Fig. 10) seen in the state of VIC, the
stakeholders told us that these activities were about providing pay-
ment to clients. Detecting an exclusively LIFO pattern may indicate
poor customer experience as those who should receive payments ear-
lier could be made to wait longer. From the stakeholders’ perspective,
it is acceptable to conduct these activities based on the needs of the
customers rather than in a strict time-based order of either FIFO or
LIFO. Therefore, the somewhat random queue style detected for these
activities in the state of QLD (where neither LIFO queue score nor FIFO
queue score dominates the analysis results) is expected and desirable.

S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92 89

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Claim Auto Notification of Loss Claim Settlement Consultant

Notification

Follow-up Unaccepted

Assessment

A
v
e
r
a
g

e

Q

u
e
u

e

S

c
o

r
e

FIFO (QLD

LIFO (QLD

FIFO (VIC)

LIFO (VIC)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e
r
a
g

e
 Q

u
e
u

e

S

c
o

r
e

FIFO (QLD)

LIFO (QLD)

FIFO (VIC)

LIFO (VIC)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Claim

Estimate

Movement

Notification

Claim

Recovery

Consultant

Notification

Assessment

Reopened

Assessment

Type

Changed

Vehicle

Released

Claim Large

Loss

Notification

Assessment

Updated

Business

Interruption

Progress

Payment

(Weekly)

Claim Review

Late

Notification

Status

Change

A
v
e
r
a
g

e
 Q

u
e
u

e

S

c
o

r
e

FIFO (QLD)

LIFO (QLD)

FIFO (VIC)

LIFO (VIC)

Fig. 10. Results in the activity perspective (QLD vs. VIC). Top: Activities where FIFO values larger than LIFO in both states; Middle: Activities with LIFO values larger than FIFO in
both states; Bottom: The rest. Sorted by frequency.

5.3. Discussions and limitations

All three stakeholders found the insights gained from applying
the resource work prioritisation approach to their datasets to be
useful and highly detailed. From the discussions so far, a key revela-
tion for the stakeholders is the fact that the LIFO styles are popular,
regardless of the perspective of the analysis (i.e., case, role/resource,
and activity perspectives). Analysis from the resource perspective

shows that there are quite a number of employees who prefer
the LIFO style. This is a useful insight to the stakeholders as, from
their perspective, a more appropriate prioritisation style is to give
a higher priority to the oldest work-items/cases, while taking into
consideration the priority attributes and the due-date time where
applicable.

We also found out that the organisation actively monitors the
workload of employees on a daily basis in order to prioritise certain

90 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Claim Auto Notification of Loss Claim Recovery Consultant

Notification

Claim Settlement Consultant

Notification

Assessment Type Changed

A
v
e
r
a
g

e
 Q

u
e
u

e

S

c
o

r
e

FIFO (QLD)

LIFO (QLD)

FIFO (VIC)

LIFO (VIC)

FIFO (NSW)

LIFO (NSW)

FIFO (WA)

LIFO (WA)

FIFO (SA)

LIFO (SA)

FIFO (Australia)

LIFO (Australia)

Fig. 11. Comparison of some activities across Australia.

activities/cases and to balance the workloads.8 An employee records
his/her worklist and itemises all work items that are due in 2 days or
are overdue by 2 days. The worklists are then reviewed by a manager
and the tasks are prioritised according to when they are started (the
oldest first). The work is then re-distributed around the team where
necessary. This monitoring and prioritisation activity is not being
performed using any data analysis tool. The stakeholders mentioned
that the monitoring of work prioritisation is a labour-intensive pro-
cess and that their current workload/prioritisation analysis is not at
the same level of sophistication as what we have presented to them.
We then asked the stakeholders whether they would find this type
of analysis useful. They all believed this type of analysis to be useful
and expressed their interest to use our proposed technique on a reg-
ular basis (i.e., quarterly/annually) in order to monitor the changes
in the work prioritisation styles over time. These insights point to
the practical usefulness of the proposed work prioritisation detection
approach.

This case study reveals a caveat in our approach: an activity
that is detected to be FIFO when seen separately in each state may
be detected to be handled mainly in LIFO when cases from differ-
ent states are combined (i.e. across the whole of Australia) - see
Fig. 11. For example, activity “Claim Settlement Consultant Notifi-
cation” is detected to be handled mainly in the FIFO style when a
separate analysis for each state is conducted; however, the com-
bined analysis result (Australia) shows that both the FIFO and LIFO
queue scores are around 0.5 with the LIFO score slightly higher than
the FIFO score. The above phenomenon is entirely possible using
our approach. Assume an input list consisting of work items from
three different groups/cohorts A, B, and C and each cohort has two
work items. That is, the combined input list is as follows: (A1, A2, B1,
B2, C1, C2). Let the output list be (C1, B1, A1, C2, B2, A2). Then for each
cohort, the output order is FIFO, but the output order for the com-
bination of the three cohorts is not FIFO. Therefore, how one filters
event logs greatly affects the type of queue detected. In this case
study, analysing resource behaviour separately within each state
makes more sense as work items are not assigned to resources at the
national level, but locally within each state.

Strictly speaking, our approach is applicable when the event logs
used contain two life-cycle transitions recorded for each work item.
In practice, it is not uncommon to see an event log where each work
item only has timestamp information related to just one life-cycle

8 The dataset that was used for the analysis is from 2012 to 2014. The discussions
with the stakeholders were held in late 2015 and the organisation has implemented a
number of improvements to their work prioritisation style since.

transition recorded (e.g., the “complete” time). While our approach
cannot handle such a situation, through log pre-processing, we should
be able to overcome this issue (we can derive a new transaction times-
tamp using, for example, the event interval analysis approach [23]).
Nevertheless, in evaluating our approach using the real-life dataset
from the NTI organisation, we have excluded those work items with
only one life-cycle transition timestamp. The exclusion of these work
items may lead to a mismatch between the analysis results and an
employee’s actual work prioritisation behaviour.

Finally, our approach is yet to improve the way it handles the sit-
uation whereby multiple work items enter and/or exit a queue at
exactly the same time as detailed towards the end of Section 4.1.

6. Related work

In the last decade, a variety of process mining algorithms have
been proposed [14,26]. Early process mining techniques were devel-
oped to discover process models from event logs [27]. A process model
captures the control-flow perspective of a process, i.e. the temporal
dependencies between various activities in business processes.

Recently, process mining algorithms have been expanded to
include techniques to discover models capturing other process per-
spectives, such as the data-flow perspective [28] (which captures the
way in which data was consumed and transformed) and the organ-
isational perspective [14,17-19,26,29] (which discovers knowledge
about the involvement of resources within process executions). The
latter is also known as organisational mining.

Research in the domain of organisational mining mainly focused
on addressing issues related to resource performance. For example,
Nakatumba and van der Aalst investigate the effects of employee
workloads on service times using regression analysis [18]. Huang
et al. propose measures for resource preference, availability, com-
petence, and cooperation, and showed how they can be discovered
from logs [19]. Kim et al. [30] propose a method to construct a deci-
sion tree (constructed from past performances of resources) that
can be used at run-time to decide the best resource to be assigned
a particular work-item given an objective (lowest cost or fastest
completion time). In [20], Pika et al. present a general framework
to detect changes in resource behaviour over time by making use
of time series analysis techniques. Senderovich et al. present two
different approaches, namely, data mining with decision trees and
queuing heuristics to mine resource scheduling protocols for ser-
vice systems [31]. Finally, the work by Suriadi et al. [23] manipulates
time intervals between various events to build various pictures of
resource performance, including their throughput, workload, and
idle times. By contrast, in this paper, we focus less on understanding

S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92 91

resource performance, but more on learning the way resources select
and prioritise their work. In particular, we propose techniques to
learn the order in which work items are being executed by a resource
(i.e., the queuing discipline adopted by resources). We contend that
such a queue discovery approach has not been properly addressed
within the process mining discipline.

Recent work within the process mining community that is quite
closely related to our approach is the work by Senderovich et
al. [32–34] which seeks to learn the queue lengths for the purpose of
online delay prediction, assuming a particular type of queuing disci-
pline employed. Our work presented in this article is distinct in that
we want to discover the queuing discipline employed by resources,
instead of predicting queue length or waiting time.

Within business process simulation community, process min-
ing is often applied to learn historical resource behaviour such that
realistic simulation models can be realised (e.g. Rozinat et al. [35]
and Wynn et al. [36]). Appropriately configuring the queuing disci-
pline for each pool of resources is key for business process simu-
lation [37,38]. Within this context, our work can be positioned as
complementing process simulation research as it allows creators of
business process simulation models to learn from historical data the
most appropriate work prioritisation behaviour.

The work by Akhavian and Behzadan [39] is closely related to
ours. In this work, a technique to learn the queuing discipline
employed by resources is proposed. Their approach, however, is dif-
ferent in that their starting point of analysis is a collection of sensor
data, instead of an event log like in our approach. Consequently, their
approach does not support the learning of queuing disciplines from
various perspectives (such as resource, activity, and case perspec-
tives), which our approach supports. Finally, the approach proposed
by Akhavian and Behzada [39] learns queuing discipline in a batch
fashion whereby assessment of queuing discipline employed hap-
pens once after entries in the log are processed. Our approach, on the
other hand, operates in a streaming fashion whereby assessment of
the queuing discipline employed by a resource is performed every
time a work item exits a queue. As such, drifts in the queuing dis-
cipline employed by resources over time can be easily captured.
Furthermore, the streaming nature of our approach also means that
it can be easily adapted to learn the queuing discipline of a resource
in real-time.

While the concept of queue is used heavily in this article, it is
different from other work concerned with queuing theory as flowing
from the work by Agner Krarup Erlang [3] and its variants [40–45].
By looking at these literature, one can see that the type of problems
this work addresses is around the issues of capacity planning and
resource optimisation. For example, the work by Erlang [3] looks at
the problem of telephone traffic congestion and proposed models to
predict the behaviour of systems with randomly arising demands.
The work by Maghsoudlou et al. [43] also apply queuing theory to
assess the performance of a supply chain network. Queuing theory
has also been widely applied in hospital settings to better plan bed
capacity (e.g. Shen and Wang [44]) or to assess the capacity of an
emergency department load (e.g. Rosen [45]).

Examples mentioned above mostly involve the creation of a
model of queues with certain behavioural assumptions, including
the arrival rate of new work items and the mean working time to
serve a customer. This model is then studied to predict how a system
behaves under various loads. The work prioritisation approach pro-
posed in this article is therefore different in that we do not attempt
to create a top-down model of a queue with certain characteristics;
instead, we attempt to detect, from data, how a resource prioritises
the tasks that he/she has been assigned to, whether in a FIFO fashion,
LIFO style, or through some other prioritisation mechanism.

Another stream of research focuses on the impact of the choice
of queuing discipline on the performances of the systems/processes
being studied. Research in this area (for example [46–48]), however,

simply assumes a particular type of queuing discipline as a starting
point. Our work serves as input for such approaches. Our work starts
with the assumption that we do not know the queuing discipline that
exists in the process being investigated; instead, it is the goal of our
approach to detect the queuing discipline being used. Furthermore,
resource behaviour may change over time: a resource could at some
point follow a FIFO queuing discipline and, at a later point in time,
shift to a priority-based queue. Our approach allows one to observe
such changes.

Finally, the implementation of our approach currently only sup-
ports three queuing disciplines (FIFO, LIFO, and Priority), while
there exist many other queuing disciplines (for example, Kumar and
Sharma [49]). As detailed in Section 2, our approach attempts to
determine the queuing discipline of resources by looking at the align-
ment between ‘expected’ vs. ‘actual’ work items that exit a queue
(given a particular queuing discipline). Therefore, as long as it is pos-
sible to determine the expected work item to exit a queue from the
current state of a queue, our approach can support the assessment of
that particular queuing discipline. Note that this holds for almost any
queuing discipline provided the required contextual data is available.

7. Conclusion and future work

This paper described a novel approach to determining the degree
of conformance of the behaviour of a resource to some prescribed
queuing discipline related to the prioritisation of work items. The
approach makes use of transactional data recorded in event logs to
learn the prioritisation orders of resources when undertaking work.
Theapproachhasbeengeneralisedtoalsolearntheprioritisationorder
of cases and activities. The approach supports well-known queuing
disciplines including FIFO, LIFO, and Priority. Through the evaluation
of our approach, it is also interesting to note that LIFO behaviours
may simply be a consequence of resources choosing work items at
random. The proposed approach has been implemented as a plug-in
of the open-source process mining framework, ProM. The approach
was evaluated using a range of synthetic and real life datasets. The
paper also discussed the findings from a case study conducted at an
Australian insurance company which shows the usefulness of our
approach in practice. The main future work in this regard involves
improving the way in which score for a particular queuing discipline
is calculated to take into account the situation where two or more
work items enter or exit a queue at the same time and where there
is only one transaction lifecycle recorded for each work item (the
limitations of our current approach as mentioned in Section 4).

Acknowledgements

This work is partly supported by the ARC Discovery Cost-Aware
Business Process Management grant (DP120101624).

References

[1] M. Weske, Business Process Management: Concepts, Languages, Architectures,
Springer-Verlag, Berlin, 2007.

[2] T. Pyzdek, P.A. Keller, The Six Sigma Handbook, McGraw-Hill Education. 2014.
[3] D. Gross, Fundamentals of Queueing Theory, John Wiley & Sons. 2008.
[4] Z. Feldman, A. Mandelbaum, W.A. Massey, W. Whitt, Staffing of time-vary-

ing queues to achieve time-stable performance, Management 54 (2) (2008)
324–338.

[5] A. Li, W. Whitt, J. Zhao, Staffing to stabilize blocking in loss models with
time-varying arrival rates, Probab. Eng. Inf. Sci. 30 (2) (2016) 185–211.

[6] Y. Liu, W. Whitt, Stabilizing customer abandonment in many-server queues
with time-varying arrivals, Oper. Res. 60 (6) (2012) 1551–1564.

[7] W. Whitt, Stabilizing performance in a single-server queue with time-varying
arrival rate, Queueing Syst. 81 (4) (2015) 341–378.

[8] W. Mélangea, J. Walraevensa, D. Claeysa, B. Steyaerta, H. Bruneela, The impact
of a global FCFS service discipline in a two-class queue with dedicated servers,
Comp. Oper. Res. 71 (2016) 23–33.

http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0005
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0010
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0015
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0020
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0025
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0030
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0035
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0040

92 S. Suriadi et al. / Decision Support Systems 100 (2017) 77–92

[9] J. Walraevensa, T. Maertens, H. Bruneel, A semi-preemptive priority scheduling
discipline: performance analysis, Eur. J. Oper. Res. 224 (2013) 324–332.

[10] H.M. Asif, E.-S.M. El-Alfy, Performance Evaluation of Queuing Disciplines for
Multi-class Traffic using OPNET Simulator, MMACTE’05, WSEAS. 2005, pp. 1–6.

[11] O. Rose, The Shortest Processing Time First (SPTF) Dispatch Rule and Some
Variants in Semiconductor Manufacturing, Winter Simulation Conference, vol.
2, 2001. pp. 1220–1224.

[12] J. Nzouonta, T. Ott, C. Borcea, Impact of queuing discipline on packet delivery
latency in ad hoc networks, Perform. Eval. 66 (12) (2009) 667–684.

[13] R. Rönngren, R. Ayani, A comparative study of parallel and sequential priority
queue algorithms, ACM Trans. Model. Comput. Simul. 7 (2) (1997) 157–209.

[14] W.van der Aalst, Process Mining: Discovery, Conformance and Enhancement of
Business Processes, Springer-Verlag, Berlin, 2011.

[15] J. Bergs, D. Vandijck, O. Hoogmartens, P. Heerinckx, D.V. Sassenbroeck, B.
Depaire, W. Marneffe, S. Verelst, Emergency department crowding: time to
shift the paradigm from predicting and controlling to analysing and managing,
Int. Emerg. Nurs. 24 (2016) 74–77.

[16] C. Fernandez-Llatas, J.-M. Benedi, J.M. Garcia-Gomez, V. Traver, Process mining
for individualized behavior modeling using wireless tracking in nursing homes,
Sensors 13 (11) (2013) 15434–15451.

[17] M. Song, W. van der Aalst, Towards comprehensive support for organizational
mining, Decis. Support. Syst. 46 (1) (2008) 300–317.

[18] J. Nakatumba, W. van der Aalst, Analyzing Resource Behavior using Process
Mining, Proceedings of BPI’2009, Vol. 43 of LNBIP, Springer. 2010, pp. 69–80.

[19] Z. Huang, X. Lu, H. Duan, Resource behavior measure and application in
business process management, Expert Systems with Applications 39 (7) (2012)
6458–6468.

[20] A. Pika, M. Wynn, C. Fidge, A. ter Hofstede, M. Leyer, W. van der Aalst, An
Extensible Framework for Analysing Resource Behaviour Using Event Logs,
CAiSE, Vol. 8484 of LNCS, Springer. 2014, pp. 564–579.

[21] J.E. Hopcroft, Introduction to Automata Theory, Language, and Computation,
Addison Wesley. 2001.

[22] C.W. Günther, E. Verbeek, XES Standard Definition, 2nd ed., Eindhoven
University of Technology, The Netherlands, March 2014.

[23] S. Suriadi, C. Ouyang, W. van der Aalst, A.H.M. ter Hofstede, Event interval
analysis: why do processes take time? Decis. Support. Syst. 79 (2015) 77–98.

[24] C. Droke, Moving Averages Simplified, Marketplace Books. 2001.
[25] J. Bose, W. van der Aalst, I. Zliobaite, M. Pechenizkiy, Dealing with concept drifts

in process mining, IEEE Trans. Neural Netw. Learn. Sys. 25 (1) (2014) 154–171.
[26] W. van der Aalst, M. Schonenberg, M. Song, Time prediction based on process

mining, Inf. Syst. 36 (2) (2011) 450–475.
[27] W. Gaaloul, S. Alaoui, K. Baina, C. Godart, Mining Workflow Patterns through

Event-data Analysis, The 2005 Symposium on Applications and the Internet
Workshops, IEEE. 2005, pp. 226–229.

[28] M. de Leoni, W. van der Aalst, Data-aware Process Mining: Discovering Deci-
sions in Processes Using Alignments, SAC’13, ACM, New York, NY, USA, 2013,
pp. 1454–1461.

[29] W. van der Aalst, H. Reijers, M. Song, Discovering social networks from event
logs, Comput. Supported Coop. Work (CSCW) 14 (6) (2005) 549–593.

[30] A. Kim, J. Obregon, J.-Y. Jung, Constructing decision trees from process logs for
performer recommendation, BPM Workshops LNBIP (171) (2014) 224–236.

[31] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, Mining Resource
Scheduling Protocols, BPM Vol. 8659 of LNCS, Springer. 2014, pp. 200–216.

[32] A. Senderovich, M. Weidlich, A. Gal, A. Mandelbaum, Queue Mining - Predicting
Delays in Service Processes, CAiSE 2014, Vol. 8484 of LNCS, Springer. 2014, pp.
42–57.

[33] A. Senderovich, S.J.J. Leemans, S. Harel, A. Gal, A. Mandelbaum, W. van der Aalst,
Discovering Queues from Event Logs with Varying Levels of Information, in:
Reichert, M. Reijers, H. (Eds.) Business Process Management Workshops. BPM
2015. Lecture Notes in Business Information Processing, vol. 256, Springer
2016,

[34] A. Senderovich, Matthias Weidlich, Avigdor Gal, A. Mandelbaum, Queue mining
fordelaypredictioninmulti-classserviceprocesses, Inf.Syst.53(2015)278–295.

[35] A. Rozinat, R.S. Mans, M. Song, W. van der Aalst, Discovering simulation models,
Inf. Syst. 34 (3) (2009) 305–327.

[36] M. Wynn, A. Rozinat, W. der Aalst, A.H. ter Hofstede, C. Fidge, Process Mining
and Simulation, Modern Business Process Automation, Springer. 2010,

[37] W. van der Aalst, Business Process Simulation Survival Guide, Handbook on
Business Process Management 1, Springer. 2014, pp. 337–370.

[38] N. Martin, B. Depaire, A. Caris, The use of process mining in business process
simulation model construction - structuring the field., Bus. Inf. Sys. Eng. 58 (1)
(2016) 73–87.

[39] R. Akhavian, A.H. Behzadan, Evaluation of queueing systems for knowl-
edge-based simulation of construction processes, Automation in Construction
47 (2014) 37–49.

[40] I. Adan, J. Resing, Queueing Systems, Eindhoven. 2002, http://www.win.tue.nl/
iadan/queueing.pdf.

[41] B. Avi-Itzhak, H. Levy, On measuring fairness in queues, Advances in Applied
Probability 36 (3) (2004) 919–936.

[42] B. Avi-Itzhak, H. Levy, D. Raz, A resource allocation queueing fairness measure:
properties and bounds, Queueing Syst 56 (2) (2007) 65–71.

[43] H. Maghsoudlou, M.R. Kahag, S.T.A. Niaki, H. Pourvaziri, Bi-objective
optimization of a three-echelon multi-server supply-chain problem in con-
gested systems: modeling and solution, Comput. Ind. Eng. 99 (2016) 41–62.

[44] X. Shen, X. Wang, Improving the health-care delivery process at hospital
emergency services by a better use of inpatient bed information, Electron.
Commer. Res. Appl. 14 (2015) 14–22.

[45] B.L.P. Rosén, Measuring effective capacity in an emergency department, J.
Health Organ. Manag. 30 (1) (2016) 73–84.

[46] S. Creemers, M. Lambrecht, Modeling a Hospital Queueing Network, Queueing
Networks: A Fundamental Approach, International Series in Operations
Research and Management Sciences Springer. 2011, Chap. 18.

[47] S. Saghafian, G. Austin, S.J. Traub, Operations research/management contribu-
tions to emergency department patient flow optimization: review and research
prospects, IIE Trans. Healthcare Syst. Eng. 5 (2) (2015) 102–123.

[48] L. Green, Queueing Analysis in Healthcare, Patient Flow: Reducing Delay in
Healthcare Delivery, Springer. 2006. Chap. 10

[49] M. Kumar, S.C. Sharma, Priority Aware Longest Job First (PA-LJF) Algorithm for
Utilization of the Resource in Cloud Environment, INDIACom, 2016. pp. 415–420.

Dr. Suriadi Suriadi is a Senior Research Fellow at Queensland University of
Technology. Before this, from 2014 to 2016, he was a Lecturer within the College
of Sciences of Massey University, New Zealand. He obtained his PhD degree in the
discipline of Information Security in late 2010 from the Queensland University of
Technology (QUT). Since 2007, he has been involved in a number of research projects
in the area of information security. From 2011 to late 2014, he was a Research Fellow
within the Business Process Management discipline at Queensland University of Tech-
nology, Brisbane, Australia. He enjoys working in collaborative, cross-domain research
projects that allow the application of research outcomes to address real-world prob-
lems. His main research interests are in the area of process mining and information
security.

Dr. Moe T. Wynn is a Senior Lecturer in the field of Business Process Management
(BPM) within the school of Information Systems at Queensland University of Technol-
ogy. Her research interests include process automation, process mining, comparative
process analytics and cost-aware business process management. She has published
over 60 refereed research papers. Her work appeared in well-known journals in the
field including Information Systems, Information Sciences, Data and Knowledge Engi-
neering, Information and Software technology, Formal Aspects of Computing, Journal
of Computer and System Sciences, and Transactions on Petri Nets and Other Models of
Concurrency. Her work is supported by over AUD $3.3 million in grant funding in the
past five years.

Dr. Jingxin Xu received his bachelors degree in telecommunications engineering
from Xidian University, Xian, China, in 2008, masters degree in information technol-
ogy from the Queensland University of Technology (QUT), Brisbane, QLD, Australia,
in 2010, and PhD degree in signal processing from QUT, in 2014. He is currently a
Postdoctoral Research Fellow with QUT, investigating process mining techniques for
business process management.

Prof.dr.ir. Wil van der Aalst is a Full Professor of Information Systems at the Tech-
nische Universiteit Eindhoven (TU/e), The Netherlands. He is also the Academic
Supervisor of the International Laboratory of Process-Aware Information Systems of
the National Research University, Higher School of Economics in Moscow. Moreover,
since 2003 he has a part-time appointment at Queensland University of Technol-
ogy (QUT). At TU/e he is the scientific director of the Data Science Centre Eindhoven
(DSC/e). Wil van der Aalst has published more than 200 journal papers, 20 books
(as author or editor), 450 refereed conference/workshop publications, and 60 book
chapters. Many of his papers are highly cited (he is one of the most cited computer
scientists in the world and has an H-index of 131 according to Google Scholar) and his
ideas have influenced researchers, software developers, and standardization commit-
tees working on process support. In 2012, he received the degree of doctor honoris
causa from Hasselt University. In 2013, he was appointed as Distinguished Univer-
sity Professor of TU/e and was awarded an honorary guest professorship at Tsinghua
University. He is also a member of the Royal Holland Society of Sciences and Humani-
ties (Koninklijke Hollandsche Maatschappij der Wetenschappen) and the Academy of
Europe (Academia Europaea).

Prof.dr. Arthur ter Hofstede is a Professor in the Information Systems School in
the Science and Engineering Faculty, Queensland University of Technology, Brisbane,
Australia, where he is Head of the Business Process Management Discipline. He is
also a Professor in the Information Systems Group of the Department of Industrial
Engineering of the Technische Universiteit Eindhoven (TU/e). His research interests
are in the areas of business process automation and process mining.

http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0045
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0050
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0055
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0060
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0065
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0070
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0075
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0080
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0085
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0090
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0095
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0100
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0105
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0110
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0115
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0120
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0125
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0130
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0135
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0140
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0145
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0150
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0155
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0160
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0165
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0170
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0175
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0180
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0185
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0190
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0195
http://www.win.tue.nl/iadan/queueing.pdf
http://www.win.tue.nl/iadan/queueing.pdf
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0205
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0210
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0215
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0220
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0225
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0230
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0230
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0235
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0240
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0240
http://refhub.elsevier.com/S0167-9236(17)30018-0/rf0245

	Discovering work prioritisation patterns from event logs
	1. Introduction
	2. Learning work prioritisation patterns
	2.1. Approach
	2.2. Formalisations

	3. Implementation
	4. Evaluation using synthetic data
	4.1. Logs with varying workload rates
	4.2. Logs with noise
	4.3. Logs with concept drift

	5. Evaluation using a real-life dataset
	5.1. Dataset pre-processing
	5.2. Analyses
	5.2.1. Case perspective analysis
	 Stakeholders' feedback

	5.2.2. Role/resource perspective analysis
	 Stakeholders' feedback

	5.2.3. Activity perspective analysis
	 Stakeholders' feedback

	5.3. Discussions and limitations

	6. Related work
	7. Conclusion and future work
	Acknowledgements
	References

