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Recap: Six types of process mining
In this lecture, we focus on process discovery
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systems
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6: Action-Oriented 
Process Mining

5: Predictive Process 
Mining

3: Performance 
Analysis

2: Conformance 
Checking

1: Process
Discovery

4: Comparative 
Process Mining
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Outline: Foundations of Process Discovery

Baseline: Discovering DFG + filtering

Bottom-up
discovery

Top-down
discovery

Alpha  
algorithm

Inductive 
mining

At times, I refer to the 
formal definitions in the 
Chapter 2 to show that 
with the right tools one can 
be precise and compact.
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Main idea of 
process discovery
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The main idea (informal)
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(a) Event log L1 

(c) Accepting Petri Net (APN):  M2 

(b) Directly-Follows Graph (DFG): M1 

(d) Process Tree (PT): M3 
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The main idea (formal)
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Example

a

d

e

cb

Event log L1 

 Process Tree (PT): M3 
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Coincidence, model may 
allow for more or less than 
observed in the event log.
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How discover a process model?

• Base-line approach using Directly Follows Graphs (DFGs)
• Bottom-up discovery

− Alpha algorithm
• Top-down discovery

− Inductive Mining (IM) algorithm
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Baseline approach 
using DFGs
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Baseline approach: DFGs

• Graph with nodes representing activities and start ► and end ■.
• Behavior starts with dummy activity ►and ends with dummy 

activity ■. Node ► is a source node and ■ is a sink node. 
• Arcs represent the directly-follows relation.
• Multisets to represent frequencies.
• Can be viewed as summary of the data!
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Language of a DFG

• Possible traces: All paths possible according to the graph 
starting in node ►and ending in node ■. 

• Recall: ► is a source node and ■ is a sink node.
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Baseline discovery
Your first discovery algorithm in just two lines of mathematics
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DFG discovery in ProM
One of the views of the 
Data-aware heuristic miner 
plug-in (Felix Mannhardt) 
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DFG discovery in ProM
Directly-follows visual 
miner (Sander Leemans) 
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DFG discovery in ProM
Animation of the event 
log on top of the model

Waiting times

Note that this is a synthetic 
data set, thus explaining 
the long delays.
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DFG Discovery in Celonis
The result is 
the same as 
in ProM

animation times

Note that this is a 
synthetic data set, 
thus explaining the 
long delays.
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What if we get Spaghetti instead of 
Lasagna?

• Purchase to Pay 
(P2P).

• 2654 cases
• 16226 events
• 685 variants
• 24 unique activities
Still relatively simple, 
but …
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What if we get Spaghetti instead of 
Lasagna?

Data-aware heuristic miner plug-in 
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What if we get Spaghetti instead of 
Lasagna?

Directly-follows visual miner 
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What if we get Spaghetti instead of 
Lasagna?

Celonis process explorer
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Filtering
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Filtering

• Activity-based filtering: Rank the activities (e.g., 
based on frequency) and remove lower-ranked 
activities completely from your data.

• Variant-based filtering: Rank the variants (e.g., based 
on frequency) and remove lower-ranked variants. A 
variant is simply a sequence of activities and may 
occur multiple times.

• Arc-based filtering (not recommended!): Delete arcs 
in the DFG (e.g., based on frequency).
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Activity-based filtering (top 7 of 24 activities)
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Activity-based filtering (top 7 of 24 activities)

Minor differences because 
events have the same 
timestamp (date only)
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Variant-based filtering (most frequent variant only)
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Variant-based filtering (top 5 variants)
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Variant-based filtering (top 10 variants)
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Variant-based filtering (all 655 variants)
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Challenges
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Challenges

• If the model allows for a loop, we have infinitely
many possible traces. This can never be observed!

• The event log just shows examples, the fact that 
something did not happen does not mean it cannot.

• We do not have negative traces, i.e., it is not a 
classification problem.

• Hence, precision and recall cannot be defined in the 
usual manner.



© Wil van der Aalst (use only with permission & acknowledgements) 

Visualizing the challenges

Language of the model 
(typically infinitely or 
factorial many traces).

Real process 
(only known in 
lab experiments).

Event log (just 
examples)
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What we would like to know, 
but cannot know

Language of the model 
(typically infinitely or 
factorial many traces).

Real process 
(only known in 
lab experiments).
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Therefore, there are many 
approximations (often using proxies)

• Replay fitness (using the fraction of fitting traces on 
the event log, token-based, or alignment based).

• Precision (e.g., escaping edges).
• Simplicity (e.g., number of arcs).
• Generalization (e.g., likelihood that the next trace will 

fit given some assumptions about the distribution).

Check out stochastic conformance checking!
Sander Leemans, Wil van der Aalst, Tobias Brockhoff, Artem Polyvyanyy: Stochastic 
process mining: Earth movers' stochastic conformance. Inf. Syst. 102: 101724 (2021)

See later lectures!
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Bottom-up 
discovery
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Bottom-up discovery

• Assume that anything is possible.
• Start adding constraints supported by the data.
• A Petri net place is a constraint.
• Accepting Petri-nets are surprisingly declarative.

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am
Place specifies that buy 
ingredients (bi) should 
happen precisely once. 

An accepting Petri net has an initial and final marking (here the final marking is [ ], i.e., no tokens). 
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am Place specifies that clean 
kitchen (ck) should 
happen precisely once. 

An accepting Petri net has an initial and final marking (here the final marking has one token in sink place). 
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

amPlace specifies that bi and cb 
should happen the same number 
of times. Moreover, at any stage 
the number of occurrences of cb 
should not exceed the number of 
occurrences of bi.

• #bi = #cb at the end of each case
• #bi ≥ #cb at any point in time

A place defines a local constraint.
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am
• #ep = #ck at the end of each case
• #ep ≥ #ck at any point in time
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #bo= #ep at the end of each case
• #bo ≥ #ep at any point in time
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #cb = #as+#am at the end of each case
• #cb ≥ #as+#am at any point in time
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #as+#am = #bo at the end of each case
• #as+#am ≥ #bo any point in time
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Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #ac= #bo at the end of each case
• #ac ≥ #bo at any point in time
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Final accepting Petri net

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add 
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

Also every intermediate model was an accepting Petri net! 
Bottom-up process discover uses this locality principle!



© Wil van der Aalst (use only with permission & acknowledgements) 

Accepting Petri 
Nets
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Examples of accepting Petri nets

• Initial and final
marking.

• Labeled transitions to 
refer to activities.

• Allows for transitions 
with the same or no 
label.

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1
a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(a) AN1 = (N1,[p1],[p6]) (b) AN2 = (N2,[p1],[p6])

b

c

a

d

p2 p3

p5

p1 p4

t2

t3

t1 t4
a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

(c) AN3 = (N3,[p1,p2],[p4,p5]) (d) AN4 = (N4,[p1],[p6])



© Wil van der Aalst (use only with permission & acknowledgements) 

Example of an accepting Petri net and 
its language (1/4)

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(a) AN1 = (N1,[p1],[p6])
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a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(b) AN2 = (N2,[p1],[p6])

Example of an accepting Petri net and 
its language (2/4)
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Example of an accepting Petri net and 
its language (3/4)

Initial and final markings 
may refer to multiple 
tokens and places.

b

c

a

d

p2 p3

p5

p1 p4

t2

t3

t1 t4

(c) AN3 = (N3,[p1,p2],[p4,p5])
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Example accepting Petri net and its 
language (4/4)

a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

(d) AN4 = (N4,[p1],[p6])

Two transitions have 
the same label and 
two are silent.
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Accepting Petri nets & process mining

• A lot of powerful analysis techniques exist for 
accepting Petri nets.

• For example, alignments are based on this.
• We can map the relevant subsets of BPMN, process 

trees, etc. onto accepting Petri nets.
• No need to restrict to workflow nets or transition 

with unique visible labels.
• Surprisingly declarative!!
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Alpha Algorithm
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Just eight lines of mathematics, based 
on the DFG created before

The presentation is 
different from the 
original algorithm, but 
in essence it is the 
same. 
• We add an artificial 

start and end to 
overcome the usual 
problems. 

• Also it builds on the 
DFG and any tool 
can produce this!

• We can filter before.
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Remember DFGs

• Graph with nodes representing activities and start ► and end ■.
• Behavior starts with dummy activity ►and ends with dummy 

activity ■. Node ► is a source node and ■ is a sink node. 

a

d

c

b

e16 5 10 16

551010

11

1

15 1616

15

Can be filtered using one of 
the three approaches.
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Two relations based on the DFG

• 𝒂𝒂𝟏𝟏 →𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is connected to 𝒂𝒂𝟐𝟐 in the 
DFG but not the other way around, i.e., a one-
directional arc.

• 𝒂𝒂𝟏𝟏#𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is not connected to 𝒂𝒂𝟐𝟐 and 𝒂𝒂𝟐𝟐
is not connected to 𝒂𝒂𝟏𝟏.

• Note that notation also applies to start ► and end ■.
• 𝑨𝑨 is the set of activities and 𝑨𝑨′ = 𝑨𝑨 ∪ {►,■} includes 

the start and end node.
• 𝑨𝑨′ = 𝑨𝑨 ∪ {►,■}, →𝑳𝑳 and #𝑳𝑳 are all we use!
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Step 1: Create candidate places

𝒂𝒂𝟏𝟏 →𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is connected to 𝒂𝒂𝟐𝟐 in the DFG 
but not the other way around, i.e., a one-directional arc.
𝒂𝒂𝟏𝟏#𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is not connected to 𝒂𝒂𝟐𝟐 and 𝒂𝒂𝟐𝟐 is 
not connected to 𝒂𝒂𝟏𝟏.
𝑨𝑨 is the set of activities and 𝑨𝑨′ = 𝑨𝑨 ∪ {►,■} includes the 
start and end node.
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Step 1: Create candidate places

a

b

c

d

e
# #

𝐴𝐴1 𝐴𝐴2
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Step 1: Create candidate places

a

b

c

d

e
# #

𝐴𝐴1 𝐴𝐴2

a

b

c

d

e

𝐴𝐴1 𝐴𝐴2

Represents a place!
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Many overlapping places

a

b

c

d

e
# #

a

b

c

d

#
#

a

b
d

e

#
#
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Many overlapping places

a

b

c

d

e
# #

If 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 is a candidate then also 
𝑎𝑎, 𝑏𝑏 , 𝑑𝑑, 𝑒𝑒 , 𝑎𝑎, 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 , 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 , 
𝑎𝑎, 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑 , 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 , 𝑒𝑒 , 𝑎𝑎 , 𝑑𝑑, 𝑒𝑒 , 
𝑏𝑏 , 𝑑𝑑, 𝑒𝑒 , 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 , 𝑎𝑎, 𝑏𝑏 , 𝑑𝑑 , 
𝑎𝑎, 𝑐𝑐 , 𝑑𝑑 , 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑 , 𝑎𝑎, 𝑏𝑏 , 𝑒𝑒 , 
𝑎𝑎, 𝑐𝑐 , 𝑒𝑒 , 𝑏𝑏, 𝑐𝑐 , 𝑒𝑒 , 𝑎𝑎 , 𝑑𝑑 ,
𝑎𝑎 , 𝑒𝑒 , 𝑏𝑏 , 𝑑𝑑 , 𝑏𝑏 , 𝑒𝑒 , 𝑐𝑐 , 𝑑𝑑 , 

and  𝑐𝑐 , 𝑒𝑒 !Defines 20 smaller candidates!
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Step 2: Only use the maximal candidates

a

b

c

d

e
# #

It should be impossible to add an activity to 𝐴𝐴1 or 𝐴𝐴2
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The rest is just bookkeeping

Add places, transitions, arcs, and initial and final marking.
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Example

a

d

c

b

e16 5 10 16

551010

11

1

15 1616

15

𝐶𝐶𝐶𝐶𝐶𝐶 = {({►},{a}),({a},{b}),({a},{c}),({a},{d}),({a},{b,d}),({a},{c,d}), 
({b},{e}),({c},{e}),({d},{e}),({b,d},{e}),({c,d},{e}),({e},{■})}  

𝑆𝑆𝑆𝑆𝑆𝑆 = {({►},{a}),({a},{b,d}),({a},{c,d}),({b,d},{e}),({c,d},{e}),({e},{■})}  
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Example

𝑆𝑆𝑆𝑆𝑆𝑆 = {({►},{a}),({a},{b,d}),({a},{c,d}),({b,d},{e}),({c,d},{e}),({e},{■})}  

a

c

d

b

e

p({a},{b,d})

p({a},{c,d})

tat tp pp({  },{a}) p({e},{  })

p({c,d},{e})

p({b,d},{e})

tb

td
te
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Remove place and transition 
names to improve readability

a

c

d

b

e
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a

c

d

b

e

Example

Can be left out if start 
activities do not 
occur in the middle.

Can be left out if end 
activities do not 
occur in the middle.

Different from original paper to allow for a larger 
class of models to be discovered correctly.



© Wil van der Aalst (use only with permission & acknowledgements) 

a

c

d

b

e

Example
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Another example

a

c

d

b

e
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Another example

b

a

Illustrates 
why it makes 
sense to add 
an artificial 
start and end.



© Wil van der Aalst (use only with permission & acknowledgements) 

Properties of the Alpha algorithm
• Scalable (only needs the DFG)
• Guarantees for a subclass of free-choice nets.
• Cannot handle:

− Short loops (loops of length 1 or 2)
− Skipping (i.e., silent transitions).

• Although not practical in real-life scenarios, it nicely 
illustrates the essence of process discovery.

• See “Workflow Mining: Discovering Process Models from 
Event Logs. IEEE Trans. Knowl. Data Eng. 16(9): 1128-1142 
(2004)” for guarantees and limitations.
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Example showing limitations 

b

a

c
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Example in ProM
1856 cases, 11761 events, 197 variants
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Top-down 
discovery
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Top-down discovery

• Divide and conquer.
• Split the problem recursively into smaller problems 

such that things get trivial.
• An example is the Inductive Mining (IM) technique: 

− Uses process trees.
− The leading approach 
− Implemented in ProM, Celonis, and many other tools.
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Process Trees
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A process tree

a

d

e

cb Four types of operators: → (sequential 
composition), × (exclusive choice), ∧
(parallel composition), and ⟲ (redo loop).

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

Semantics
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Another process tree

a

d

e

cb

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

Semantics
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Another process tree

a

τ 

ab

a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

Semantics
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Inductive Mining
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Inductive Mining (IM)

• Decompose the event log into smaller events logs 
until the problem get trivial.

• Four types of cuts corresponding to the operators: 
→ (sequential composition), × (exclusive choice), ∧
(parallel composition), and ⟲ (redo loop).

• In each step the activities are partitioned into 
subsets until they are singletons.

• Developed by Sander Leemans in the context of his 
PhD thesis (NWO project “Don't Search for the Undesirable! Avoiding “Blind Alleys” in Process Mining” 2012-2017)
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Event log
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck

Activities: buy ingredients 
(bi), create base (cb), add 
cheese (ac), add tomato 
(at), add salami (as), add 
mushrooms (am), bake in 
oven (bo), eat pizza (ep), 
and clean kitchen (ck).
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Create a DFG for the whole event log
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck

bi atcb

ac

as

bo ep ck

am

Frequencies omitted for readability
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Apply a sequence cut

bi atcb

ac

as

bo ep ck

am

There is a sequence cut when the DFG can be split into sequential 
parts where only “forward connections” are possible. Note that we 
need to use the non-reflexive transitive closure of F.
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Sequence cut partitions activities in 
six subsets

bi atcb

ac

as

bo ep ck

am
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Color the events based on the partitioning
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck
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Split the event log based on the partitioning
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck
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Five of the projected event logs refer to a 
single activity (base case)

bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ck
bi cb bo ep ck
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The blue group has four activities
ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac
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Recursion: Apply algorithm to all sublogs

Five of the projected event logs refer 
to a single activity (base case).
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Handling the base cases (ep can be skipped)

cb bobi

ep

ck

τ 
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Only the blue event log remains

cb bobi

ep

ck

τ 
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Continue with the blue event log
ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac

at

ac

as

am

There is a parallel cut when the 
DFG can be split into 
concurrent parts where any 
activity in one part can be 
followed by any activity in 
another part.

Activities as and am 
are not connected, 
i.e., not concurrent 
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Apply a parallel cut resulting in three 
activity groups

ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac

at

ac

as

am

There is a parallel cut when the DFG can be 
split into concurrent parts where any activity 
in one part can be followed by any activity in 
another part.
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Apply a parallel cut resulting in three 
activity groups

ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac

at

ac

as

am
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Three new event logs are created
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac ac
ac ac ac
ac ac

at

as
as
as
as
as
as
am
am
am
am
am
am
as
as
as

at

at
at

at
at

at
at

at
at

at
at

at
at

at

Base case (just 
activity ac)

Base case (just 
activity at)

Not a base case, still two 
activities as and am.
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Handling the base cases (ac can be repeated)

cb bobi

ep

ck

ac

at

τ 

τ 
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Only the red event log remains

cb bobi

ep

ck

ac

at

τ 

τ 
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Continue with the red event log
as
as
as
as
as
as
am
am
am
am
am
am
as
as
as

as

am
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We find an exclusive-choice cut 
There is an exclusive-choice cut when the 
DFG can be split into disconnected parts after 
leaving out the artificial start and end.

as

am

as
as
as
as
as
as
am
am
am
am
am
am
as
as
as
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We find an exclusive-choice cut 
There is an exclusive-choice cut when the 
DFG can be split into disconnected parts after 
leaving out the artificial start and end.

as

am

as
as
as
as
as
as

am
am
am
am
am
am

as
as
as

Note that projection is now different 
than for the sequence and parallel cuts.
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We end up with two base cases

as
as
as
as
as
as

am
am
am
am
am
am

as
as
as

cb bobi

ep

ck

ac

at

asτ am

τ 
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The process tree returned by the 
Inductive Mining algorithm

cb bobi

ep

ck

ac

at

asτ am

τ 
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Can be visualized using Petri nets or BPMN

cb bobi

ep

ck

ac

at

asτ am

τ 

bi cb

ac

at

as

bo ep ck

am
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Can be visualized using Petri nets or BPMN

cb bobi

ep

ck

ac

at

asτ am

τ 

buy 
ingredients 

(bi)start

create base 
(cb)

add tomato
(at)

bake in oven 
(bo)

eat pizza
(ep)

add salami
(as)

clean kitchen 
(ck)

end

add cheese
(ac)

add 
mushrooms

(am)
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The details
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Four types of cuts
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Another example

• 1856 cases, 197 variants
• 11761 events
• 8 unique activities

Just 11 of 197 variants
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Alpha algorithm (ProM) 
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Inductive visual miner (ProM)
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Different visualizations in ProM
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Mapped onto an accepting Petri net
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Celonis also reports 1856 cases, 197 
variants, and 11761 events
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Celonis finds the same process tree 
using the Inductive Mining algorithm



© Wil van der Aalst (use only with permission & acknowledgements) 

Also works well on large real-life event logs
(but you need to put in the work)
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Summary: Inductive Mining

• The models are guaranteed to be sound, i.e., no 
deadlocks, no livelocks, and no other anomalies.

• The basic algorithm guarantees that the event log can be 
reproduce completely (of course one can filter if desired).

• The algorithm has good performance (and there are also 
more scalable variants) and implemented in several tools.

• There are various additional theoretical guarantees, i.e., 
rediscover the process tree used to create the event log.   
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Conclusion
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Foundations of Process Discovery

Baseline: Discovering DFG + filtering

Bottom-up
discovery

Top-down
discovery

Alpha  
algorithm

Inductive 
mining

2 lines of mathematics

8 lines of mathematics approximately 20  lines of mathematics

Not a solved problem!



© Wil van der Aalst (use only with permission & acknowledgements) 

Discovery is just one of many techniques

discover

align
replay
enrich

apply
compare

information 
systems

extract

process 
models

explore select
filter
clean

conformance
performance 
diagnostics

transform

actshow
interpret

drill down

ML

 

6: Action-Oriented 
Process Mining

5: Predictive Process 
Mining

3: Performance 
Analysis

2: Conformance 
Checking

1: Process
Discovery

4: Comparative 
Process Mining
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Websites
• www.processmining.org
• www.process-mining-summer-school.org
• www.tf-pm.org
• www.promtools.org
• www.celonis.com/academic-signup
• xes-standard.org
• ocel-standard.org
• www.pads.rwth-aachen.de
• www.vdaalst.com
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Online courses

• Coursera course 
“Process Mining: Data 
science in Action”
Register via coursera.org/learn/process-mining 
(152.345 participants since 2015). 

• Celonis/RWTH course 
“Process Mining: From 
Theory to Execution” 
Register via www.celonis.com/wils-process-
mining-class.

(edX is coming)
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Books (not intended to be complete)
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