Process Mining Summer School, Aachen, 4-8 July 2022

& Process Mining
5 Handbook

Foundations of
Process Discovery

WIL VAN DER AALST
PROCESS AND DATA SCIENCE @ RWTH AACHEN UNIVERSITY & CELONIS

www.vdaalst.com, @wvdaalst

Recap: Six types of process mining

In this lecture, we focus on process discovery

information
systems

extract ¢

conformance
performance

agnostic

2: Conformance 4: Comparative

Process Mining

E— . Checking -
1: Process 3: Performance B

5: Predictive Process

. Analysis == S
explore Discovery Y Mining
| show : act
interpret
P

drill dowgs
6: Action-Oriented

Process Mining

—>

transform

Waggii L
piict:
A 832

.
P

Vo
AV
v

i “ > Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) hg O and Data Science

Outline: Foundations of Process Discovery

At times, | refer to the

Baseline: Discovering DFG + filtering Crtor 2 1o o that
with the right tools one can

be precise and compact.

Bottom-up Top-down
discovery discovery

sep Carmona (Eds.)

& Process Mining

Alpha Inductive
algorithm mining

IR\NTHAACHEN
. UNIVERSITY -

I3
.
1]

. . m Chair of Process
. and Data Science
© Wil van der Aalst (use only with permission & acknowledgements) .] . . - " . .

The main idea (informal)

e
~_
(a,b,c,e)l?
{a,c,b,e)®

e

(a) Event log L;

(b) Directly-Follows Graph (DFG): M,

15 b 15
15
16 1 1 16
(: F—>» a d e
16 16 1 16 16
16 (] 1 16
15 g 15

Chair of Process
and Data Science

(c) Accepting Petri Net (APN): M, ,.é

© Wil van der Aalst (use only with permission & acknowledgements) h g o

The main idea (formal)

Definition 1 (Event Log). U, is the universe of activity names. A trace o = {a, as,

Q) € Uaet™ IS a sequence of activities. An event log L € B(Uqc+™) is a multiset of
traces.

Definition 2 (Process Model). U1, is the universe of process models. A process model
M € Uy defines a set of traces lang(M) C U,

Definition 3 (Process Discovery Algorithm). A process discovery algori rhW Is a func-
tion disc € B(U,+™) — Uy, i.e., based on a multiset of traces, a model is produced.

Qv

i “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science

Ly = [<a7 b, C, €> 107 <CL, C, ba €>57 <CL, d7 €>] = B(Z/{aCt)

lang(M?)) — {<CL, b7 C, €>7 <CL, C, b7 €>7 <a’7 d7 €>} g Z/{a,ct*

Coincidence, model may
allow for more or less than
observed in the event log.

Event log L;

15 15
“ é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) Process Tree (PT): M; hg O and Data Science

How discover a process model?

- Base-line approach using Directly Follows Graphs (DFGs)
- Bottom-up discovery

- Alpha algorithm
* Top-down discovery

— Inductive Mining (IM) algorithm

Definition 1 (Event Log). U/, is the universe of activity names. A trace o = (a1, as,

sy € Uaet™ T a sequence of activities. An event log L € B(Uaet™) is a multiset of
traces.

Definition 2 (Process Model). U{y; is the universe of process models. A process model
M € Uy, defines a set of traces lang(M) C U,

Definition 3 (Process Discovery Algorithm). A process discovery algorith% is a func-
tion disc € B(Uyet™) — Uy, 1.e., based on a multiset of traces, a model is produced. E’l’ E

J I

? “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)

Chair of Process
and Data Science

v
.
1]

| CHEN
UNIVERSITY -

Baseline approach: DFGs

Definition 4 (Directly-Follows Graph). A Directly-Follows Graph (DFG) is a pair
G = (A, F) where A C U, is a set of activities and F € B((A x A)U ({»} x A) U
(A x {m})U ({»} x {m})) is a multiset of arcs. » is the start node and W is the end
node ({». B} NU,et = 0). Ua C Uy is the set of all DFGs.

© Wilvan de

rrrrrr (use only with permission & acknowledgements)

Graph with nodes representing activities and start » and end m.

Behavior starts with dummy activity »and ends with dummy
activity m. Node » Is a source node and =m is a sink node.

Arcs represent the directly-follows relation.
Multisets to represent frequencies.
Can be viewed as summary of the data!

Language of a DFG

Definition 5 (Traces of a DFG). Let G = (A, F') € U be a DFG. The set of possible
traces described by G is lang(G) = {{as,az,...,apn_1) | a1 = » A a, = B A
Vi<ien (@i,aiy1) € F}.

- Possible traces: All paths possible according to the graph
starting in node »and ending in node .

 Recall: » Is a source node and = is a sink node.

1 1
LS |
1 i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowle dgements) > o and Data Science

Baseline discovery

Your first discovery algorithm in just two lines of mathematics

Definition 6 (Baseline Discovery Algorithm). Let . € B(U,.+") be an event log.
disc,..(L) = (A, F) is the DFG based on L with:

- A={a€o|o€L}and
- FZ[(O‘@,O‘@+1)|O‘€L’ /\ 1§’Z<‘O‘HWithL’:KP)'O"(l)|O‘€L].

AT
~_
(a,b,c,e)t!
(a,c,b,e)’
(a,d,e)

© Wil van der Aalst (use only with permission & acknowledgements)

DFG discove

404 traces .
24.70% of the log Add Temato JJT) clean Kitehen
282 traces

14.10% of the log Ul Add Tamato J) Clean

174 traces e
8.70% ofthe log (RNGERNGEEL ks
168 traces

2.30% ofthe log JUGEIGEE]

140 traces
7.00% of the log

140 traces

7.00% ot the 1oy fILeliE e Add Tomato Add Eat lean Kitchen
107 traces

535% of the log lelihel) Add Salami J)Add Tomata))Clean Kitohen

102 traces

5.10% of the log JUlIEEEM) Add Tomata))Add Salami))Clzan Kitchen

83 traces _

4.15% of the log JRRGEGIEEEY

72 traces

360% ofthe log b

53 traces
2 65% of the log

One of the views of the
Data-aware heuristic miner

Pizza Base plug-in (Felix Mannhardt)

Add Tomato

415

Add Cheese 290 | 294

72 255 107

280 563

43 traces

2.40% of the log Add Tomata

]

Clean Kitchen

=

- S.I"ﬂm
Add T:mit:) Eat >c|!iﬂ Kitchen

33 traces
[IPORI Fiz=a Base |ELERELERY) Add Cheese JECEEEELIY) Eat Piza
32 traces .
1.80% of the log Add Temato Clean Kitchen
- e e - - i ‘
process mining workbench

47 traces
235% of the log

=

Clean Kitchen

Clean Kitchen

)
)
)
)

Pl

? “ > Chair of Process
> O and Data Science

27 traces

(1 35% of the log Pizza Base Add

DFG discovery in ProM

E)-)-)) Directly-follows visual
irectly-follows visua
e IRl miner (Sander Leemans)

174 traces
8.70% of the log

166 traces

PYSINRNIIN Fizza Base } Add
140 traces . .
7.00% of the log JMUSHIGEEN) Add Tama de
107 traces

5.35% of the log -t ReEE LR Add Salami () Add Tomate)/ Clean Kitehen

102 traces
5.10% of the log

Pizza Base

1051

140 traces
7.00% of the log

Add Tomato
1599

83 traces
4.15% of the log

T2 traces
3.60% of the log [k

E o TEm:t!} - s"'"“m

=
|

53 traces
2 65% of the log

Pizza Base
2000

43 traces

2.40% of the log Clean Kitchen

e

47 traces
235% of the log

——

Add Salami

72

33 traces
1.65% of the log

32 traces
1.80% of the log

27 traces ~
(135% of the 1oy [l

Clean Kitchen

» l ‘ b4 “L'r' Chair of Process
process minﬁg u-vorkbench hg and Data Science

DFG discovery in ProM

S - e -) Animation of the event
e log on top of the model

dd Tomat Clean Kitchen

174 traces e
2.70% ofthe log Mk

168 traces

8.30% of the oy e LT

140 traces _ .

7.00% ot the 1oy (UCGEEW) Add Toma o

107 traces A

535% of the log lelihel) Add Salami J)Add Tomata))Clean Kitohen . -
i D

102 traces
5.10% of the log

140 traces
7.00% of the log

83 traces
4.15% of the log

races 1051
152 Waiting times

E o TEm:t!} - E.IlMim
>Add T:mit:) Eat Pizza >c|!iﬂ Kitchen

53 traces
2 65% of the log

81

43 traces

2.40% of the log Clean Kitchen

294

79
290

e

47 traces

2.35% of the log Add Salami

——

254
415 107 280 563

> 2000 255 = 743
) SRR P X4 D §
Note that this is a synthetic "

72 data set, thus explaining f_;j “ > Chair of Process
the long delays. hg O and Data Science

33 traces
1.65% of the log

Clean Kitchen

32 traces
1.80% of the log

27 traces ~
(135% of the 1oy [l

Clean Kitchen

DFG Discovery in Celonis

The result is () Brocess siar _ Ol ab

the same as =
. 2,000 A4 . Pizza Base
In PrOM v] T E%a Base 2,000

51
e ‘ 103 hours . ﬁgg% Tomato
Add Tomato
- 1,599
/»’/ ///Y ~ 29 hours 79 hours 85 hours
/ .
." h
. Add Cheese 30 hours 25 hours
1,384
280
415 738 hours 25 hours 72 hours 92 hours
72
&9 hours 1g\1d2d Salami 639 hours
Addﬁalaw
582 hours 92 hours
T2
- 635 hours Eat Pizza
~ 440
&
Add Salami 5&3 Eat Pizza |
440 501 hours
| . ' -
81 // ANy !0 . Clean Kitchen
; 2,000
=

v i T Clean Kitchem
—>
Eat Pizza . o
\ 2 000
l‘l-l @ Eg%:ess End
MO
@ Eorggess End Note that this is a
C|ean o synthetic data set,
. thus explaining the
- long delays.
- times v

animation

@ FProcess End -
C IS
m Chair of Process
and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)

What if we get Spaghetti instead of

Greate Purcha... GCreate Purchase Ord.. Print and Send Purcha...

210 traces
7.81% of the log

Create Purehase Ord... Print and Send Purcha...

170 traces
B.41% of the log

GCreate Purchase Ord... Frint and Send FPurcha...

108 traces
4.11% of the log

Greate Purchase Ord... Print and Send Purcha...

82 traces
3.09% of the log

ods Receipt

Create Pureha... Create Purehase Ord... Print and Send Purcha...

78 traces
2.84% of the log

70 traces Create Purchase Ord...

2.64% of the log

Create Purchase Ord... Print and Send Purcha...

G2 traces
2.34% of the log

“endor ereates Invoice

Create Pureha... Create Purehase Ord... Frint and Send Fureha...

57 traces
2.15% of the log

Create Purchase Ord... Print and Send Purcha...

54 traces
2.03% of the log

‘fendor ereates Invoice

Create Purcha... Create Purchase Ord... Print and Send Purcha...

48 traces
1.81% of the log

Create Purehase Ord... Frint and Send Fureha...

43 traces
1.62% of the log

P =] el] P] P]] P e

)
)
)
)
)
)
)
)
)
)

=

© Wil van der Aalst (use only with permission & acknowledgements)

Wendor creates Invaice

Vendor creates Invaice

Wendor creates Invaice

Wendor creates Invaice

ods Receipt

Purchase to Pay
(P2P).

- 2654 cases

16226 events

* 685 variants

* 24 unique activities

Still relatively simple,
but ...

i “ > Chair of Process
> O and Data Science

What if we get Spaghetti instead of
Lasagna?

29

Create Purchase Order Item

Data-aware heuristic miner plug-in

© Wil van der Aalst (use only with permission & acknowledgements)

PISDF

ig'“d»

S

Chair of Process
and Data Science

What if we get Spaghetti instead of

Lasagna?

4
7/
/
/7
/7
/7 N\
, 4 Dun Order Confirmation
/ e ; 3
T 245
i /7
= 7
Ve
e, /7
’ / \
> 7 . _ Change Currency
s -
- , / = _ - - \ | 1
- s \
. d S 34
- 3 13
: Print and Send Purchase Order (Paper)
o e 1868
[-]
e
.

Directly-follows visual miner

P fg‘-

? “ r_'é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science

What if we get Spaghetti instead of
Lasagna?

Adestmart S

Pllo}
Celonis process explorer $ "é

© Wil van der Aalst (use only with permission & acknowledgements) h g O

Chair of Process
and Data Science

RWTHAACHEN
- UNIVERSITY

Chair of Process
and Data Science

v
.
[}

» Activity-based filtering: Rank the activities (e.g.,
based on frequency) and remove lower-ranked
activities completely from your data.

» Variant-based filtering: Rank the variants (e.g., based
on frequency) and remove lower-ranked variants. A
variant is simply a sequence of activities and may
occur multiple times.

* Arc-based filtering (not recommended!): Delete arcs
in the DFG (e.g., based on frequency). .

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) hg O and Data Science

Activity-based filteri NJ (top 7 of 24 activities)

- -
Vendor creates Invoice process mining workbench

1,109

Print and Send Purchase Order (Paper)+complete

ord Invoic

59

& Finisn §1.906 126 Create Purchase Order Item

923,1,049 1,868

7 613 Print and Send Purchase Order (Paper)

160
Record Invoice Receipt 73 375

91

Record Goods Receipt 57 1225

Receive Order Confirmation &

P03
“f»é Chair of Process
> < and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)

Activity-based filteri NQ (top 7 of 24 activities)

- 2.65k of 2.65k i3
= cases selectad ~+ P

T
@ Process Start
2554 e .
9 -
7. -

& Create Purchase Order ltem
Create Purchase Order Item
2654

& Create Purchase Requisition Item 65 &-\
O Delete Purchase Order ltem 1,868 ,_-__-\
O Delete Purchase Requisition Itam -~ * i
B Print and Send Purchase Order (Paper) 32 '
O Dun Order Confirmation 1 1868 N '
H _." T 1
i A’/ |
& Print and Send Purchase Order (Papar) !) \ 345 55]
i S \ I
1 / i
i 375 | i
! f i
i . S
] -* -
i 1223 - /
H , e s Pt
! ‘ | - e AL
91 -] ndor creates Invoice
1 ¥ 066
1 -
. by
i \ -
i 4 \
. ‘Re%eive Crder Confirmation 126 h
] !]
: ~ T
i . - .
; .-
i / ._
1)
i) _ _ \
i ecord Invoice Receipt
' 137
B @ Process End < e Minor differences because

events have the same m Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) timestamp (date only) and Data Science

Va l'i d nt'based fi Ite I'i n (most frequent variant only)

= Foom & Most commen variant w Graph* | »
L]

e . C IS

13.50

Ht @ Process Start
210

0%
o O".

Create Purchase Requisition ltem
210

Noam

«G

A

210

) 4

. Create Purchase Order ltem
210

210 Ad

\ 4

2P]rgnt and Send Purchase Order (Paper)

L
<
o

Receive Order Confirmation
210

N -

1] &7
Record Goods Receipt
210
' P
210
N 1200
Wendor creates Invoice
210
210 .5

ggcnrd Invoice Receipt = | @& Moef

o Fitter

P
ey

A 4
@ Process End 1 a%
210

of 655 variants. of cases coverad

.‘. “Wariants Ly
m Chair of Process
and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)

t'based fi Ite I'i n g (top 5 variants)

L = Foom < Most common variant v Graph ™ | »
o » | Process Start °
840 " .
13.54

- 0%
»
B o-N

¥
h
H .
s
: > |
H
281 Create Purchase Requisition [tem
. 253
% I a2 l B
.
‘.
* 288
t.. *
-
‘A &1 O.0d
. Create Purchase Order ltem
640
:iw " |
Print and Send Purchase Order (Paper)
o 548
L - I en I o180
s) 4
i N N 2054
: Receive Order Confirmation
| 540
E 482 &.7d
: ¥
i Record Goods Receipt 75
' 540 |
i e
1 [
108 ;I 220
N -
1 d -
i : I a N 12.0d
| . |78 Vendor creates Invoice
1 H 452
! Y I
1 ! \
1 160 N 4523 .3
| h \ +
| H
H : . .
' ; 4R§§cord Invoice Receipt = @ Moep
] : o
‘.‘ i +*
A . 320 .
LN " ‘.- Filter
1 ¥ &
@ Process End 5 e
of 855 variants of cases coversd

G4
,‘, fariants - &+
m Chair of Process
and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)

Va riant'based fi Ite I'i n (top 10 variants)

= Zoom 4 Most common variant w Graph~ | » C IS

o @ Process Start
0% 20% a0
— . M -
o a1 - 13.5d

3
v s
K " 203
H s
: b =
547 Create Purchase Requisition ltem « Il o
; I
.
*
" 283 g
.'o“ VL a8 . 24.4d
‘ Create Purchase Order ltem
840 |
Dl4u. ar . E.rd
\d N
Print and Send Purchase Order (Paper) e e
=T 240 4 :
872 I —
21.7d

¥

! Recewe Order Confirmation

L 462
25.7d

Record Goods Receipt

| \ /

i
i
! 62 r 143 Vendor creates Invoice
i ! 630
' .
: h' I 10.7d
i a7 820
; H ‘,
i '
i :
: ! Record Invoice Receipt _ | _
| J d 830 P B # | More |5
; 1 : o
Y ¥ »
. o Fitter
. \ -
™ LAY .l
m | Process End 10 5%
040
of G55 variants. of cases coversd

... “Wariants - L
m Chair of Process
and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)

Va l'i a nt-baSEd fi Ite I'i n g (all 655 variants)

By - Zoom o Most commen variant v Graph* [2 °
Tl

- 0% ra 4% 6% %

@ POl s~ A R W P

67 128
Fu R L]
-
#16 2 6d
v e ——— =
5 #2065 185 2t
= =
.
P #1 CH
b ______,_,"/
"8
| it 1344
" R
2 B7.5d
e e L]
s .50
#nan #1.ed
- —
Less #* More

855 1005 o .
— 8 4 |
s variants - of 655 variants. of cases coversd - 4

b “r’ Chair of Process
> O and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)

.

R\NTHAACHEN
kY. . evaaseems | UNIVERSITY

Vi
© Wil van der A‘aﬁ(ﬂie‘gnly with permission & acknowledgements) . 3 . . g /
™\ J

Challenges

* If the model allows for a loop, we have infinitely
many possible traces. This can never be observed!

* The event log just shows examples, the fact that
something did not happen does not mean it cannot.

- We do not have negative traces, l.e., it is not a
classification problem.

* Hence, precision and recall cannot be defined in the
usual manner.

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) hg O and Data Science

Visualizing the challenges

Real process

mmm I N
(only known in - - T Language of the model
lab experiments). ,/ (typically infinitely or
e factorial many traces).
' 4
Eventlog (just
examples)
/4
I
\
\
\
\\
\\
~

~~~--—-————” E"J'g—'

b4 Pé Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



What we would like to know,

but cannot know

Real process
(only known in

lab experiments). ,/’

-y
= i~ Language of the model

(typically infinitely or
factorial many traces).

/
/

V - -
- -
.y ma
foE mm = m Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) and Data Science



See later lectures!

Therefore, there are many

dPl I’OXimationS (often using proxies)

* Replay fitness (using the fraction of fitting traces on
the event log, token-based, or alignment based).

* Precision (e.g., escaping edges).

» Simplicity (e.g., number of arcs).

* Generalization (e.g., likelihood that the next trace will
fit given some assumptions about the distribution).

Check out stochastic conformance checking!

Sander Leemans, Wil van der Aalst, Tobias Brockhoff, Artem Polyvyanyy: Stochastic
process mining: Earth movers' stochastic conformance. Inf. Syst. 102: 101724 (2021) E'J’g—'

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowle dgements ) hg O and Data Science



and Data Science |, ;
© Wil van der Aalst (use only with permission & acknowledgements) < ..

&
N



Bottom-up discovery

- Assume that anything is possible.

- Start adding constraints supported by the data.

- A Petri net place is a constraint.

* Accepting Petri-nets are surprisingly declarative.

ac

bi cb at bo ep ck

as

am

EVEn
Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add é

salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck). 'L“L," Chair of Process

© Wil van der Aalst (use only with permission & acknowledgements) and Data Science



Places as constraints

Place specifies that buy
ingredients (bi) should
happen precisely once.

An accepting Petri net has an initial and final marking (here the final marking is [ ], i.e., no tokens).

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

Place specifies that clean
kitchen (ck) should
happen precisely once.

An accepting Petri net has an initial and final marking (here the final marking has one token in sink place).

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

* #bi = #cb at the end of each case
« #bi 2 #cb at any point in time

ac
at bo ep ck @
as

Place specifies that bi and cb am

should happen the same number

of times. Moreover, at any stage A place defines a local constraint.
the number of occurrences of cb
should not exceed the number of

occurrences of bi.
Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add m
Chair of Process

salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck). and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)



Places as constraints

» #ep = #ck at the end of each case
* #ep 2 #ck at any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

» #bo= #ep at the end of each case
» #bo 2 #ep at any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

acC

as

 #cb = #as+#am at the end of each case
« #cb 2 #as+#am at any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&




Places as constraints

acC

as |

e #as+#am = #bo at the end of each case
« #as+#am 2 #bo any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

 #ac=#bo at the end of each case
« #ac 2 #bo at any point in time

acC |

as

am

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Final accepting Petri net

A
O

OO

as

am

Also every intermediate model was an accepting Petri net!
Bottom-up process discover uses this locality principle!

PIYyD}
Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add : ]
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck). -L“{_-f-' Chair of Process

© Wil van der Aalst (use only with permission & acknowledgements) and Data Science



| CHEN
UNIVERSITY -

Chair of Process
and Data Science

&

(use only with permission & acknowledgements)

N
»
© Wil van der Aﬁ



Examples of accepting Petri nets

Definition 14 (Accepting Petri Net). An accepting Petri net is a triplet AN = (N,
p4 p2 p4 Minit, Mfinar) where N = (P, T, F,l) is a labeled Petri net, M;,;; € B(P) is the

2
: b b initial marking, and Mg, € B(P) is the final marking. Uan < Uy is the set of
accepting Petri nets.
t2 t2
@—> a d e —»@ @—> a d e —»@ o B}
1 * |nitial and final
p3

pl t t4 t5 p6 pl t1 t4 t5 p6
i % C% i marking.

t3 p5 p3 t3 p5

(a) ANy = (Ny,[p1],[p6]) (b) AN, = (N5, [p1],[p6]) . ngw
. , . Labeled tra_n_3|_t|ons to
refer to activities.

pl @
i1 /t4 .
%[; d @ @fl  Allows for transitions
b >>( )
p2 t2

with the same or no

p3 B label.
(c) ANz = (Ns,[p1,p2],[p4,p5]) (d) ANg = (N4, [p1],[p6]) E.f@j

] “ r’é Chair of Process
> O and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)



Example of an accepting Petri net and
its lanc

p3 t3 p5
(a) AN; = (Ny,[p1],[p6])

lang(AN1) = {(a.b.c.€),{(a,c,b.¢e), (a.d,e)}

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) > o and Data Science



Example of an accepting Petri net and
its language (2/4)

p3 t3 p5
(b) AN, = (N,,[p1],[p6])

lang(ANs) = {(a.b,c,e),{a,c,b,e),{a,b,c,d,b,c,e),{a,c,b,db,c,e),
..., {a,c,b,d,b,c,d,c,b,d,c,b,e),...}

PlD3
? “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Example of an accepting Petri net and

its lanc

3 _,Q Initial and final markings
il may refer to multiple
/ t4 tokens and places.

P2 t2 pP3
(c) AN5 = (Ns3,[p1,p2],[p4,p5])

lang(AN3) = {(a,b,d), (b,a,d). (b,d,a).(c,d)}

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) > o and Data Science



Example accepting Petri net and its

Two transitions have
the same label and
two are silent.

p3 t3 p5
(d) AN, = (Ng4,[p1],[p6])

lan’g(AN4) — {<a’a ba (l>, <CL, a, b>: <(l, ba a, ba a>a <01, a, bﬂ bﬂ a>a SR
(a,a,b,b,a,a,b,a,b),...}

i r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Accepting Petri nets & process mining

* A lot of powerful analysis techniques exist for
accepting Petri nets.

- For example, alignments are based on this.

- We can map the relevant subsets of BPMN, process
trees, etc. onto accepting Petri nets.

* No need to restrict to workflow nets or transition
with unique visible labels.

» Surprisingly declarative!!



_ HEN
UNIVERSITY -

A

(use only with permission & acknowledgements)
™

F'd

© Wil van der A



Just eight lines of mathematics, based

on the DFG created before

Definition 22 (Alpha Algorithm). The alpha algorithm discaphe € BUger™) —

Uan returns an accepting Petri net discqpnq (L) for any event log L € B(Uget"). .
Th tat

Let A = act(L) and fp(L) = fp(disc,,. (L)) the footprint of event log L. This allows diffeerperr?tsfer(r;ri lﬁg "

us to write a1 —p as if fp(L)((a1,a2)) = — and ar#rpas if fp(L)((a1,as)) = # for original algorithm, but
any a,,a, € A’ = AU {».m}. ’

in essence it is the

I Cnd = {(A;,A2) | Ay C A AN AL #O AN Ay CTA AN Ay #0 A same.
Varea, Vasea, a1 =1 Gz N Yo, avea, a1FLas N Yo, avea, a1 ras} are the * We add an artificial
candidate places, | | start and end to

2. Sel = {(A1.4s) € Ond | V(s apyecna A1 © A] NAy C A) = (A1, Ap) = overcome the usual

Y . problems.
(A%, AL)} are the selected maximal places, . Also it builds on the

3. P=A{pa, ., | (A1, A2) € Sel} U{pp,pg} is the set of all places, DFG and any tool
4. T ={ty | a € A’} is the set of transitions, can produce this!
5. B ={(tapayan) | (A1, Ax) € Sel N a € Ary U (pra, a,).ta) [ (A1, A2) € . We can filter before.

Sel N a € Ast U{(pw.ty). (Lg.pg)}t is the set of arcs,
6. | ={(ty,a)| ae€ A} isthe Zabelmg function,
7. Myt = [py] is the initial marking, Mgy, = [p.] is the final marking, and
8

- discapna (L) = (P, T, F,1), Minit, Mfnal) is the discovered accepting Petri net. El,’gﬁ

i “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science




Remember DFGs

Definition 6 (Baseline Discovery Algorithm). Ler L € B(U,.:") be an event log.
disc,,..(L) = (A, F) is the DFG based on L with:

- A={a€o|oc€L}and
- F=|(04,0i01) |cel’ N1 <i<|o|lwithl'=[(»)-c-(m)|oc € L]
Graph with nodes representing activities and start » and end m.

Behavior starts with dummy activity »and ends with dummy
activity m. Node » Is a source node and =m is a sink node.

Can be filtered using one of
the three approaches.

AVE)
] “ r’é Chair of Process
> O and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)



Two relations based on the DFG

* a; —; a, means that a, is connected to a, in the
DFG but not the other way around, i.e., a one-
directional arc.

* a,#; a, means that a; is not connected to a, and a,
Is not connected to a;.

* Note that notation also applies to start » and end m.

» Ais the set of activitiesand A’ = A U {»,m} includes
the start and end node.

« A'=AU{p»,m}, —»; and #; are all we use! E'%
e o o oo & oot 1A [ S Barbilid



Step 1: Create candidate places

[. Cnd = {(Al,Ag) ‘ A C 1/4’ A Ay # H A AQ A’ A Ao # H A
Vorea, Vaseds 1 1 a2 A Yy ared, G1F1002 N Vo,uiiea, a1# 102} are the
candidate places; ,,,,,,,,

/// II ”,” /// ”””””
// /- /’/’,—
.7 At ,—’37’
// ’,’ r =T g
’ - / _ - P
// ,” / -=" e

a; - a; means that 04-1S connected to a; i m,the DFG
but ngt the” other- way around, i.e/, a one-dtrectlonal arc.
a,#; a, means that a4 is not co’nnecte’d to a, and a, is
not connected to a;. v K’

A is the set of activities and A" = A U {P» ,m} includes the
start and end node.

P fg‘-

? “ r_'é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



Step 1: Create candidate places

].Cnd:{(Al,Ag)‘AlgA’/\Al#(zj/\AggA’/\Ag#@/\

valeﬂva@Eﬂg a1 —[ a2 A val,CLQEA]_ a‘l#Lag A Val,agEAg al#LaQ} are the
candidate places,

4 ) 4 )
a [ —
/
b
# ><\ #
v 1 €
C
g J g J
Aq A

PlD3
? “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Step 1: Create candidate places

].Cnd:{(Al,Ag)‘AlgA’/\Al#(zj/\AggA’/\Ag#@/\

valeﬂva@Eﬂg a1 —[ a2 A val,CLQEA]_ a‘l#LaQ A Val,agEAg al#LaQ} are the
candidate places,
Represents a place!

4 ) 4 ) 4 ) 4 )
al a
\\\» q N d
» /
" "
#|b # b .
~. - —
c — ] c P
\_ Y, \_ Y, \_ Y, \_ Y,
Al Az Al AZ
@)



Many overlapping places

4 ) 4 ) 4 ) 4 )
al al|
\\\Td \\Td#

" "
b # b
# ><\ ‘ # /
e —| e _—
c c
\_ ), \_ ), \_ ), \_ ),
4 ) 4 )
\ )
H# \ 1 d
b #
\e
N\ , N\ , E,;@—I

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Many overlapping places

g - : : A If ({a, b, c},{d,e}) is a candidate then also
~ T (la,b},1d, e}), (1a,c},1d, e}), (1b, ¢}, 1d, e}),
# [o ><< # (la, b, c},1d}), (1a, b, c}, te}), (1a}, 1d, e}),
- — e (1b},1d, e}), (ic},1d, e}), (ia, b}, 1d}),
c (a,c},1d}), (ib,c}, 1d}), (1a, b}, te}),
- / \ / (a,ch1e}), (b, c} e}), (la) 1d}),
(laj, te}), (1b}, 1d}), (1b} te}), (ic},1d}),
Defines 20 smaller candidates! and ({C}, {e}) |



Step 2: Only use the maximal candidates

2. Sel = {(Al,Ag) c Cnd | v(A’i,Aé)ECnd A1 C All /\AQ C AIQ — (AlaAQ) —

(A%, AL)} are the selected maximal places,

( ) ( )
=
"
b
# ><\ #
] — ©
C
. J . J
It should be impossible to add an activity to A; or A4, BvEh

? “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



The rest is just bookkeeping

e

P ={pca, A, | (A1, A2) € Selt U{py, pg}t is the set of all places,

T ={t, | a € A’} is the set of transitions,

F = {(tmp(ﬂhﬂz)) ‘ (AlvAQ) € Sel N a € Al} U {(p(ALAQ)?tG) | (AlvAQ) S
Sel N a € A} U{(pp,ty), (tg,ng)} Is the set of arcs,

[ ={(ta,a) | a € A} is the labeling function,

Mt = |pw| is the initial marking, M fiyq; = [p.] is the final marking, and

disc aipha (L) = (P, T, F, 1), Minit, Mfina) is the discovered accepting Petri net.

R

0N

Add places, transitions, arcs, and initial and final marking.

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Ll — [(CL, b7 Ca €> 107 <(l, C, b7 €>57 <CL, d? 6>] S B(Z/[CLCt*)

(nd = {({™ }.1a}).(1a}.{b}).(1a}.1c}).(1a}.{d}),({a}.1b,d}).(1a}.1c.d}),
({b}.{e}).({c}.1e}).({d}.1e}).(1b.d}.{e}).({c.d}.1e}).(1e}.{m});}

Sel = {({»™}.{a}).(1a}.1b,d}),(1a},{c,d}).(ib.d}.1€}).(1¢.d}. e}). (1€}.{m});

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) > o and Data Science



L1 = [{a,b,c,e)?, {a,c,b,e)’, {a,d, e)] € BUzet™)

Sel = {({»™}.{a}).(1a}.{b,d}),(1a},(¢,d}).(1b.d}.1€}).(1c.d}. e}). (1€}.{m});

P({b,d}{e})

Cn n®

Pifer.mh)  tg

P{a},{b,d})

d

Bt Puien t

P{a}{c,d)

J |
i r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science




Remove place and transition

names to improve readability
L1 = [{a,b,c,e)?, {a,c,b,e)’, {a,d, e)] € BUzet™)




Ll — [(CL, b7 Ca €> 107 <(l, C, b7 €>57 <CL, d? 6>] S B(Z/[CLCt*)

DiLRS, HO-HO

Can be left out if end
activities do not
occur in the middle.

Can be left out if start
activities do not
occur in the middle.

Different from original paper to allow for a larger EU’E’-
class of models to be discovered correctly. ;,“Jé Chair of Process

© Wil van der Aalst (use only with permission & acknowledgements) and Data Science



Ll — [(CL, b7 Ca €> 107 <(l, C, b7 €>57 <CL, d? 6>] S B(Z/[CLCt*)

AV

? “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



Another example

L2 — [<a7 b? C? e>507 <a’? c7 b? €>4O7 <a7 b7 C? d? b? C7 €>307 <a7 C7 b? d? b7 C7 €>207
(a,b,c,d,c,b,e)'’ (a,c,b,d,c,b,d,b,c,e)']




Another example

[llustrates
why it makes
sense to add
an artificial
start and end.

Qv
| “ Pé Chair of Process
> O and Data Science



Properties of the Alpha algorithm

- Scalable (only needs the DFG)
* Guarantees for a subclass of free-choice nets.
» Cannot handle:

— Short loops (loops of length 1 or 2)

— Skipping (i.e., silent transitions).

* Although not practical in real-life scenarios, it nicely
illustrates the essence of process discovery.

- See “Workflow Mining: Discovering Process Models from
Event Logs. IEEE Trans. Knowl. Data Eng. 16(9): 1128-1142
(2004)” for guarantees and limitations. EvE:

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Example showing limitations

Ls = [(a)', (a,b)®, (a,c,b)°, (a,c,c,b)°, {a,c,c,c,b)]




Example in ProM

1856 cases, 11761 events, 197 variants

CT scan

X-ray

Q—b initial examination —»O—b lab tests final examination —bo
checkup order medicine —O\‘

administer medicine

Qv

i “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) hg O and Data Science



. ] : Chairof Process | j UNIVERSITY
and Data Science |, ;
© Wil van der Aalst (use only with permission & acknowledgements) < ..
T TREN



Top-down discovery

* Divide and conquer.

- Split the problem recursively into smaller problems
such that things get trivial.
* An example is the Inductive Mining (IM) technique:
— Uses process trees.
— The leading approach
- Implemented in ProM, Celonis, and many other tools.

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



.
o &
\ ¢
S ‘
N
i ] ? Chair of Process

Y ) 3 . » and Data Science | ,
© Wil van der Aalst (use only with permission & acknowledgements) . =3 . . " . /

i
S 4 = P .

R\WNTHAACHEN
- UNIVERSITY



A process tree

Semantics
p2 p4
b
t2
@) I O
pl tl t4 t5 p6
C
p3 i3 p5

Four types of operators: — (sequential
composition), x (exclusive choice), A E'"fgql
iti > i
© Wil van der Aalst (use only with permission & acknowledgements) (para”el CompOSItlon), and O (redo IOOp)- \’“L' é g::IB::aP;::?:I?:E



Another process tree

© Wil van der Aalst (use only with permission & acknowledgements)

Semantics

p2 p4
b
t2
a d e @
1 t4 t5 p6
C
p3 t3 p5

@V
* “ r’é Chair of Process
S O and Data Science



Another process tree

Semantics

P2

p3 t3 PS5




_ HEN
UNIVERSITY -

(use only with permission & acknowledgements)

F'd

© Wil van der A

™



Inductive Mining (IM)

- Decompose the event log into smaller events logs
until the problem get trivial.

* Four types of cuts corresponding to the operators:
— (sequential composition), x (exclusive choice), A
(parallel composition), and O (redo loop).

* In each step the activities are partitioned into
subsets until they are singletons.

* Developed by Sander Leemans in the context of his
P h D th es i s (NWO project “Don't Search for the Undesirable! Avoiding “Blind Alleys” in Process Mining” 2012-2017) »
PUFDY

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Event log

bi cb ac at as bo ep ck
p b p cb > ac > as ) at p bo > ep > ck 4
p b » cb > at > ac ) as p bo > ep > ck 4

p b > cb > at > am > ac > bo  ep > ck 4
p_bi > cb > am > ac > at > bo > ep > ck 4

Activities: buy ingredients
(bi), create base (cb), add
cheese (ac), add tomato
(at), add salami (as), add
mushrooms (am), bake in
oven (bo), eat pizza (ep),
and clean kitchen (ck).

© Wil van der Aalst (us n & acknowledgements

Chair of Process
and Data Science



Create a DFG for the whole event log

bi cb ac at as bo ep ck
p b p cb > ac > as ) at p bo > ep > ck 4
p b » cb > at > ac ) as p bo > ep > ck 4

p b > cb > at > am > ac > bo  ep > ck 4
p_bi > cb > am > ac > at > bo > ep > ck 4

Frequencies omitted for readability



Apply a sequence cut

There is a sequence cut when the DFG can be split into sequential E' »g—l
111 H ”» H J
parts where only “forward connections” are possible. Note that we :
| o need to use the non-reflexive transitive closure of F. LI é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > and Data Science



Sequence cut partitions activities in
siX subsets




Color the events based on the partitioning




|
Vg

J

1
>

itioning

ck
ck
ck

kkkk
OQgogo

A NA RA >>>> >>>

kkk
ON H&)
>// >// /

>>>>>>>>>>

N

Split the event Iog based on the part

Chair of Process
and Data Science

o}

&

& acknowledgements)

nly with permission

© Wil van der Aalst (use o



F|ve of the projected event logs refer to a

base case

EEEARRRELLLEEEE
§ BUEK GRRE CRE




The blue group has four activities




Recursion: Apply algorithm to all sublogs

) b 3 . p o > ol > a5 3 ) b0 3 p ok 3
) o 2 — D IEDICD B0 3 % ) o ¢
P b 3 S EDEDIED P B0 3 & p ok 3
p b 3 &Riaw WD P X
p b S DI IS b 0o ¢ S x»
) o S DD e x» 2y
p b g b5 $ DTS Ty x» p ok g
D b _g P b b ot o a o em § — ) ck_g
) 2= MDA & = L,
4 et EDICDID o4 x> —
——4 DI DI I St =n &
- — DD DD Smrm 4
e - BDEDEDIEDED -~ = 4
o WHEDIDIED
Five of the projected event logs refer E"’Q—'

Chair of Process

. o i >
© Wil van der Aalst (use only with permission & acknowledgements) to da Slngle aCtIVIty (base Case) . "’““" é and Data Science



Handling the base cases ...

) (o) m=

R )b p ac > at > am 4 T S
S p Do 4
— p c > am > at J S XD
S 2
= 4 x»
p o J S p at > ac > am J b ¢ x»
) b o et b o 3
— p at > am > ac J S ) o 3
) b g 4 pTo 3 =
b 5 3 o p am > ac > at J b o4
r—t — S x»
b2 p am > at > ac J —
) b 3 4 p ot > _ac D b0 x»
T, p EDEDEDEDED Ta
=D ——¢ T g =
S D p as > at > ac p ac 4 b0 3 XD
\—/ N
& )0 g X
——4 A T,
P SU - 4

v

i r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science

JLLR R



Only the blue event log remains




Continue with the blue event log

© Wil van der Aalst (use only with permission & acknowledgements)

There is a parallel cut when the
DFG can be split into
concurrent parts where any
activity in one part can be
followed by any activity in
another part.

Activities as and am
are not connected,
I.e., not concurrent

Vo
AV
v

] “ > Chair of Process
> O and Data Science



Apply a parallel cut resulting in three

| |

activit
mm There is a parallel cut when the DFG can be
IS srlitinto concurrent parts where any activity
in one part can be followed by any activity in

P at > ac ) as JESSIINE
p at > as > ac 4
p s > a0 > ol o S
p as > at ) ac 4

DI ILD
DRI KA

Fe g
Pili03
y ¥

i > Chair of Process
> O and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)






Three new event logs are created

Not a base case, still two
activities as and am.

Base case (just
activity at)

Base case (just
activity ac)

© Wil van der Aalst (use only with permission & acknowledgements)

[ mg Chair of Process
and Data Science



Handling the base cases ...

p o 4
= at — T
x»
p ac
p o 4 XD xz»
p ot 4
=2 | ac T e XD
r— x»
p ac
b oo pat 4 p om 4
p o 4 xw x»
P DI p am
p ac > ac g “m p am
p ac > ac > ac J > p am 3
T - Rgp—
e XD E;__-fg‘_,
xD P as i;f “ _r_’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) ﬁ > o and Data Science



)
=
q]
=
Q
-
(@)
o
o
c
)
>
Q
ro)
)
-
)
i e
wid
>
c
O

Oa\ ekl
3 ©
B

=
&)
®




Continue with the red event log

<
Q
E
o
o
e
>
Q
o
a
=
wv
o
o
=
<
£
=
>0
°
)
o
3
)
£,
o
E
20
Q
(o]
oy
5
IS
=
)
o
@
5]
3
o
>
g
L



We find an exclusive-choice cut

There is an exclusive-choice cut when the
DFG can be split into disconnected parts after
leaving out the artificial start and end.

i mg Chair of Process
and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)



We find an exclusive-choice cut

There is an exclusive-choice cut when the
DFG can be split into disconnected parts after
leaving out the artificial start and end.

Note that projection is now different

than for the sequence and parallel cuts. F ,E_E
© Wil van der Aalst (use only with permission & acknowledgements) m g::';;’::;z?:s:e



2] [am]

o) L

7))
Q
7y
©
&
Q
7y
©
0
O
S
jd
i e
o
S
Q.
-
o
c
D
=




The process tree returned by the
Inductive Mining algorithm




Can be visualized using Petri nets or BPMN

as

AV

am b .
P “ > Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) > o and Data Science




add cheese
(ac)

start {

buy
ingredients

(bi)

H

create base
(cb)

© Wil van der Aalst (use only with permission & acknowledgements)

add tomato
(at)

bake in oven
(bo)

add salami

(as)

add
mushrooms
(am)

|

eat pizza
(ep)

}

Can be visualized using Petri nets or BPMN

clean kitchen
(ck)

J end

@V

¢ “ r’é Chair of Process
> O and Data Science



The detalils

Definition 23 (Sequence, Exclusive-Choice, Parallel, and Redo-Loop Cuts). Let L € W v
B(Uact™) be an event log having a DFG disc,,.(L) = (A, F) based on L (norte that
A = act(L)) with start activities AS"*"* = {a € A | (»,a) € F} and end activities .
Aend = Lg € A| (a,m) € F}. An n-ary S-cut of L is a partition of A into n > 2 Process Mining
.. L. . Handbook
pairwise disjoint subsets Ay, As, ... Ay (e, A = Uz‘e{l,... n} Ajand AinA; =0
fori # j)with & € {—.,x, A, O}. Such a &-cut is denoted (&, A1, Aa, ... Ay). For
each type of operator & € {—, x, A\, O} specific conditions apply:

— An exclusive-choice cut of L is a cut (x, Ay, Aa, ... Ay) such that
® Vijer1,..n}Vaca,Voea; i #j = (a,b) € F.
— A sequence cut of L is a cut (—, Ay, Aa. ... Ay) such that
® Vije(1..n}Vaca,Voea; i <j = ((a,b) € FT A (bja) ¢ FT).
(Note that F is the non-reflexive transitive closure of F, i.e., (a,b) € F*
means that there is a path from a to b in the DFG.)
— A parallel cut of L is a cut (A, Ay, As, ... Ay) such that
® Vicq1,..np AiN Astart L () A AN A" L () and
L Vijje{l?mn}‘v’aeAiVbeAJ 1 7£J = ((1., b) e F.

@ .
-

sV

— A redo-loop cut of L is a cur (O, Ay, Ao, ... Ay,) such that 1A
o Astart | pend — Ay --g(‘\ e
b vi,jE{Q,...n}vaEAiviAj i F ] = (a, b) ¢ F, /E@%}y‘
e {acAy|(a.b)eF ANbg A} =A"
(a) exclusive-choice cut (b) sequence cut (c) parallel cut (d) redo-loop cut

o {acAi|(ba)eF A bg A} = Astort
L] V(a,b)EF a€ A1 AN Db §Z A = VarGAend ((Lf, b) e F, and E'1
° v(b,ﬂ,)EF a e Al A b g Al = VaxeAmr: (b a.") e F.

%)
T “ r_'é Chair of Process
hg and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)



Four types of cuts

(a) exclusive-choice cut (b) sequence cut (c) parallel cut (d) redo-loop cut

Vo
AV
: v

™| Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Another example

285 traces
15.36% of the lag

260 traces
14.01% of the log

138 traces

7.49% of the log initial examination j checkup

137 traces
7.38% of the log

initial examination jREERCES

124 traces

5.68% of the log initial examination

113 traces

5.00% of the log initial examination

checkup

T2 traces

3.88% of the log initial examination

checkup

T2 traces

3.88% of the log initial examination

CT sean Jj checkup MEFECSS

final examination

mination

20 traces

1.58% of the log initial examination

checkup

e e e e

administer medicine Jjcheckup

final examination

22 traces
1.51% of the log

initial examination }y eheckup

1 [ @[] @[ [

)
)

e

administer medicine Jj checkup )GT!:IH fin amination

27 traces
1.45% of the log

© Wil van der Aalst (use only with permission & acknowledgements)

initial examination ) CT scan JHELRESEN checkup (SIGEIRETNLEHET

Just 11 of 197 variants

checkup

g
ie

lab tests

143

127

176 369

685 347

final examination

« 1856 cases, 197 variants
* 11761 events
* 8 unique activities

Chair of Process
and Data Science



Alpha algorithm (ProM)

order medicine

administer medicine checkup

- 1nitial examination lab tests final examination

X-ray

CT scan

Qv

i “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



Inductive visual miner (ProM)

initial examination 1856 1856
1856 >

1856 1856 1856

© Wil van der Aalst (use only with permission & acknowledgements)

1856

1856
1856

927

929

2683
827

lab tests

20:46:02:

BRI final examination

1856
1 1
= 856 M 1856
827
1856
927
929
1856
- -
: 85
1 1
927 856 856
1856

1856

ALy

Chair of Process
and Data Science



Different visualizations in ProM

b r_'é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



Mapped onto an accepting Petri net

\
administer medicine
checkup order medicine
initial examination lab tests final examination
X-ray
CT scan ‘

AV

? “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



Celonis also rep

orts 1856 cases, 197

variants, and 11761 events

5a!gminist.c_-r medicine
o, . "

83 158
/ / 534 8ad
LY

- il X-ra
%P' 027 Y

ksfk_ 178
sl

/

final examination
1,656

1,858
@ Eggﬁcess End

= Foom o

o]

= . initial examination
p 1.558

s
'y CT scan
e 420,

R

188, 383

Most common variant w Graph* | ¥
0% 10% 2% W%
- e —— e

E

B b 4

u
B

g
W

8 ;]
™

w7 100% <_

of 187 variants of cases coverad



Celonis finds the same process tree
using the Inductive Mining algorithm




Also works well on large real-life event logs

(but you need to put in the work)

= | et E"['f@

b= ! “ _r_'é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) T oot > o and Data Science



Summary: Inductive Mining

- The models are guaranteed to be sound, i.e., no
deadlocks, no livelocks, and no other anomalies.

- The basic algorithm guarantees that the event log can be
reproduce completely (of course one can filter if desired).

* The algorithm has good performance (and there are also
more scalable variants) and implemented in several tools.

* There are various additional theoretical guarantees, lI.e.,
rediscover the process tree used to create the event log.

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) hg O and Data Science



© i SR ez, [ UNIVERSITY -

© Wil van der Aalst | : ly with permission & acknowledgements) . 5 . . IR
hEt usegD , ; Py



Foundations of Process Discovery

Baseline: Discovering DFG + filtering

Bottom-up Top-down
discovery discovery

Alpha Inductive
algorlthm mining




Discovery is just one of many techniques

information
systems
extract
4: Comparative
Process Mining
1: Process -
Discovery 3: Performance =
Analysis
explore select
filter show
. act
clean interpret
- drill dops . .
Wik 6: Action-Oriented

Process Mining

e
-“

Fe g
Pili03
¥

i “ | Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) hg O and Data Science



WWWw.processmining.org
WWwWWw.process-mining-summer-school.org
www.tf-pm.org

www.promtools.org
www.celonis.com/academic-signup
xes-standard.org

ocel-standard.org
www.pads.rwth-aachen.de
www.vdaalst.com Pl D¥

? “ r_'é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



Online courses

« Coursera course
“Process Mining: Data
science in Action”

Register via coursera.org/learn/process-mining
(152.345 participants since 2015).

* Celonis/RWTH course
“Process Mining: From
Theory to Execution”

Register via www.celonis.com/wils-process-
mining-class.

© Wil van der Aalst (use only with permission & acknowledgements)



B O O ks (not intended to be complete)

SPRINGER BRIEFS IN
BUSINESS PROCESS MANAGEMENT

Wil M. P. van der Aalst - I — Modeling

Josep Carmona (Eds.) | Ronny.S.Mans e
L WilMPvanderAalst BUSH'IESS PFOCESSES
Wil M. P.van der Aalst _ Rob J.B. Vanwersch

Process Mining

_ PrOCESS | in Healthcare

M A (E)valua;ing fﬂd E|>t( loiting
. o Wil van der Aalst Ining e -
Process Mining M| e

Handbook PTOCESS i _

A Petri Net-Oriented Approach

LNBIP 448

Andreas Solti Erik-an van der Linden
Matthias Weidlich

Successful

8 ¢ !
L )
7 ~ Josep Carmona j
i’ Boudewijn van Dongen :

Conformance

Proceslemng Checlin g

Second Edition in Action

Principles, Use Cases and Outlook

@ Springer

@ Springer &) Springer

Chair of Process
and Data Science

© Wil van der Aalst (use only with permission & acknowledgements)



	Foundations of Process Discovery
	Recap: Six types of process mining�In this lecture, we focus on process discovery
	Outline: Foundations of Process Discovery
	Main idea of process discovery
	The main idea (informal)
	The main idea (formal)
	Example
	How discover a process model?
	Baseline approach using DFGs
	Baseline approach: DFGs
	Language of a DFG
	Baseline discovery�Your first discovery algorithm in just two lines of mathematics
	DFG discovery in ProM
	DFG discovery in ProM
	DFG discovery in ProM
	DFG Discovery in Celonis
	What if we get Spaghetti instead of Lasagna?
	What if we get Spaghetti instead of Lasagna?
	What if we get Spaghetti instead of Lasagna?
	What if we get Spaghetti instead of Lasagna?
	Filtering
	Filtering
	Activity-based filtering (top 7 of 24 activities)
	Activity-based filtering (top 7 of 24 activities)
	Variant-based filtering (most frequent variant only)
	Variant-based filtering (top 5 variants)
	Variant-based filtering (top 10 variants)
	Variant-based filtering (all 655 variants)
	Challenges
	Challenges
	Visualizing the challenges
	What we would like to know, �but cannot know
	Therefore, there are many approximations (often using proxies)
	Bottom-up discovery
	Bottom-up discovery
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Final accepting Petri net
	Accepting Petri Nets
	Examples of accepting Petri nets
	Example of an accepting Petri net and its language (1/4)
	Slide Number 48
	Example of an accepting Petri net and its language (3/4)
	Example accepting Petri net and its language (4/4)
	Accepting Petri nets & process mining
	Alpha Algorithm
	Just eight lines of mathematics, based on the DFG created before
	Remember DFGs
	Two relations based on the DFG
	Step 1: Create candidate places
	Step 1: Create candidate places
	Step 1: Create candidate places
	Many overlapping places
	Many overlapping places
	Step 2: Only use the maximal candidates
	The rest is just bookkeeping
	Example
	Example
	Remove place and transition names to improve readability
	Example
	Example
	Another example
	Another example
	Properties of the Alpha algorithm
	Example showing limitations 
	Example in ProM�1856 cases, 11761 events, 197 variants
	Top-down discovery
	Top-down discovery
	Process Trees
	A process tree
	Another process tree
	Another process tree
	Inductive Mining
	Inductive Mining (IM)
	Event log
	Create a DFG for the whole event log
	Apply a sequence cut
	Sequence cut partitions activities in six subsets
	Color the events based on the partitioning
	Split the event log based on the partitioning
	Five of the projected event logs refer to a single activity (base case)
	The blue group has four activities
	Recursion: Apply algorithm to all sublogs
	Handling the base cases (ep can be skipped)
	Only the blue event log remains
	Continue with the blue event log
	Apply a parallel cut resulting in three activity groups
	Apply a parallel cut resulting in three activity groups
	Three new event logs are created
	Handling the base cases (ac can be repeated)
	Only the red event log remains
	Continue with the red event log
	We find an exclusive-choice cut 
	We find an exclusive-choice cut 
	We end up with two base cases
	The process tree returned by the Inductive Mining algorithm
	Can be visualized using Petri nets or BPMN
	Can be visualized using Petri nets or BPMN
	The details
	Four types of cuts
	Another example
	Alpha algorithm (ProM) 
	Inductive visual miner (ProM)
	Different visualizations in ProM
	Mapped onto an accepting Petri net
	Celonis also reports 1856 cases, 197 variants, and 11761 events
	Celonis finds the same process tree using the Inductive Mining algorithm
	Also works well on large real-life event logs�(but you need to put in the work)
	Summary: Inductive Mining
	Conclusion
	Foundations of Process Discovery
	Discovery is just one of many techniques
	Websites
	Online courses
	Books (not intended to be complete)

