
LocalProcessModelDiscovery: Bringing Petri
Nets to the Pattern Mining World

Niek Tax1,2(�), Natalia Sidorova1, Wil M.P. van der Aalst3, and Reinder Haakma2

1 Eindhoven University of Technology, Department of Mathematics and Computer
Science, P.O. Box 513, 5600MB Eindhoven, The Netherlands

{n.tax,n.sidorova}@tue.nl
2 Philips Research, Prof. Holstlaan 4, 5665 AA Eindhoven, The Netherlands

{niek.tax,reinder.haakma}@philips.com
3 RWTH Aachen, Germany

wvdaalst@pads.rwth-aachen.de

Abstract. This paper introduces the tool LocalProcessModelDiscovery,
which is available as a package in the process mining toolkit ProM. Local-
ProcessModelDiscovery aims to discover local process models, i.e., frequent
patterns extracted from event logs, where each frequent pattern is ex-
pressed in the form of a Petri net. Local process models can be positioned
in-between process discovery and Petri net synthesis on the one hand,
and sequential pattern mining on the other hand. Like pattern mining
techniques, the LocalProcessModelDiscovery tool focuses on the extraction
of a set of frequent patterns, in contrast to Petri net synthesis and process
discovery techniques that aim to describe all behavior seen in an event
log in the form of a single model. Like Petri net synthesis and process
discovery techniques, the models discovered with LocalProcessModelDis-
covery can express a diverse set of behavioral constructs. This contrasts
sequential pattern mining techniques, which are limited to patterns that
describe sequential orderings in the data and are unable to express loops,
choices, and concurrency.

Keywords: Petri nets, Frequent Pattern Mining, Process Discovery

1 Introduction

LocalProcessModelDiscovery is a novel tool for the discovery of frequent patterns
in the form of Petri nets from event logs. This paper aims to present this Petri-
net-based tool and provide some insights into the discovery techniques used. The
tool is implemented as a package in the Java-based process mining framework
ProM [12] and is publicly available at https://svn.win.tue.nl/repos/prom/
Packages/LocalProcessModelDiscovery/ and in the ProM package manager.
After installing the LocalProcessModelDiscovery package to ProM, the tool can be
started by importing an event log in XES [26] format into ProM and then running
the ProM plugin Search for Local Process Models using this event log as input.
The algorithms that we developed for the mining of frequent Petri net patterns
from event logs [10, 22–24] form the core of the LocalProcessModelDiscovery tool.



2

(a) (b)

LPM 1)

LPM 2)

(c)

Fig. 1. The Petri net model mined from the MSNBC dataset with (a) the Inductive
Miner [21], (b) the ILP Miner [25], and (c) two LPMs mined from the MSNBC dataset.
Black transitions correspond to silent transitions.

Mining of Local Process Models (LPMs) can be positioned in-between the research
areas of Petri net synthesis and process discovery on the one hand and frequent
pattern mining on the other hand. Frequent pattern mining [17] techniques focus
on extracting local patterns from data. Sequential pattern mining [14] techniques
are a type of frequent pattern mining that focuses on the extraction of frequent
patterns from sequence data. While process discovery [1] and Petri net synthe-
sis techniques aim to discover an end-to-end process model, sequential pattern
mining techniques aim to extract a set of patterns where each pattern describes
a subsequence that frequently occurs in the event log. Sequential pattern mining
techniques can be used to generate insights from event data that only contain weak
relations between the activities, i.e., that have a relatively high degree of random-
ness. From such event logs, process discovery and Petri net synthesis techniques
generate either overgeneralizing models that allow for too much behavior, or gen-
erate a ‘spaghetti’-model that is accurate in the allowed behavior but is not under-
standable and often overfitting. Figure 1a gives an example of an overgeneralizing
process model, showing the process model discovered with the Inductive Miner [21]
from web click data from the MSNBC.com news website1 (note that most activ-
ities can be skipped and/or repeated allowing for any behavior). Figure 1b gives
an example of a non-interpretable ‘spaghetti’-like process model, discovered from
the same dataset with the ILP Miner [25]. The first LPM of Figure 1c, however,
shows that activity 10 is generally followed by multiple instances of activity 2.

1 http://kdd.ics.uci.edu/databases/msnbc/msnbc.data.html



3

Event sequences

〈A,A,C,B,A,A,C,B,B,C〉
〈C,A,C,B,A,A,A,B,C,B〉
〈A,A,B,D,C,D,A,B,C,B〉
〈C,A,C,B,B,B,A,D,B,C〉
〈B,A,B,C,C〉
〈D,A,C,B,C,A,A,C,A,B〉
〈D,A,B,C,D,C,A,C,A,B,C〉

(a)

A 13/21

B 13/20

C 13/19

(b)

B
A

C
D

(c)

Sequential
patterns Support

〈A,B,C〉 7
〈B,A,B〉 7
〈A,B,A〉 6
〈A,C,A〉 6
〈A,C,B〉 6
〈B,A,C〉 6
〈C,A,C〉 6

(d)

Fig. 2. (a) A log L with highlighted instances of the frequent pattern. (b) An example
local process model that shows some frequent behavior in L. (c) The Petri net discovered
from L with the Inductive Miner tool [21]. (d) The sequential patterns discovered from
L with the PrefixSpan algorithm [18] (with minimum support=6).

2 What is Local Process Model Mining?

The process models that can be discovered with process discovery and Petri
net synthesis techniques can describe a rich set of process constructs, such as
concurrency, inclusive and exclusive choices, loops, and sequential execution.
In contrast, the patterns that are discovered with sequential pattern mining
techniques are limited to sequential orderings. The mining of Local Process
Models (LPMs) [24] extends sequential pattern mining techniques to Petri nets,
allowing for the discovery of local patterns of non-sequential behavior, including
choices, concurrency, and loops. Figure 2 illustrates an example local process
model on an example event log, and highlights the instances of the LPM in the
event log in blue. Note that instances of an LPM in the event log do not have to
consist of consecutive events, i.e., there can be gaps within a pattern instance. The
LPM instances that contain gaps are indicated in the event log with underline.

The LocalProcessModelDiscovery tool provides an implementation of the local
process model mining algorithm presented in [24]. Intuitively, the local process
model mining algorithm works by iteratively expanding patterns into larger candi-
date patterns, for which it calculates the support by calculating an alignment [2]
between the pattern and the event log. Patterns that satisfy a minimum support
threshold that is provided by the user are then expanded further in the next
expansion iteration of the algorithm. The local process model mining algorithm
returns a ranked list of patterns, where the patterns are ranked according to a
weighted average over the following quality criteria:

Support Relates to the number of times that the behavior that is described by
the Petri net pattern is found in the event log.

Confidence A pattern has high confidence when a high ratio of the events in
the event log of the activities that are described in the pattern belong to
instances of the pattern.

Language fit Relates to how much behavior that is allowed by the Petri net
pattern is actually observed in the event log at least once. A Petri net that
allows for many behavior that was never observed has low language fit.



4

Determinism Relates to the average number of enabled transitions during
replay of the pattern instances on the pattern. A purely sequential model
has optimal determinism, while a model that allows for more behavior might
have higher support but will have lower determinism.

Coverage Relates to how many events in the event log are described by the
pattern.

Related Tools
Several tools for Petri net synthesis (see [3] for an overview of synthesis techniques)
have been implemented throughout the years, including APT [5], GENET [6],
and Petrify [9]. APT [5] allows for the synthesis and analysis of Petri nets and
transition systems. GENET [6] allows for the synthesis of a Petri net from au-
tomata. Petrify [9] allows for the synthesis of Petri nets and asynchronous circuits.
VipTool [4] allows for the synthesis of a Petri net from a finite partial language.
Furthermore, ProM [12], APROMORE [20], PMLAB [7], and bupaR [19] are
tools that provide implementations of process discovery algorithms. SPMF [13]
is a pattern mining tool that provides implementations of a wide variety of fre-
quent pattern mining algorithms, including sequential pattern mining algorithms.
Additionally, several frequent pattern mining algorithms have been implemented
in the data mining toolkit WEKA [16]. Another related tool is WoMine [8] which
provides an implementation of the w-find algorithm [15] for mining frequent
behavioral patterns from a process model, allowing a user to find frequent sub-
processes in a process model. The Episode Miner [21] provides functionality to
mine frequent partial orders from an event log. Diamantini et al. [11] provide
a related tool to mine frequent behavioral patterns from event logs. Unlike Lo-
calProcessModelDiscovery, the behavioral patterns mined with this tool and with
the Episode Miner are not able to discover choice relations and loops.

3 The LocalProcessModelDiscovery tool

Figure 3 shows the main screen of the LocalProcessModelDiscovery tool, consisting
of three panels: on the left side a panel to configure the mining parameters, in
the middle a panel that presents the mining results when mining has completed,
and on the right side a panel to interact with and navigate through the mined
local process models.

3.1 Configuring the Local Process Model Miner

Figure 4 shows the mining parameters panel. Located at the top of the panel is
a maximum number of transitions in the LPMs slider, which allows the
user to set the maximum number of non-silent transitions for the local process
models. The maximum number of non-silent transitions puts an upper bound on
the number of expansion iterations in the local process model mining algorithm,
therefore, setting this slider to higher values enables the tool to discover larger
patterns at the cost of higher computation time.



5

Fig. 3. The home screen of the LocalProcessModelDiscovery tool.

The number of LPMs to discover slider lets the user specify a maximum
number of patterns that he or she wants to obtain, allowing him or her to prevent
mining an overload of patterns. Note that the local process model discovery
algorithm returns a ranked list of patterns, therefore, the algorithm returns the
patterns with the highest weighted score to the user.

The allow duplicate transitions toggle allows the user to specify whether
or not he or she wants to mine patterns that contain multiple transitions with the
same label. Enabling this option comes at the price of higher computation cost.

The operator section of the parameter panel allows the user to include or
exclude patterns with certain control-flow constructs in the search space of the
mining procedure.

In the pruning section of the parameter panel the user can specify a mini-
mum number of occurrences of the pattern in the log (i.e., minimum support),
and a minimum determinism value for the pattern. Patterns that do not meet
these thresholds set by the user are not presented in the results and are not
expanded into larger patterns, thereby pruning the search space of the local
process model mining algorithm.

Instances of a local process model in the event log do not have to be consecutive,
i.e., there can be other events that do not fit the behavior specified by the LPM
in-between. When this is not desired, constraint-based mining of LPMs can be
used to put restrictions on the instances of LPMs, thereby not including instances
in the event log that do not comply with there constraints, even when it fits the
behavior specified by the LPM. The parameters section allows the user to specify
event gap constraints and time gap constraints. An event gap constraint
puts a maximum on the number of non-fitting events in-between two fitting
events of an instance of an LPM in the log. For example, a sequence 〈a, b, x, x, c〉



6

Fig. 4. The parameters panel of the LocalProcessModelDiscovery tool.

is considered to be an instance of a Petri net N with language L(N) = {〈a, b, c〉}
when the event gap constraint is set to 2, but is not considered to be an instance
when the event gap constraint is set to 1. For event logs containing timed events,
time gap constraints can be used to specify an upper bound on the time difference
between two consecutive events that fit the behavior of an LPM.

The computational complexity of mining LPMs is exponential in the number
of activities in the event log [24]. Several heuristic mining techniques have been
proposed in [22] to make the mining of LPMs on event logs with large numbers of
events feasible. These heuristic techniques work by detecting clusters of activities
that frequently occur close to each other in the event log, and then mining
the LPMs for each cluster individually, restricting the expansion steps of the
LPM mining to activities that are part of the same cluster of activities. The
projections section of the mining parameters panel allows the user to configure
the tool to use these approaches.

When starting the LocalProcessModelDiscovery tool, it automatically sets
the minimum support parameter and the projections configuration to a default
value that is dependent on the event log, using information such as the number
of events and the number of activities in the event log.



7

(a)

(b)

Fig. 5. (a) An example LPM in the results panel of the LocalProcessModelDiscovery
tool, and (b) an example of the overlay feature in the navigation panel, projecting the
resource information on top of the pattern.

3.2 Interpreting Local Process Model Results

Figure 5a shows grouping of local process models in the mining results panel. The
figure shows a single local process model mined from a hospital event log that
describes the behavior that a lab test and an X-ray are performed in arbitrary
order, finally followed by an echography. Printed below the Petri net are the
scores of the pattern in terms of the local process model quality criteria. The
local process models are ranked by the aggregated score of the LPM (shown as
score), and the tabs in the bottom of the panel can be used to navigate through
the LPMs in the ranking. Typically, the mining procedure results in multiple
local process models that specify behavior over the same alphabet of activities.
By default, the resulting local process models are grouped by the alphabet of



8

Fig. 6. The navigation panel of the LocalProcessModelDiscovery tool, which allows the
user to interact with the mining results and perform more in-depth follow-up analysis.

activities that they describe. The group tabs above the Petri net can be used to
explore the LPMs that describe different alphabets of activities.

3.3 Navigating Local Process Model Results

The navigation panel provides several functionalities to interactively navigate
through the resulting local process models obtained through mining. A weighted
average over the quality criteria of local process models is used to rank the
resulting local process models, and the results are presented in the order of the
ranking. The user can reconfigure the weights assigned to each of the quality
criteria in the ranking section of the navigation panel, resulting in an updated
ranking of local process models in the results panel.

The overlay functionality in the navigation panel allows the user to project
data attributes of the events in the log onto the local process models. The overlay
functionality consists of a drop-down selector where the user can select one of the
global event attributes (i.e., an event attribute that is set for every event in the
log). Figure 5b illustrates the overlay functionality and shows the mining results
panel when selecting the org:resource event attribute for the local process model
of Figure 5. The results show that the X-ray and Echography events that fit the
behavior of this local process model are most frequently performed by employee
Alex, while the Lab Test events that fit the behavior of this pattern are most
frequently performed by employee Jo. Note that this does not say anything about
the X-ray events that do not fit the behavior of this pattern, i.e., the X-ray events
that are not performed concurrently to the Lab Test and before Echography.

The filters section of the results panel allows the user to filter out local
process models from the results that do not comply with certain specifications



9

that are provided by the user, such as a minimum number of activities in the
log. In the grouping section, the user can select a strategy for grouping mined
local process models into groups of local process models for the visualization
in the results panel. By default, the ranking-based grouping strategy is used,
which adds one local process model A to the same group as another local process
model B if 1) the set of activities of A is a subset of the set of or equal to the
activities of B and 2) A has a lower aggregated score than B.

4 Conclusion

This paper presents the tool LocalProcessModelDiscovery, which allows for the
mining of frequent patterns (called local process models) from event logs that are
expressed as Petri nets. Local process models are positioned in-between process
discovery and Petri net synthesis on the one hand, and frequent pattern mining
on the other hand. The local process models that can be mined with this tool
extend existing sequential pattern mining approaches: while sequential patterns
are restricted to mining frequent sequential behavior, local process models allow
the frequent patterns to describe a more general language over the activities by
expressing the patterns as Petri nets. LocalProcessModelDiscovery supports the
mining of local process models as well as functionality to navigate through the
mining results and to relate discovered local process models back to the event
log for a more in-depth analysis.

References

1. van der Aalst, W.M.P.: Process mining: data science in action. Springer (2016)
2. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history

on process models for conformance checking and performance analysis. Wiley
Interdisciplinary Reviews: Data Mining and Knowledge Discovery 2(2), 182–192
(2012)

3. Badouel, E., Bernardinello, L., Darondeau, P.: Petri net synthesis. Springer (2015)
4. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of Petri nets from

finite partial languages. Fundamenta Informaticae 88(4), 437–468 (2008)
5. Best, E., Schlachter, U.: Analysis of Petri nets and transition systems. In: Proceed-

ings of the 8th Interaction and Concurrency Experience (2015)
6. Carmona, J., Cortadella, J., Kishinevsky, M.: GENET: A tool for the synthesis

and mining of Petri nets. In: Application of Concurrency to System Design. pp.
181–185. IEEE (2009)

7. Carmona, J., Solé, M.: PMLAB: An scripting environment for process mining. In:
Proceedings of the BPM Demo Sessions. pp. 16–20. CEUR-ws.org (2014)

8. Chapela-Campa, D., Mucientes, M., Lama, M.: Towards the extraction of frequent
patterns in complex process models. Jornadas de Ciencia e Ingenieŕıa de Servicios
pp. 215–224 (2017)

9. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Petrify:
a tool for manipulating concurrent specifications and synthesis of asynchronous
controllers. IEICE Transactions on Information and Systems 80(3), 315–325 (1997)



10

10. Dalmas, B., Tax, N., Norre, S.: Heuristics for high-utility local process model mining.
In: Proceedings of the International Workshop on Algorithms & Theories for the
Analysis of Event Data. pp. 106–121. CEUR-ws.org (2017)

11. Diamantini, C., Genga, L., Potena, D., Storti, E.: Discovering behavioural patterns
in knowledge-intensive collaborative processes. In: International Workshop on New
Frontiers in Mining Complex Patterns. pp. 149–163. Springer (2014)

12. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM framework: A new era in process mining tool
support. In: International Conference on Application and Theory of Petri nets. pp.
444–454. Springer (2005)

13. Fournier-Viger, P., Gomariz, A., Gueniche, T., Soltani, A., Wu, C.W., Tseng, V.S.:
SPMF: a Java open-source pattern mining library. The Journal of Machine Learning
Research 15(1), 3389–3393 (2014)

14. Fournier-Viger, P., Lin, J.C.W., Kiran, R.U., Koh, Y.S., Thomas, R.: A survey
of sequential pattern mining. Data Science and Pattern Recognition 1(1), 54–77
(2017)

15. Greco, G., Guzzo, A., Manco, G., Pontieri, L., Saccà, D.: Mining constrained
graphs: The case of workflow systems. In: Constraint-Based Mining and Inductive
Databases, pp. 155–171. Springer (2006)

16. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. ACM SIGKDD explorations newsletter
11(1), 10–18 (2009)

17. Han, J., Cheng, H., Xin, D., Yan, X.: Frequent pattern mining: current status and
future directions. Data Mining and Knowledge Discovery 15(1), 55–86 (2007)

18. Han, J., Pei, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.C.:
PrefixSpan: Mining sequential patterns efficiently by prefix-projected pattern growth.
In: Proceedings of the International Conference on Data Engineering. pp. 215–224.
IEEE (2001)

19. Janssenswillen, G., Depaire, B.: BupaR: Business process analysis in R. In: Pro-
ceedings of the BPM Demo Sessions. pp. 160–164. CEUR-ws.org (2017)

20. La Rosa, M., Reijers, H.A., Van Der Aalst, W.M.P., Dijkman, R.M., Mendling,
J., Dumas, M., Garćıa-Bañuelos, L.: APROMORE: An advanced process model
repository. Expert Systems with Applications 38(6), 7029–7040 (2011)

21. Leemans, M., van der Aalst, W.M.P.: Discovery of frequent episodes in event logs.
In: International Symposium on Data-Driven Process Discovery and Analysis. pp.
1–31. Springer (2014)

22. Tax, N., Sidorova, N., van der Aalst, W.M.P., Haakma, R.: Heuristic approaches
for generating local process models through log projections. In: Proceedings of the
IEEE Symposium on Computational Intelligence and Data Mining. pp. 1–8. IEEE
(2016)

23. Tax, N., Genga, L., Zannone, N.: On the use of hierarchical subtrace mining for
efficient local process model mining. In: International Symposium on Data-driven
Process Discovery and Analysis. CEUR-ws.org (2017)

24. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.P.: Mining local process
models. Journal of Innovation in Digital Ecosystems 3(2), 183–196 (2016)

25. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess discovery using integer linear programming. In: International Conference on
Applications and Theory of Petri nets. pp. 368–387

26. XES Working Group: IEEE standard for eXtensible Event Stream (XES) for
achieving interoperability in event logs and event streams. IEEE Std 1849-2016 pp.
1–50 (Nov 2016)


