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Abstract
Process mining aids organisations in improving their operational pro-
cesses by providing visualisations and algorithms that turn event data
into insights. How often behaviour occurs in a process – the stochastic
perspective – is important for simulation, recommendation, enhance-
ment and other types of analysis. Although the stochastic perspective
is important, the focus is often on control-flow. Stochastic confor-
mance checking techniques assess the quality of stochastic process
models and/or event logs with one another. In this paper, we address
three limitations of existing stochastic conformance checking techniques:
inability to handle uncertain event data (e.g., events having only a
date), exponential blow-up in computation time due to the analysis of
all interleavings of concurrent behaviour, and the problem that loops
that can be unfolded infinitely often. To address these challenges, we
provide bounds for conformance measures and use partial orders to
encode behaviour. An open-source implementation is provided, which we
use to illustrate and evaluate the practical feasibility of the approach.

Keywords: stochastic process mining, stochastic conformance checking,
partial orders
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1 Introduction
Process mining aims to obtain insights from event logs recorded from organi-
sations’ information systems, in order for the processes of the organisation to
be improved. Process mining techniques include the automated discovery of
process models [1], the checking of conformance between logs and models [2, 3]
and the further enhancement and analysis of process behaviour [4], all of which
are typically used by analysts to gain insights into the behaviour in processes
within the organisation. Other areas of process mining include the prediction
of outcomes of cases that are ongoing [5] to support operations. Stochastic
process models represent not only what activities can be performed for cases,
but also how likely each sequence of activities is, which is critical information
to, for instance, inform effective optimisation efforts.

For instance, Figure 1 shows an example of a BPMN model, annotated
with probabilities on edges that indicate choices: after decide, there is a 0.1
probability to redo the loop with reinitiate request, a 0.3 probability to
execute pay compensation and a 0.6 probability to execute reject request.

Stochastic conformance checking aims to study the differences and com-
monalities between logs and stochastic process models, for instance to assess
the quality of a discovered stochastic process model or to analyse the stochas-
tic differences between a log and a stochastic process model. Recently, several
stochastic conformance checking techniques have been proposed, for instance
using Earth Movers’ distance [6] or entropy [7].

Figure 1 depicts a process model in the BPMN standard, annotated with
probabilities on the arcs originating from choices in the model. Traditional
process mining techniques will not consider the probabilities at all, thereby
potentially optimising little-used parts of the model. Stochastic process mining
techniques will consider the probabilities to distinguish highly from little used
parts of the process. However, such techniques will assign different probabilities
to whether check ticket comes before or after examine thoroughly and
examine casually, where the model expresses that these tasks are concurrent
and their execution order does not matter. Another example of concurrent
behaviour can occur in event logs, when two consecutive events have the same
timestamp, or could have occurred in any order due to imprecision of recording
(e.g. a nurse writes down procedures at the end of a shift, not adhering to
any particular order). In this paper, we introduce stochastic partial order
semantics, which consider the probabilities, however abstract from the total
order in case of concurrency.

A secondary challenge for existing stochastic conformance checking
approaches is the handling of loops: where Earth Movers’ distance encounters
a loop in a model, it must be unfolded a number of times to approximate the
actual measure, however in practice this had the consequence that no guar-
antees could be given [6]. In this paper, we address this problem as well by
introducing lower and upper bounds.

Using the combination of partial orders (po) and stochastics, in this paper,
we address the following three problems:
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Fig. 1: Example of a BPMN model with annotated probabilities on the
choices.

P1. Uncertainty about event order in the log traces, e.g., due to inaccurate
timestamps. We use partial orders to encode traces. For the log, concurrency
in a po trace can be considered as uncertainty: we do not know in which order
concurrent activities were executed.
P2. While stochastics of choices is handled adequately, assignment of prob-
abilities to interleavings of concurrent behaviour is redundant. We address
this issue by using po traces to represent the behaviour encoded in the
model. Hence, concurrency expresses explicit freedom of execution: concurrent
activities can be executed in any order.
P3. Inability to give exact results for models with loops, as these can unfold
infinitely often. We address this issue by giving lower and upper bounds for
conformance.

In this paper, we use Earth Movers’ Distance (EMD) as a guiding princi-
ple. This approach was successfully used for stochastic conformance checking
[6] considering sequential behaviour (i.e., totally ordered traces). In summary,
compared to [6], we (i) focus the stochastic perspective of models on choices
rather than concurrency: the order in which concurrent activities are executed
intuitively does not matter for the stochastic perspective, (ii) acknowledge
that the precise order of behaviour may be “uncertain” (e.g., consecutive
events with the same timestamp), and (iii) provide bounds to deal with infinite
behaviour in models.

In the remainder of this paper, we first introduce related work (Section 2).
Section 3 reiterates existing concepts. Section 4 introduces distance measures.
Section 5 presents a method to extract po traces from stochastic Petri nets.
Section 6 introduces bounds for EMSC. Section 7 evaluates the methods.
Finally, Section 8 concludes the paper.

2 Related Work
The basic approach to conformance checking between an event log and a pro-
cess model that induced the log proceeds by constructing, for each trace in
the log, an optimal alignment between the trace and model [8]. An alignment
is a sequence of synchronous and asynchronous moves. A synchronous move
is a pair, where one element of the pair refers to an event in the trace, and
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the other element refers to an action in the model that triggered the event.
If one element in the pair is a special skip symbol, the move is asynchronous.
If one traverses the moves of an alignment in the order they appear in the
alignment and records non-skip symbols that refer to the trace events, one
obtains the log trace. Similarly, if one records non-skip symbols that refer to
the model actions, one writes down a valid execution of the model. Clearly,
asynchronous moves are undesirable in an alignment, as they designate dis-
crepancies between the log trace and model. Thus, an optimal alignment is a
cheapest possible alignment between the trace and model, assuming some non-
zero cost of asynchronous moves. We use the concepts of alignments but add a
fourth move – the substitution move – to align with the Levenshtein distance.

In many practical situations, the information about the order of events
is not fully available in the log [9]. Note that po events can be used to
model uncertainty, concurrency or flexibility in handling the execution of these
events. In [10], Lu et al. generalised alignments, defined initially for totally
ordered traces, to po alignments computed between traces with po events and
process models. [10] also illustrates several approaches for deriving po events
from logs.

In [6], we extended classical alignments over totally ordered traces to obtain
stochastic alignments that account for stochastic perspectives of both the input
log and model; the frequencies of the log traces and the stochastic language
induced by the model. Stochastic alignments can be used to derive the likeli-
hood that an event in the log is synchronous with the model and, vice versa,
the likelihood that an activity in the model is synchronous with the log. In
this work, we generalize our technique for computing stochastic alignments to
account for po traces.

Several existing stochastic conformance measures address the problem
of quantifying the discrepancies and commonalities of log traces and traces
described by a stochastic process model. Entropic relevance is grounded in a
minimum description length compression-based framework. It measures the
length of an encoding of the log traces relative to the stochastic language
expressed by the model [11, 12]. A good model captures many frequent traces
and, thus, can “compress” them better. Thus, smaller values of entropic rele-
vance are favorable. Entropic relevance captures how accurately a stochastic
process model describes an event log, has meaningful units as it is measured
in “bits per trace”, is efficient as it is computable in time linear in the size
of the log, and carries information about the classical non-stochastic quality
criteria of precision and recall for discovered process models [12]. In classical,
non-stochastic, conformance checking, precision quantifies the quality of the
model to describe traces from the log, while recall measures how well the model
describes log traces. The stochastic versions of the classical precision and recall
quality criteria grounded in the notion of entropy of stochastic automata were
recently proposed [7]. In that work, the authors also present and discuss several
desired properties for stochastic precision and recall measures. Entropia [13]
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is a publicly available tool for computing entropy-based conformance mea-
sures, including those discussed here [7, 11, 12]. The earth movers’ stochastic
conformance measure [14], similar to the concept of stochastic alignments [6],
is grounded in the notion of “earth movers’ distance” between two probabil-
ity distributions. As the original measure is computationally demanding, the
authors also propose ways to approximate the measurements and a simplified
variant of the measure. Finally, Richter et al. [15] proposed an approach for
measuring stochastic conformance with a focus on the temporal perspective.
First, for each activity in the log, a probability density function that describes
the probability of that activity to occur at a given timestamp is learned from
the log. Then, the temporal stochastic conformance-fitness of a new trace is
defined as the average, over all the events in the trace, probability of the activ-
ity that induced the event to occur at the event’s timestamp. The authors also
extend this basic approach based on single activity probabilities to consider all
pairs of temporally succeeding activities to obtain more accurate conformance
estimates.

There exist several approaches for constructing alignments that account for
the stochastic perspectives of logs or models. A classical non-stochastic align-
ment is optimized against a given user-defined cost function over moves. This
approach allows constructing optimal alignments as per the domain knowledge
on the importance of process deviations judged by the user. To construct the
most probable alignments as per the historical processes, Alizadeh et al. [16]
proposed to automatically learn the costs of moves based on the log. The
learned cost function is grounded on the estimates of the probability of activ-
ity to immediately occur in a given state and the probability that activity
will never eventually occur if the process is in a given state. This approach
to constructing the most probable alignments was extended to account for
attributes manipulated by process activities [17]. The original control-flow-
based approach was also adapted to ensure the constructed alignments are
grounded in the most likely, as per the log, activities [18]. Finally, Bergami
et al. [19] presented a tool capable of prioritizing the alignment cost or the
probability of observing the aligned log trace as per the stochastic process
model when selecting a portfolio of alignments that characterize the confor-
mance of the model and log. Note that none of the discussed techniques studies
stochastic conformance of po traces.

An approach for stochastic conformance checking of declarative process
models was recently proposed [20]. The authors extended the temporal busi-
ness constraints of a declarative process modelling language to account for
uncertainty. The proposed notion of conformance then considers the differ-
ent constraint executions of log traces by the model and their probabilities.
Another conformance checking technique that accounts for the stochastic per-
spectives of models and logs was proposed by Senderovich et al. [21] in the
context of automatic discovery of queueing networks. The approach proceeds
by performing a statistical test on whether the schedule of executed and
recorded in the log activities is the same as that described by the model.
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EMD was recently used to measure the stochastic conformance of two event
logs [22], namely of a given event log and its sample. The idea of log sam-
pling is to obtain a sample log that preserves the essential characteristics of
the original log, including its stochastic aspects, so that it can be used instead
of the original log in process mining studies to obtain results similar to those
for the original log input faster [? ].

One of the core components of our techniques are measures for computing
a distance between two collections of po events. The set of total extensions
of a po is the set of all total orders that do not violate the po, of which
there can be factorially many. The nearest neighbour distance [23] between
two po traces is the minimum distance between some total orders from their
total extensions. Usually, classical Kendall tau [24] and Spearman footrule [25]
distances are used to measure the distances between the total orders when
determining this nearest neighbour distance. Instead, in this work, we use the
normalised Levenshtein distance [26], which is better suited for comparing
traces rather than rankings of candidates. In [27], the authors accept two pos
as equivalent if they have isomorphic Hasse diagrams. Otherwise, the distance
is calculated as the minimal number of relations that need to be deleted or
inserted for transforming one diagram into another.

3 Preliminaries
3.1 Languages
Let A be the universe of activities.

Definition 1 (Trace). σ = 〈a1, a2, . . . an〉 ∈ A∗ is a trace. T = A∗ is the
universe of traces.

In addition to totally ordered traces, we consider po traces.

Definition 2 (Partially Ordered Trace). A partially ordered trace (po trace)
is a triple ρ = (E,≺, l) such that E is a set of events, ≺ ⊆ E × E is a strict
partial order (irreflexive, antisymmetric and transitive) and l : E → A is a
labelling function. P is the universe of all po traces.

Totally ordered traces express an ordering relation between all pairs of
events in the trace, while po traces express ordering relations between a sub-
set of event pairs. That is, the pairs that have no ordering relation can be
executed in any order. There are two semantical interpretations of po traces:
the uncertain interpretation expresses a lack of knowledge (we are not sure
of the order in which this pair of events was executed) and the certain inter-
pretation expresses explicit freedom of execution (this pair of events can be
executed in any order). For instance, Figure 2 shows an example po trace.
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a c b d

Fig. 2: po trace ρe = ({a, b, c, d}, {a≺ c, b≺ d}, ID).

Definition 3 (Traces of a po Trace). Let ρ = (E,≺, l) ∈ P be a po trace.
Then, σ = 〈a1, a2, . . . a|σ|〉 ∈ A∗ is a trace of ρ if and only if there is a
bijection f ∈ {1, 2, . . . |σ|} → E such that for all i ∈ {1, 2, . . . |σ|} it holds that
l(f(i)) = ai, and for all i, j ∈ {1, 2, . . . |σ|} such that f(i)≺ f(j) it holds that
i < j. Let L(ρ) denote all traces of ρ.

All traces of ρe (Figure 2) are L(ρe) = {〈a, c, b, d〉, 〈a, b, c, d〉, 〈a, b, d, c〉,
〈b, a, c, d〉, 〈b, a, d, c〉, 〈b, d, a, c〉}.

Definition 4 (Stochastic po Language). A stochastic po language L : P →
[0, 1] assigns a probability to each po trace, such that

∑
ρ∈P L(ρ) = 1. We

write L̃ = {ρ ∈ P | L(ρ) > 0}.

Every stochastic language [6] is a stochastic po language.

3.2 Multisets
A multiset M over elements U is a mapping of U to the natural numbers:
M : U → N.

Let X be a set and let n be a natural number, then X [n] is the multiset
with each element of X mapped to n: ∀e∈XX [n](e) = n ∧ ∀e′ /∈UX

[n](e′) = 0.
Let X and Y be mulitsets, then X F Y = ∀zX(z) ≤ Y (z) is the multiset

subset, (X ] Y )(z) = X(z) + Y (z) is the multiset union, and (X \ Y )(z) =
max(0, X(z)− Y (z)) is the multisets difference.

Finally, let X be a multiset, then [. . . | . . .] denotes the multiset
construction: ∀e′ [e | e ∈ X](e′) = X(e′).

3.3 Models
Petri nets are defined in the usual manner, where we allow for transition labels.

Definition 5 (Labelled Petri Net). A labelled Petri net is a tuple
(P, T, F,Σ, λ,M0), where P is a set of places, T is a set of transitions such
that P ∩ T = ∅, F is a flow relation F F (P × T )∪ (T ×P ), Σ ⊆ A is a finite
alphabet of activities such that τ /∈ Σ, λ : T → Σ∪{τ} is a transition labelling
function, and M0 F P [∞] is an initial marking (a multiset of places indicating
a state). We assume the standard semantics of Petri nets.

As a stochastic process model, we use labelled stochastic Petri nets, which
assign a weight to each transition.
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Definition 6 (Labelled Stochastic Petri Net). A labelled stochastic Petri net
(LSPN) is a tuple PN = (P, T, F,Σ, λ,M0, w) where (P, T, F,Σ, λ,M0) is a
labelled Petri net, and w : T → R+ is a weight function.

Let •x = [y | (y, x) ∈ F ] be the multiset of places/transitions that have an
outgoing arc incoming to x, and let x• = [y | (x, y) ∈ F ] be the multiset of
places/transitions that have an incoming arc outgoing of x. Then, in a marking
M , a transition t ∈ T is enabled if •t F M . If a transition t ∈ T is enabled in a
marking M , then t can fire, which updates the marking to M ′ = (M \ •t)] t•,
denoted with M

t−→ M ′. In a particular marking M , let T ′ ⊆ T be the set
of enabled transitions. Then, the probability of t ∈ T ′ firing, denoted with
PN(M, t), is w(t)/

∑
t′∈T ′ w(t′).

More elaborate stochastic Petri net formalisms have been defined, for
instance including a distinction between timed and immediate transitions [28].
Since we focus on the ordering of activities and not on their duration, tem-
poral behaviour can be abstracted away, leading to LSPNs [28]. Typically, in
literature stochastic Petri nets are not labelled. However, in process mining,
silent and duplicate transitions are often encountered [29], thus we consider
labelled nets in this paper. For a more elaborate discussion on different types
of stochastic process models, please refer to [6].

Definition 7 (Soundness). Let PN = (P, T, F,Σ, λ,M0, w) be an LSPN. PN
is sound if and only if from any reachable marking it is possible to reach
a deadlock (i.e., a marking where no transition is enabled) with non-zero
probability.

This definition implies that it is always possible to reach a final state (in
which no transitions are enabled), without getting stuck in a livelock (i.e. a
loop of transitions from which no escape is possible). Consequently, the prob-
abilities of the traces of an unsound LSPN do not sum to 1, and accordingly,
the stochastic language of such an LSPN is not defined.

A desirable property of LSPNs is that a place can never contain more than
one token:

Definition 8 (Safeness). Let PN = (P, T, F,Σ, λ,M0, w) be an LSPN. PN
is safe if and only if in any reachable marking M ′ there is at most one token
on each place: ∀M0−→...−→M ′∀p∈PM

′(p) ≤ 1.

3.4 Earth Movers’ Stochastic Conformance
We lift Earth Movers’ Stochastic Conformance (EMSC) [6] to stochastic po
languages, using a distance function ∆:

Definition 9 (Earth Movers’ Stochastic Conformance). Let L,L′ be stochastic
po languages, and let ∆: P × P → [0, 1] be a po trace distance function.
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R : L̃× L̃′ → [0, 1] is a mapping such that

cost∆(R,L,L′) =
∑

ρ∈L̃,ρ′∈L̃′

R(ρ, ρ′)∆(ρ, ρ′)

is minimised under the constraint that for all ρ ∈ L̃, L(ρ) =
∑

ρ′∈L̃′ R(ρ, ρ′)

and for all ρ′ ∈ L̃′, L′(ρ′) =
∑

ρ∈L̃ R(ρ, ρ′). Given such a mapping R, the
Earth Movers’ Stochastic Conformance is emsc∆(L,L

′) = 1− cost∆(R,L,L′).

4 Partially Ordered Trace Distance
In this section, we show how to generalise a trace-trace distance measure δ to
po traces ρ, ρ′ ∈ P. Intuitively, a po distance function ∆ aggregates over the
traces of ρ and ρ′. Both ρ and ρ′ might be either certain (freedom to choose
an order consistent with the po) or uncertain (no freedom to choose), yielding
four ways to aggregate:
• If ρ and ρ′ are both to be interpreted as certain, then ∆ should take the

minimum distance between any trace pair of ρ and ρ′:

∆cc
δ (ρ, ρ′) = min

σ∈L(ρ)
min

σ′∈L(ρ′)
δ(σ, σ′)

• If both of the po traces are to be interpreted as uncertain, then we cannot
be sure of the distance between ρ and ρ′, and we can only provide an
upper and a lower bound for the distance ∆.
The lower bound, a.k.a the “best case”, aggregates by taking the

minimum possible distance between any trace pair of ρ and ρ′, and is
equivalent to ∆cc

δ (ρ, ρ′):

∆uu-best
δ (ρ, ρ′) = ∆cc

δ (ρ, ρ′)

The upper bound, a.k.a the “worst case”, aggregates by taking the
maximum of both:

∆uu-worst
δ (ρ, ρ′) = max

σ∈L(ρ)
max

σ′∈L(ρ′)
δ(σ, σ′)

• If one of the po traces is uncertain and the other is certain, then again
we cannot be sure about the distance ∆ and we must provide bounds. In
the following, assume that ρ is uncertain.
The lower bound is equivalent to ∆cc

δ (ρ, ρ′):

∆uc-best
δ (ρ, ρ′) = ∆cc

δ (ρ, ρ′)

The upper bound aggregates by playing an imaginary game between
ρ and ρ′, which first ρ′ tries to choose a σ′ ∈ L(ρ′) such that δ(σ, σ′) is
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minimised, after which ρ tries to choose a σ ∈ L(ρ) such that δ(σ, σ′) is
maximised:

∆uc-worst
δ (ρ, ρ′) = max

σ∈L(ρ)
min

σ′∈L(ρ′)
δ(σ, σ′) (1)

As silent events are not relevant for a distance measure, they can simply
be filtered out before computing the distance, thus removing the conceptual
difference between a trace and a run.

All these distance measures are closed expressions and can thus be com-
puted in a brute-force way by iterating over all possible traces of the po traces.
The complexity of this approach is factorial in the number of concurrent events
in the pos, and exponential in the number of consecutive concurrent events.
In the remainder of this section, we describe a different implementation for
the best-case distance ∆cc.

4.1 ∆ for Normalised Levenshtein
If the trace distance measure δ is the normalised Levenshtein distance, the
computation of ∆ is similar to the concept of alignments [3]. That is, for our
purposes, an alignment is a sequence of moves such that the top projection is
a trace σ1 ∈ L(ρ1) and the bottom projection is a trace σ1 ∈ L(ρ2), for ρ1, ρ2
be po traces. There are four types of moves:
• A synchronous move e

e denoting an equivalent event in both traces;
• A substitution move e

e′ denoting an event in both traces, such that e 6= e′;
• A top move e

− denoting an event in the top trace;
• A bottom move −

e denoting an event in the bottom trace.
Then, the problem of computing ∆cc can be solved by finding a best-case

alignment (i.e. having the lowest possible cost).
For instance, let ρe = ({a, b, c, d}, {a≺ c, b≺ d}, ID) (Figure 2) and let

ρ2 = ({a, b, c}, {a≺ b, b≺ c}, ID) (with identify function ID). Then, a best-
case alignment is a

a
b
b
c
c

d
− , and consequently ∆cc(p, q) = 1

4 (overloading events
and activities).

Rather than brute force, a faster way to compute an optimal alignment
is by using an A* search algorithm [30]. As a heuristic, we relax the order
constraints and count the resulting unavoidable moves. For more details, please
refer to Section B.

5 Partially Ordered Traces of LSPNs
The BPMNmodel in Figure 1 can be easily converted to a Petri net like the one
shown in Figure 3. There exist many automated translations, but these are out
of the scope of this paper (see [31, 32] for examples). We use shortened names
to simplify notation, e.g., transition ri corresponds to reinitiate request.
Note that we also use a silent transition τ . Note that in this example it is pos-
sible to remove the τ transition (transition reg and ri can put directly tokens
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pstart
reg

p1
τ

p2

p3

et 0.3

ec 0.7

p4

ct

p5 dec
p6 pay

0.3

rej
0.6

ri 0.1

pend

Fig. 3: Petri net corresponding to the BPMN model in Figure 1 using short-
ened activity names.

in p2 and p3). However, we want to demonstrate that our approach can handle
silent and duplicate transitions, i.e., transitions that have no corresponding
activity and activities that have multiple corresponding transitions).

There are two choices in the Petri net represented by the places p2 (the
choice between et and ec) and p6 (the choice between pay, rej, and ri). The
probabilities are indicated in the diagram, e.g., when there is a token in p2
transition et will fire with probability w(et) = 0.3/0.3 + 0.7 = 0.3 and transition
ec will fire with probability w(ec) = 0.7/0.3 + 0.7 = 0.7. When there is a token
in p6 transition pay will fire with probability w(pay) = 0.3, transition rej will
fire with probability w(rej) = 0.6, and transition ri will fire with probability
w(ri) = 0.1. According to Definition 6 there is a weight function w : T → R+

assigning a weight to each transition. Although Figure 3 does not show such
probabilities, it is possible to determine the probability of a so-called run,
i.e., one execution of the process ignoring the way concurrent activities are
interleaved. Figure 4 shows a possible run. This run models a case that is
examined thoroughly (transition et) and paid at the end (transition pay).
This run has probability 0.3 × 0.3 = 0.09. The probability of the run that
models a case that is examined casually (transition ec) and rejected at the
end (transition rej) has probability 0.7 × 0.6 = 0.42. There are infinitely
many possible runs. The probability of the run that conducts three thorough
examinations followed by a rejection is 0.3×0.1×0.3×0.1×0.3×0.6 = 0.000162.

Interestingly, we can compute the probability of each run without having
weights for the transitions not involved in a choice. We will show that can be
done for any confusion-free Petri net, that is, a Petri net where the execu-
tion of a transition cannot be influenced by another concurrent transition (we
formally introduce confusion in Section 5.2). This is of great practical rele-
vance because standard BPMN models correspond to confusion-free Petri nets
(unless advanced constructs like cancellation are used). Any sound BPMN
model using exclusive and parallel gateways corresponds to a confusion-free
Petri net. If the BPMN model is block structured, also inclusive gateways can
be used [31, 32].

Hence, any run of a confusion-free Petri net allows for easy
computation of its probability. A run also defines a po trace.
The run in Figure 4 corresponds to po trace ({reg, et, ct, dec, pay},
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reg τ
et

ct
dec pay

Fig. 4: A run with probability 0.3 × 0.3 = 0.09 corresponding to
the po trace ({reg, et, ct, dec, pay}, {reg≺ et, reg≺ ct, reg≺ dec, reg≺ pay,
et≺ dec, et≺ pay, ct≺ dec, ct≺ pay, dec≺ pay}, ID).

p0
a

1
p1

p2

b

2 p3

c

2
p4

d

3 p5

Fig. 5: An LSPN with confusion (adapted from [33, Figure 4]). The numbers
on the transitions denote their weight.

{reg≺ et, reg≺ ct, reg≺ dec, reg≺ pay, et≺ dec, et≺ pay, ct≺ dec,
ct≺ pay, dec≺ pay}, ID). This po trace is obtained by only considering the
non-silent transitions while retaining the paths formed by the removed places
and silent transitions. This section shows in detail how runs and po traces
can be extracted from LSPNs, thus leading to the definition of a stochastic
po language.

5.1 Brute Force
A brute-force way to extract a stochastic po language from an LSPN is to
exhaustively (1) construct (total ordered) runs and get their probabilities; (2)
transform the runs into po traces using that if two transitions do not compete
for a token in a marking, they are concurrent; (3, optional) merge po traces
with the same structure, and take the sum of their probabilities. Note that
after just executing the first two steps there may be many po traces that
have the same structure (Definition 14). These can be considered separately
or aggregated into one po trace.

To illustrate this we use the more compact Petri net shown in Figure 5. The
LSPN in Figure 5 has three totally ordered runs 〈a, b, c〉, 〈a, c, b〉 and 〈a, b, d〉,
with probabilities 1/1 ∗ 2/2 + 2 ∗ 2/2 + 3 = 0.2; 1/1 ∗ 2/2 + 2 ∗ 2/2 = 0.5 and 1/1 ∗
2/2 + 2 ∗ 3/2 + 3 = 0.3 respectively. transforming these runs runs into po traces
yields ({a, b, c}, {a≺ b, a≺ c}, ID) and ({a, b, d}, {a≺ b, b≺ d, a≺ d}, ID), with
probabilities 0.7 and 0.3, respectively.

If the model has loops, runs cannot be constructed exhaustively, and trun-
cation must be applied. EMSC can be computed using just steps (1) and
(2) (Definition 9). However, this may output a factorial number of runs. The
optional step (3) addresses this by summing up the probabilities.
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5.2 Probabilities of Runs
Consider the LSPN in Figure 5. This net supports the po trace ρ =
({a, b, c}, {a≺ b, a≺ c}, ID), which describes the traces 〈a, b, c〉 and 〈a, c, b〉.
Even though b and c do not share an input place, they are not indepen-
dent: if b fires first, then transition d becomes enabled and competes with
c for the token in p2. To compute the probability of ρ, we need to know
the likelihood of all enabled transitions. If c fires first (with probability
w(b)/w(b) + w(c) = 0.5, then there are no further choices, while if b fires first (with
probability w(c)/w(b) + w(c)), then c competes with d and has a probability of
w(c)/w(c) + w(d) = 0.4 to fire. Hence, po trace ρ = ({a, b, c}, {a≺ b, a≺ c}, ID)
has probability 0.5×1+0.5×0.4 = 0.7. If the weight of b, which is not involved
in any choice, is changed to 3, then ρ has probability 0.4×1+0.6×0.4 = 0.64.
Hence, changing the weight of a transition not involved in any choice changes
the likelihood of a run which is undesirable in most situations. If the weights
of transitions not involved in any choice matter, we need to consider all the
runs to compute the probability of ρ.

In the BPMN model in Figure 1 and the Petri net in Figure 3, the weights
of transitions not involved in any choice are irrelevant and cannot change the
probability of the corresponding po trace. This is what we would like to have
and this is a reasonable assumption.

Hence, we would like to exclude situations in which the execution of an
event can be influenced by the occurrence of another concurrent (and hence
independent) event. This phenomenon is called confusion [33]. We consider
Petri nets to be confusion free when transitions that share an input place either
cannot be both enabled or have the same set of input places. This excludes
the LSPN in Figure 5. Other authors (e.g., [33]) use more liberal notions of
confusion. Since we focus on sound and safe Petri nets, we can use this simpler
notion.

Definition 10 (Confusion Free). The labelled Petri net PN =
(P, T, F,Σ, λ,M0) is confusion free if for any two transitions t1, t2 ∈ T with
•t1 ∩ •t2 6= ∅ and •t1 6= •t2 there does not exist a reachable marking enabling
both.

It is trivial to show that free choice nets are confusion free. However, also
safe and sound Petri nets with long term dependencies are confusion free,
but not free-choice. Hence, the class of confusion free extends the class of
free-choice nets significantly (see Figure 6). All sound BPMN models using
exclusive and parallel gateways and all block structured BPMN models using
any type of gateway correspond to confusion-free Petri nets. Only advanced
BPMN constructs like cancellation may require a larger class of Petri nets
[31, 32].

Causal nets and the corresponding notion of a run are often used to reason
about the true concurrency semantics of Petri nets [34, 35].
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(a) Confusion-free not-free-choice Petri net.
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(b) Run 1.
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(c) Run 2.

Fig. 6: A confusion-free sound Petri net and its two runs.

Definition 11 (Causal net). The labelled Petri net CN = (P, T, F,Σ, λ,M0)
is a causal net if for each place p ∈ P : |•p| ≤ 1 and |p•| ≤ 1, the transitive
closure of F is irreflexive (i.e., defines a po on P ∪ T ), for each place p ∈ P :
M0(p) = 1 if •p = ∅ and M0(p) = 0 if •p 6= ∅.

Definition 12 (Run). A run r = (CN,α, β) of a labelled Petri net PN =
(P, T, F,Σ, λ,M0) is composed of a causal net CN = (P ′, T ′, F ′,Σ, λ′,M ′

0) and
two mappings α : P ′ → P and β : T ′ → T such that

• for each t′ ∈ T ′: the mapping α induces a bijection from ◦t′ to •β(t′) and
a bijection from t′◦ to β(t′)

•,1
• [α(p′) | p′ ∈M ′

0] = M0, and
• for each t′ ∈ T ′: λ′(t′) = λ(β(t′)).

Run r is complete if MF = [α(p′) | p′ ∈ P ′ ∧ p′◦ = ∅] is a dead marking of
PN . crs(PN) is the set of all complete runs of PN .

Figure 4 shows a complete run of the Petri net in Figure 3. Figure 6(b)
and (c) shows the two complete runs of the Petri net in Figure 6(a).

Definition 13 (Linearisations of a Run). Let r = (CN,α, β) be a run
with CN = (P, T, F,Σ, λ,M0). 〈t1, t2, . . . , tn〉 is a linearisation of r if
{t1, t2, . . . , tn} = T and for any 1 ≤ i < j ≤ n: (tj , ti) 6∈ F ∗. lin(r) is the set
of all linearisations of run r.

〈reg, τ, et, ct, dec, pay〉 and 〈reg, τ, ct, et, dec, pay〉 are the two linearisations
of the complete run in Figure 4. The two runs in Figure 6 have only one
linearisation each.

Definition 14 (Equivalent Runs). Two runs r1 = ((P 1, T 1, F 1,Σ1, λ1,M1
0 ),

α1, β1) and r2 = ((P 2, T 2, F 2,Σ2, λ2,M2
0 ), α

2, β2) of an LSPN PN =
(P, T, F,Σ, λ,M0, w) are equivalent (notation r1 ∼= r2) if there is a bijection
α : P 1 → P 2 and a bijection β : T 1 → T 2 such that F 2 = {(α(p), β(t)) | (p, t) ∈

1To avoid confused readers we use ◦ rather than • for causal nets.
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F 1∩(P 1×T 1)}∪{(β(t), α(p)) | (t, p) ∈ F 1∩(T 1×P 1)}, M2
0 = [α(p) | p ∈M1

0 ],
and for any t ∈ T 1: λ1(t) = λ2(β(t)).

In our example, the runs in figures Figure 6(b) and (c) are not equivalent.
Transition and place names in a run are arbitrary identifiers. Therefore,

we need to consider equivalence classes of runs, because there are infinitely
many runs representing the same behaviour.

Definition 15 (All Complete Unique Runs). Let PN = (P, T, F,Σ, λ,M0, w)
be an LSPN. urs(PN) is a maximal subset of unique complete runs of PN ,
i.e., urs(PN) ⊆ crs(PN), for any r1, r2 ∈ urs(PN): r1 ∼= r2 implies r1 = r2,
and for all r1 ∈ crs(PN) there exists a r2 ∈ urs(PN) such that r1 ∼= r2.

In our example, the runs in Figure 6(b) and (c) together form the set of
complete unique runs of the Petri net in Figure 6(a).

If the Petri net is safe, then for each complete firing sequence σ ∈ c̃fs(PN),
there is precisely one complete run r ∈ urs(PN) such that σ ∈ lin(r). This
does not need to be the case when the net is not safe (because different tokens
produced for the same place can be identified). For each complete run r ∈
urs(PN) there is at least one complete firing sequence σ ∈ c̃fs(PN) such that
σ ∈ lin(r).

Lemma 1. Let PN = (P, T, F,Σ, λ,M0, w) be a sound and safe LSPN with
c̃fs(PN) as the set of all complete firing sequences and urs(PN) as the set of
unique complete runs. Then:

• c̃fs(PN) =
⋃

r∈urs(PN) lin(r)

• for all r1, r2 ∈ urs(PN): lin(r1) ∩ lin(r2) 6= ∅ implies r1 = r2.

Proof The first part follows directly from the definitions. The second part follows
from the requirement that the Petri net is safe. Hence, a firing sequence can be
transformed into a unique run (modulo renaming of places and transitions). �

Hence, runs partition the set of all complete firing sequences. Moreover, a
run defines a partial order that is obtained by removing all places and silent
activities.

Definition 16 (Run Defines Partial Order). A run r = (CN,α, β) with CN =
(P, T, F,Σ, λ,M0) defines a po trace pot(r) = (E,≺, l) with E = {t ∈ T |
λ(t) 6= τ}, ≺ = {(t1, t2) ∈ E × E | (t1, t2) ∈ F+}, and l(t) = λ(t) for t ∈ E.

Let r1 and r2 be the two runs of Figure 6: pot(r1) = ({a, c, d},
{a≺ c, a≺ d, c≺ d}, l1) and pot(r2) = ({b, c, e}, {b≺ c, b≺ e, c≺ e}, l2) with l1
and l2 the identity functions.
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Definition 17 (Probability of a Run). A complete run r =
((P ′, T ′, F ′,Σ, λ′,M ′

0), α, β) of a confusion-free, sound and safe LSPN PN =
(P, T, F,Σ, λ,M0, w) has probability

PN(r) =
∏
t′∈T ′

w(β(t′))∑
t∈T |•t=•β(t′) w(t)

If r is the run shown in Figure 4, then PN(r) = 0.3 × 0.3 = 0.09. Let r1
and r2 be the two runs Figure 6 and w(a) and w(b) the weights of transitions a
and b. PN(r1) =

w(a)
w(a)+w(b) and PN(r2) =

w(b)
w(a)+w(b) . As can be seen only the

weights of transitions involved in choices matter. Hence, one does not need to
sum the likelihoods of all interleavings. The following two lemmata show that
Definition 17 indeed captures the correct probabilities.

Lemma 2. Let r = ((P ′, T ′, F ′,Σ, λ′,M ′
0), α, β) be a complete run of a

confusion-free, sound and safe LSPN PN = (P, T, F,Σ, λ,M0, w). Then
PN(r) =

∑
σ∈lin(r) PN(σ).

Proof Because the net is safe each firing sequence belongs to precisely one run.
Moreover, since the net is confusion free, the likelihood of transitions involved in a
choice is fixed and does not depend on the interleaving. �

Lemma 3. Let PN = (P, T, F,Σ, λ,M0, w) be a confusion-free, sound and
safe LSPN. Then

∑
r∈urs(PN) PN(r) =

∑
σ∈c̃fs(PN) PN(σ) = 1.

Proof Follows directly from Lemma 2 and soundness. �

Earlier computed likelihoods of the two runs in Figure 6 indeed sum up
to 1. Figure 4 is just one of infinitely many runs. However, the also for the
Petri net in Figure 3 the probabilities of all runs add up to 1. Each run defines
a po trace. There could be two runs leading to the same po trace from a
behavioural point of view (e.g., due to silent and duplicate activities). These
can be clubbed together or not. However, the probabilities of the corresponding
po traces always add up to 1.

5.2.1 Algorithm
A sketch algorithm, shown in Algorithm 1, recurses on a marking of the
model M , a po prefix run ρ and a probability x. The recursion begins for an
LSPN (P, T, F,Σ, λ,M0, w) by calling W((P, T, F,w),M0, 〈〉, 1). In each recur-
sive step, the algorithm takes all maximal groups of independent and enabled
transitions (line 6), and for each such group (i) fires all transitions (line 7),
(ii) computes a new probability using Definition 17 (line 8) and (iii) adds the
transitions to the prefix concurrently (line 9, which assumes the net is safe).
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Algorithm 1 Confusion-free, sound and safe LSPN→ stochastic run language
(sketch)

1: function W((P, T, F,w), marking M , prefix ρ, probability x)
2: T ′ ← transitions enabled in M
3: if T ′ = ∅ then
4: add ρ to the language with probability x
5: else
6: for all A ⊆ T ′ such that ∀t,t′∈A

•t∩•t′ = ∅ and ¬∃A⊂T ′′∀t,t′∈T ′′•t∩
•t′ = ∅ do

7: M ′ ←M \ ∪t∈A
•t ]t∈A t•

8: x′ ← x
∏

t∈A
w(t)∑

t′∈T ′|•t=•t′ w(t′)

9: ρ′ = (E ∪ {e′},≺∪{(e, e′) | e ∈ E ∧ e• ∩ •e′ 6= ∅}, l[e′ → t′])
10: W((P, T, F,w), M ′, ρ′, x′) . recurse
11: end for
12: end if
13: end function

As soon as the recursion hits a marking in which no transitions are enabled,
the prefix is added to the language.

We guarantee that the q most likely runs are included, as well as a random
sample of r of the remaining runs, thus the implemented algorithm does not
use recursion, but traverses the state space using a priority queue of triples
(M,ρ, x) ordered by x, until q runs have been found. Second, the queue is used
as a frontier to generate r random traces without replacement. Notice that
in such a truncated stochastic language, the probabilities might not sum to 1,
which we will exploit in Section 6 to establish bounds for the actual value of
emsc. The implementation terminates when the model is sound.

6 Bounds for EMSC
The true value for emsc is not always easy to obtain, as two sources of error
may apply in practical cases: (1) infinite stochastic languages (languages, for
instance, derived from models with loops) are truncated (see Section 5), thus
not all behaviour can be considered in the computation; and (2) stochastic
po languages might have uncertain semantics, thus the actual order might be
unknown.

In this section, first we formally characterise these error sources, second
we introduce bounds to the true value of emsc, after which we introduce an
optimisation for certain-semantics po languages.

There are in total 8 variants of the bounds for EMSC, each applying to a
combination of the certain vs. the uncertain semantics and full vs. truncated
languages. We give two variants; other variants are similar.
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6.1 Versions of Stochastic Languages
Intuitively, we consider the setting that an unknown trace has traversed a
process, but due to e.g. logging imprecision, the order of some events of this
trace was lost and only a po trace with the uncertain semantics was recorded.
We refer to the po trace as an uncertain version of the unknown trace, and
we first establish and formalise this relation for stochastic languages:

Definition 18 (Uncertain Version of a Language). Let L be a stochastic
language, and let L′ be a stochastic po language with the uncertain semantics.
Then, L′ is an uncertain version of L if and only if there is a function f : L̃↔
L̃′ such that

∑
f(σ)=ρ L(σ) =

∑
σ∈L̃ L(σ) =

∑
ρ∈L̃′ L′(ρ) and ∀f(σ)=ρσ ∈

L(ρ) ∧ L(σ) ≤ L′(ρ).

Furthermore, in the computations of emsc we use truncated languages, for
which we establish a truncated version of a stochastic language:

Definition 19 (Truncated Version of a Language). Let L be a stochastic
language, and let L′ be a truncated stochastic language. Then, L′ is a truncated
version of L if and only if ∀ρ∈L̃′L(ρ) = L′(ρ).

We refer to the probability mass that was removed from the truncated
version of a language as L′(⊥) = 1−

∑
ρ∈L̃′ L′(ρ); similar for stochastic process

models.
Where an uncertain version is typically used for a log, that is, logging

introduced the uncertainty from reality, a truncated version is typically used
for a process model, as a process model with loops cannot be handled by cur-
rent emsc computations without truncation – though in some cases algebraic
solutions may be possible [6]. Using an uncertain and/or truncated version
of a stochastic language introduces errors in the emsc computations. In the
remainder of this section, we show that they nevertheless can be leveraged
towards bounds on the true emsc value of the stochastic language.

6.2 Uncertain-Certain
Intuitively, a lower bound for emsc-uc is an upper bound to the cost by (1)
using the ∆uc-worst

δ distance measure, and (2) assuming that all truncated po
traces of M have a distance of 1 to all po traces of L.

Definition 20 (emsc-uc lower bound). Let L be a stochastic po language with
the uncertain semantics, let M be a truncated stochastic po language with the
certain semantics. Take

cost(R,L,M) = M(⊥) +
∑

ρ∈L̃,ρ′∈M̃

R(ρ, ρ′)∆uc-best
δ (ρ, ρ′)
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with R : L̃× M̃ ∪ {⊥} → [0, 1] such that ∀ρ∈L̃L(ρ) =
∑

ρ′∈L̃′∪{⊥} R(ρ, ρ′) and
∀ρ′∈M̃M(ρ′) =

∑
ρ∈L̃ R(ρ, ρ′) and cost(R,L,M) is minimal. Then the lower

bound emsc-uc↑(L,M) is 1− cost(R,L,M).

Second, an upper bound for emsc-uc is a lower bound to the cost by (1)
using the ∆uc-best

δ distance measure, and (2) assuming a distance of 0 for the
truncated traces of M :

Definition 21 (emsc-uc upper bound). Let L be a stochastic po language
with the uncertain semantics, let M be a truncated stochastic po language with
the certain semantics. Take

cost′(R′, L,M) =
∑

ρ∈L̃,ρ′∈M̃

R(ρ, ρ′)∆uc-worst
δ (ρ, ρ′)

with R′ : L̃ × M̃ ∪ {⊥} → [0, 1] such that ∀ρ∈L̃L(ρ) =
∑

ρ′∈L̃′∪{⊥} R
′(ρ, ρ′)

and ∀ρ′∈M̃M(ρ′) =
∑

ρ∈L̃ R′(ρ, ρ′) and cost′(R′, L,M) is minimal. Then, the
upper bound emsc-uc↓(L,M) is 1− cost′(R′, L,M).

Let L be a stochastic language and M be a stochastic po language with
the certain semantics. In our context, intuitively, we do not have L and M but
an uncertain version of L (L′) and a truncated version of M (M ′). Then, the
correctness of these bounds follows from that these bounds consider all possible
languages of which L′ is an uncertain version, and all possible languages of
which M ′ is a truncated version:

Lemma 4 (Uncertain-certain bounds). Let L be a stochastic language and
let L′ be an uncertain version of L. Let M be a stochastic po language
with the certain semantics, and let M ′ be a truncated version of M . Then,
emsc-uc↑(L

′,M ′) ≤ emsc(L,M) ≤ emsc-uc↓(L
′,M ′).

6.3 Certain-Certain
In case both the log L and the model M are to be interpreted using the
certain semantics, the distance measure ∆ is the same for the upper and lower
bound: ∆cc

δ . Then, we can change the computation to a single optimisation
problem, by having ⊥ represent the truncated behaviour of M . As ⊥ is not
present in the objective function cost, any probability mass of the log mapped
to it in R has a distance of zero. This yields a lower bound to emsc-cc, as all
truncated behaviour is not penalised. Similarly, if we add the probability of ⊥
to emsc-cc, then all truncated behaviour is fully penalised, thus this yields an
upper bound to the cost and a lower bound to emsc.

Definition 22 (emsc-cc bounds). Let L be a stochastic po language with the
certain semantics, let M be a truncated stochastic po language with the certain
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semantics, and let M(⊥) denote the truncated probability mass from M . Take

cost(R,L,M) =
∑

ρ∈L̃,ρ′∈M̃

R(ρ, ρ′)∆cc
δ (ρ, ρ′)

with R : L̃× M̃ ∪ {⊥} → [0, 1] such that ∀ρ∈L̃L(ρ) =
∑

ρ′∈L̃′∪{⊥} R(ρ, ρ′) and
∀ρ′∈M̃M(ρ′) =

∑
ρ∈L̃ R(ρ, ρ′) and cost(R,L,M) is minimal.

Then the lower bound emsc-uc↑(L,M) is 1 − (⊥(M) + cost(R,L,M) and
the upper bound emsc-uc↓(L,M) is 1− cost(R,L,M).

By reasoning similar to Lemma 4:

Lemma 5 (Certain-certain bounds). Let L be a stochastic language and let L′

be an uncertain version of L. Let M be a stochastic po language with the certain
semantics, and let M ′ be a truncated version of M . Then, emsc-cc↑(L

′,M ′) ≤
emsc(L,M) ≤ emsc-cc↓(L

′,M ′).

7 Discussion & Evaluation
The techniques presented in this paper are discussed and evaluated fourfold: we
first describe their implementation. Second, we provide an example that illus-
trates the differences between different types of conformance checking. Third,
we investigate the convergence of the new techniques. Finally, we evaluate
their practical applicability.

7.1 Implementation & Optimisations
The techniques described in this paper have been implemented as the open
source plug-in “Compute Earth-movers’ stochastic conformance on partial
orders” of the ProM framework [36]. Figure 7 shows a screenshot of the log-
model variant. In this plug-in, users can select whether consecutive events in
the log with equal timestamps should be considered as concurrent, thereby
selecting emsc-cc or emsc-uc. By default, the play-out (Algorithm 1) includes
the 1 000 most-likely runs (q) and additionally 1 000 random runs (r).

To compute all sub-sets of transitions A in Algorithm 1 that form a clique,
the implementation uses the Bron-Kerbosch algorithm [37]. Furthermore, the
following approximations and optimisations have been implemented for the
distance computations (see Section 4.1):
• Computations on total orders are easier than on pos: comparing two po

traces is more expensive than comparing a trace and a po trace (for which
we introduced an A∗ variant). Furthermore, comparing a trace and a po
trace is more expensive than comparing two traces (for which we have
the standard Levenshtein computation). Therefore, the implementation
uses a cheap check whether a po trace expresses a total order and if so
extracts this total order and applies a corresponding cheaper distance
computation.
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Fig. 7: Plug-in of the ProM framework [36].

• To quickly count the number of traces σ of a po trace ρ, we exploit certain
structures in the po traces using ideas from the Inductive Miner [4].
While experimenting, we noticed that exhaustive computations might

be faster than applying A∗ for smaller po traces, thus in certain cases
the implementation opts for exhaustive computations.

• As the number of traces in a po trace ρmight be factorial, we approximate
these computations as follows by returning a baseline 0 if |L(ρ)| > 105.
This optimisation loosens the bound on emsc-uc, but makes computations
more likely to be feasible.

The implementation assumes that LSPNs are safe, sound and confusion-
free, but as (efficient) verification procedures for these properties are not yet
available, the implementation does not verify these properties. We recommend
the development of such procedures for future work.

7.2 Illustration: Concepts in Conformance Checking
In this section, we illustrate the conceptual differences between several con-
formance checking techniques, using the example LSPN and log shown in
Figure 8.

Standard conformance checking techniques would not consider the prob-
abilities of this model; fitness considers the frequencies of traces in the log
(Figure 9a), while precision considers stochastic information in neither log nor
model (Figure 9b). As each trace of the log in this view fits the model and
each trace of the model is present in the log, fitness is 1 and precision is 1.
That is, for standard conformance checking techniques, there are no differences
between this log and model.



22 Partially Ordered Stochastic Conformance Checking

Stochastic conformance checking considers the relative frequency of the
traces as shown in Figure 9c. The log and model differ considerably in their
consideration of e: where the model give e a high weight, and thus indicates
that e must be executed early in the process, the log has few traces with an
early e. Consequently, the EMSC [6] value of this log and model is a rather
low: 0.689.

The techniques presented in this paper take this out of the equation: e is a
mandatory part of every trace of the model, thus its precise location is not con-
sidered; only choices are considered. The po stochastic conformance checking
techniques presented in this paper do not consider the order in concurrency
and thus implicitly consider the log as in Figure 9d, where the position of e
does not matter. Thus, were the log describes a probability distribution of 131

141
vs. 11

141 , the model sets this at 5
6 vs. 1

6 , which yields an emsc-cc of 0.955.
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Fig. 8: Example of a GSPN and a log.

a

b

e

d

c [〈a, b, c, e〉90,
〈a, b, e, c〉40,
〈a, e, b, c〉1,
〈a, d, e〉10,
〈a, e, d〉1]

(a) Conformance checking - fitness.

a

b

e

d

c [〈a, b, c, e〉,
〈a, b, e, c〉,
〈a, e, b, c〉,
〈a, d, e〉,
〈a, e, d〉]

(b) Conformance checking - precision.
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(c) Stochastic conformance checking.
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(d) po stochastic conformance checking.

Fig. 9: Our example log and model as seen by different types of conformance
checking. po conformance checking considers only the weights relevant for
choices, not for concurrency.
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Fig. 10: Influence of unfolding for Sepsis.

7.3 Bounds
Secondly, we investigate the convergence of the new techniques. We selected
the Sepsis log and the model discovered by IMfAE [38], as this model has com-
plex nested loops and concurrency. We apply our techniques with increasing
parameters r and q; the results are shown in Figure 10. As the unfolding step
is randomises r traces, the results in this direction are indicitative only. With
increasing q and r, emsc-cc converges, leaving a gap of 0.06. As Sepsis con-
tains 30% consecutive events with equivalent timestamps, emsc-uc converges
slower, leaving a gap of 0.049 (P3).

By construction, the gap between the lower and upper bound for emsc-cc
is equal to one minus the covered probability mass. At q = 1000 and r = 1000
(2000 po traces), 0.94 of the model was covered. In comparison: these 2 000
po traces represent 209 507 004 436 080 different traces, which any po-unaware
technique would need to consider in isolation.

7.4 Applicability
Thirdly, we evaluate the practical applicability of the new techniques, by
combining 9 real-life logs with 4 stochastic process discovery techniques. We
report run time (23-core X5115 CPU, 2.4GHz, 100GB RAM) and how many
traces were represented by the truncated stochastic po language. The logs
are publicly available2 and were chosen arbitrarily (Table 1). The stochas-
tic discovery techniques we used are the stochastic miner by Rogge-Solti et
al.(ARS) [29] and an alignment-based estimator technique [38] applied to mod-
els of Inductive Miner - infrequent [39] (IMfAE). As baselines we included
a model expressing only the most-occurring trace of the log (MOT), and a
naive flower model, which describes a loop of a choice between all activities,
with the transitions and termination having equal probabilities (FMN). As our
techniques use different semantics, no other conformance checking techniques
could be included.

2See https://data.4tu.nl/repository/collection:event_logs_real.

https://data.4tu.nl/repository/collection:event_logs_real
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Table 1: Log complexity.

Log traces events activities consecutive events with the same timestamp

BPIC13-op 819 2 351 3 0
BPIC17-o 42 995 193 849 8 0
BPIC18-4 29 059 569 209 16 1 117
BPIC11 1 143 150 291 624 130 400
BPIC13-cp 1 487 6 660 4 0
Sepsis 1 050 15 214 16 4 447
Roadfines 150 370 561 470 11 12 018
BPIC13-i 7 554 65 533 4 0
BPIC12 13 087 262 200 23 13 995

Table 2: Results of applicability; time in ms.

L
og al
g.

model size emsc-cc emsc-uc # traces

nodes edges ↑ ↓ time ↑ ↓ time considered

B
P

IC
13

-o
p ARS 31 38 .432 .432 5 567 .432 .432 9 954 1010

IMfAE 15 18 .718 .718 14 .718 .718 44 11
MOT 5 4 .547 .547 9 .547 .547 21 1
FMN 8 10 .415 .547 494 .415 .547 3 917 2 000

B
P

IC
17

-o ARS 29 34 .915 .915 417 .915 .915 339 20
IMfAE 15 18 .910 .910 209 .910 .910 219 12
MOT 9 8 .770 .770 106 .770 .770 201 1
FMN 13 20 .083 .698 1 483 .083 .698 2 582 2 000

B
P

IC
18

-4 ARS error in discovery
IMfAE 41 52 .430 .825 107 .430 .825 107 1019

MOT 9 8 .359 .359 1 252 .358 .359 2 294 1
FMN 21 36 .017 .841 33 467 .017 .841 106 2 000

B
P

IC
11 ARS error in discovery

IMfAE error in discovery
MOT 5 4 .149 .149 324 .735 .147 106 1
FMN 629 1 252 - - - - - - -

B
P

IC
13

-c
p ARS 31 38 .513 .513 19 164 .513 .513 37 161 1019

IMfAE 13 14 .761 .761 106 .761 .761 106 1 380
MOT 5 4 .619 .619 9 .619 .619 17 1
FMN 9 12 .214 .491 633 .214 .491 6 737 2 000

Se
ps

is

ARS 100 126 .344 .963 43 640 .350 .963 108 1018

IMfAE 57 72 .747 .807 33 754 .760 .809 108 1014

MOT 7 6 .284 .284 24 .308 .284 665 1
FMN 21 36 .024 .849 5 123 .049 .849 106 2 000

R
oa

dfi
ne

s ARS 75 92 .767 .767 32 653 .763 .767 105 1015

IMfAE 42 52 .796 .796 1 137 .790 .796 2 797 2 060
MOT 11 10 .614 .614 1 399 .599 .614 1 520 1
FMN 16 26 .050 .776 4 509 .050 .782 20 390 2 000

B
P

IC
13

-i ARS 37 46 .307 .307 105 .307 .307 105 1010

IMfAE 22 24 .791 .791 106 .791 .791 106 1020

MOT 7 6 .530 .530 100 .530 .530 187 1
FMN 9 12 .184 .461 9 401 .184 .461 60 610 2 000

B
P

IC
12 ARS error in discovery

IMfAE 80 102 .139 .898 106 .139 .898 107 107

MOT 7 6 .405 .405 309 .405 .405 2 005 1
FMN 29 52 .010 .893 63 043 .010 .893 106 2 000
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Table 2 shows the results. Some models could not be obtained (indicated
with “error in discovery”) due alignments running out of memory; we could
not generate a language for BPIC11-FMN, as generating the q = 1000 most
frequent traces was infeasible. As such, our technique was the limiting factor
in only 1 of the 32 cases. Nevertheless, the computations could take up to the
order of 30 hours, though for most log-model combinations much less, which
shows the feasibility of our approach.

For q, r = 1000, emsc-cc yielded a 3-decimal precise value for emsc-cc in
19/32 cases. These bounds notify users that precision has not been reached.
Users can increase q and r to narrow the outcome. For instance, if two models
are compared to establish which one is closest to a given log, one can increase
q and r until the bounds do not overlap, or until a suitable precision is reached
to conclude their indistinguishability.

Whereas normal EMSC techniques need to sample up to 1020 traces,
emsc-cc instead samples 2 000 po traces. Consequently, emsc-cc can consider
many more traces feasibly. This shifts the bottleneck of the computation from
the EMSC computation to the computation of the distances: the most time-
consuming step was the computation of the distances; computing the actual
EMSC value took a couple of miliseconds.

For the logs that do not have consecutive equivalent timestamps, emsc-cc
and emsc-uc resulted in the same values; emsc-uc in general was much slower,
as it performs many computations twice. For the logs that have such times-
tamps, emsc-uc yields wider bounds and cannot converge completely; the
effect was larger the more such timestamps were present in the log. This illus-
trates that uncertain order of execution appears in real-life logs, and assuming
that the recording of events in the log does not preserve order, conformance
checking techniques should take this into account.

7.5 Discussion
Threats to validity include the number of logs and algorithms considered,
which limit the generalisability of the results, but do not invalidate the
conclusion that emsc-cc and emsc-uc are applicable to real-life logs.

By construction, emsc-cc compares the traces of the log with po traces from
the model, thus this method is insensitive to different instantiations of the po:
it only considers traces of the model different if they resulted from different
choices in the model, rather than different orderings (P2). This implies that,
compared to standard EMSC, fewer traces need to be considered in the linear
optimisation step (e.g. 2 000 po traces rather than 209 507 004 436 080 traces
for the same probability mass). The most time-consuming step of emsc-cc is
the computation of distance measures, which using optimisations described in
Section 4 was feasible on the logs we tested. Nevertheless, these computations
are worst-case factorial in the length of the po traces, thus further research is
necessary to enable distance computations on longer po traces.

In case the ordering of events in an event log is unreliable and some times-
tamps of consecutive events are equivalent, the log is to be interpreted as po
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traces with the uncertain semantics. emsc-uc considers these semantics and
was shown to yield wider bounds as emsc-cc due to the uncertainty (P1).
This comes at the cost of traversing all traces of the uncertain po log traces
(∆uc-worst

δ Section 4), which required to widen the bounds in a handful of
cases in the experiments. We recommend further research on computing or
approximating ∆uc-worst

δ .
Confusion-freeness and stochastic soundness were verified manually, while

safeness was guaranteed by the discovery algorithms. In future work, auto-
mated checks for these properties need to be developed.

8 Conclusion
In this paper, we generalised our recently introduced stochastic conformance
checking technique [6] in three ways: (i) we focus the stochastic perspective
of models on choices rather than concurrency: the order in which concur-
rent activities are executed intuitively does not matter for the stochastic
perspective; (ii) we acknowledge that the precise order of behaviour may be
“uncertain” (e.g., consecutive events with the same timestamp); (iii) we pro-
vide bounds to deal with infinite behaviour in models. We introduced a range
of techniques to perform stochastic conformance checking on stochastic po lan-
guages. We introduced two optimised variants (emsc-cc, emsc-uc) that work on
confusion-free, sound and safe models; explored the influence of their parame-
ters; and showed that these techniques are, though factorial in the length of po
traces, applicable to real-life event logs. In recent literature, the process mining
community initiated a discussion on which intuitively desired properties con-
formance measures should satisfy [2, 40]. These properties can be rethought
in terms of their suitability for conformance checking under the po semantics.
Concurrency often emerges when multiple resources are working on several
business objects. Thus, it is interesting to extend our conformance measures
to object-centric process models and logs [41, 42]. Future work will also look
into various visualizations of po conformance information to explain it to the
users. Finally, it would be interesting to develop checks for confusion-freeness,
stochastic soundness, and safeness.

Acknowledgments. Sander Leemans was in part supported by QUT’s Cen-
tre for Data Science, Artem Polyvyanyy by the Australian Research Council
project DP180102839.

Appendix A po Traces
In our implementation, we represent a po trace ρ = (E,≺, l) by choosing a
total order for E: E is a list (rather than a set). When we construct our po
traces, we ensure that ≺ is monotonic, that is, for E = a1 . . . a|E|, it holds
that ∀ai≺ aji < j. This is easiliy done when constructing either po traces
from a log (where the appearance of the events in the trace provides this total
order) and po runs in a model (where the order of encountering transitions
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provides this total order). Intuitively, for each event we store its incoming ≺
edges, which are guaranteed to be “before” the current event. For performance
reasons, this edge list is not sorted.

Nota bene: this applies to po runs equivalently.

A.1 Is a po Trace a Trace?
A po trace represents a total order if ∀1≤i<|E|ai≺ ai+1. In our implementation,
this is a quadratic operation.

A.2 Extract a Trace from a po Trace
To obtain an arbitrary trace from a po trace ρ, denoted with ~ρ, the list E is
returned, which is a linear operation.

A.3 Number of Traces in a po Trace
The number of traces in a po trace can be counted by iterating over all such
traces. However, this is a worst-case factorial operation, and using certain
structures in po traces, we can define a recursive function using directly follows
graph cuts [4] and combinatorics3:

|L(ρ)| =



1 if |ρ| ≤ 1

1 if ρ total order
|L(ρ′)| ∗ |L(ρ′′)| if {ρ′, ρ′′} sequence cut of ≺∧

ρ = (E,≺, l) [4]
(|L(ρ′)|+|L(ρ′′)|)!
|L(ρ′)|!|L(ρ′′)|! if {ρ′, ρ′′} xor cut of ≺∧

ρ = (E,≺, l) [4]
count exhaustive if no cut ∧ |ρ| ≤ 5

fail otherwise

This function does not always succeed: it is used in heuristics where a
quick failure is preferable over a lengthy computation. In our experiments, no
failures occurred.

A.4 Factorials
While counting the number of traces for a given po trace ρ, a division of
factorials might remain: (a+b)!

a!b! . Current libraries for Java (e.g. BigIntegerMath
of Guava4) can quickly compute factorials up to 50 000, which the sum of a and
b might easily exceed. Therefore, we store the computation (a+b)!

a!b! symbolically
and compute the factorial division using expansion. In our experiments, this
brought down computation time of these factorials to negligible durations.

3https://math.stackexchange.com/questions/987514/counting-permutations-that-respect-a-partial-order
4https://guava.dev

https://math.stackexchange.com/questions/987514/counting-permutations-that-respect-a-partial-order
https://guava.dev
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Appendix B Distance Computations
Optimisations

In order to make the computations of the distance functions (Section 4.1)
more feasible, several optimisations have been implemented. In this section,
we provide their formal definitions. Let δ be the trace-trace distance measure,
let σ be a trace and let ρ, ρ′ be po traces.

B.1 ∆cc
δ (ρ, ρ′)

During the computations for the evaluations of this paper, we noticed that the
A∗ algorithms were sometimes slower than exhaustive computations, especially
for small po traces. We conjecture that this is due to theseA∗ algorithm using a
priority queue and therefore explicitly representing a sizeable part of the search
space explicitly in memory, while the exhaustive techniques walk through all
options rather efficiently. Therefore, we included a few optimisations, which
aim to avoid the A∗ algorithm if an exhaustive search would also be feasible;
the corresponding thresholds (1 000 and 20) were derived during the evaluation
computations and are indicative only: a detailed study of the influence of these
thresholds is beyond the scope of this paper.

∆′cc
δ (ρ, ρ′) =


δ(~ρ, ~ρ′) if ρ, ρ′ total orders
∆δ(~ρ, ρ

′) if only ρ total order
∆δ(~ρ′, ρ) if only ρ′ total order
∆′′cc

δ (ρ, ρ′) otherwise

∆′′cc
δ (ρ, ρ′) =



minσ∈L(ρ) A
∗(σ, ρ′) if |L(ρ)| ≤ |L(ρ′)| ∧

|L(ρ)| ≤ 1 000

minσ′∈L′(ρ) A
∗(σ′, ρ) if |L(ρ)| > |L(ρ′)| ∧

|L(ρ)| ≤ 1 000

A∗(ρ, ρ′) otherwise

∆δ(σ, ρ
′) =


δ(σ, ~ρ′) if ρ′ total order
minσ′∈L(ρ′) δ(σ, σ

′) if |L(ρ′)| ≤ 1 000 ∧
|σ| ≤ 20

A∗(σ, ρ′) otherwise

B.2 ∆uc-worst
δ (ρ, ρ′)

∆′uc-worst
δ (ρ, ρ′) =

{
0 if |L(ρ)| ≥ 100 000

maxσ∈L(ρ) ∆δ(σ, ρ
′) otherwise
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B.3 A∗ for (po) Trace, po Trace
If an exhaustive search is unfeasible to compute the edit distance between
a (po) trace ρ = (E,≺, l) and a po trace ρ′ = (E′,≺′, l′), we compute the
distance using a guided A∗ search. Each state in the hash-backed priority
queue maintained by A∗ thereby comprises the sets of already aligned events
for ρ and ρ′ as well as the current alignment costs of the former. Based on this
state representation, we obtain an admissible and consistent remaining costs
heuristic by counting the number of unaligned events that, irrespective of the
event order, cannot be matched to another equally-labeled event. To this end,
we fix a search state and let Eα ⊆ E,E′

α ⊆ E′ denote the sets of already
aligned events. We then lower bound the remaining alignment costs between
the unaligned events Eφ = E \ Eα, E′

φ = E′ \ E′
α by

h(Eφ, E
′
φ) = max

(
|[l(e) | e ∈ Eφ] \ [l(e′) | e′ ∈ E′

φ]|,
|[l(e′) | e′ ∈ E′

φ] \ [l(e) | e ∈ Eφ]|
)
.

Intuitively, this corresponds to the least-cost edit distance after relaxing all
ordering constraints (i.e., the remaining events may occur in any order). In
the relaxed problem, we can obtain an optimal edit sequence by first matching
pairs of equally-labeled events. Then, in a second pass, we align the remaining
events using renaming operations as long as there are events left in ρ and ρ′.
Eventually, the then remaining events have to be deleted or inserted depend-
ing on whether there are events left for ρ or ρ′. Notice that each event that
cannot be matched in the first pass eventually contributes to a unit cost oper-
ation. Thus, the total costs are equal to the maximum number of the initially
unmatched events in ρ and ρ′, respectively.
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