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Recap: Six types of process mining

In this lecture, we focus on process discovery
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Outline: Foundations of Process Discovery

At times, | refer to the

Baseline: Discovering DFG + filtering Crtor 2 1o o that
with the right tools one can

be precise and compact.

Bottom-up Top-down
discovery discovery

sep Carmona (Eds.)

& Process Mining

Alpha Inductive
algorithm mining
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The main idea (informal)
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(c) Accepting Petri Net (APN): M, ,.é
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The main idea (formal)

Definition 1 (Event Log). U, is the universe of activity names. A trace o = {a, as,

Q) € Uaet™ IS a sequence of activities. An event log L € B(Uqc+™) is a multiset of
traces.

Definition 2 (Process Model). U1, is the universe of process models. A process model
M € Uy defines a set of traces lang(M) C U,

Definition 3 (Process Discovery Algorithm). A process discovery algori rhW Is a func-
tion disc € B(U,+™) — Uy, i.e., based on a multiset of traces, a model is produced.

Qv
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Ly = [<a7 b, C, €> 107 <CL, C, ba €>57 <CL, d7 €>] = B(Z/{aCt )

lang(M?)) — {<CL, b7 C, €>7 <CL, C, b7 €>7 <a’7 d7 €>} g Z/{a,ct*

Coincidence, model may
allow for more or less than
observed in the event log.

Event log L;

15 15
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How discover a process model?

- Base-line approach using Directly Follows Graphs (DFGs)
- Bottom-up discovery

- Alpha algorithm
* Top-down discovery

— Inductive Mining (IM) algorithm

Definition 1 (Event Log). U/, is the universe of activity names. A trace o = (a1, as,

sy € Uaet™ T a sequence of activities. An event log L € B(Uaet™) is a multiset of
traces.

Definition 2 (Process Model). U{y; is the universe of process models. A process model
M € Uy, defines a set of traces lang(M) C U,

Definition 3 (Process Discovery Algorithm). A process discovery algorith% is a func-
tion disc € B(Uyet™) — Uy, 1.e., based on a multiset of traces, a model is produced. E’l’ E
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Baseline approach: DFGs

Definition 4 (Directly-Follows Graph). A Directly-Follows Graph (DFG) is a pair
G = (A, F) where A C U, is a set of activities and F € B((A x A)U ({»} x A) U
(A x {m})U ({»} x {m})) is a multiset of arcs. » is the start node and W is the end
node ({». B} NU,et = 0). Ua C Uy is the set of all DFGs.

© Wilvan de

rrrrrr (use only with permission & acknowledgements)

Graph with nodes representing activities and start » and end m.

Behavior starts with dummy activity »and ends with dummy
activity m. Node » Is a source node and =m is a sink node.

Arcs represent the directly-follows relation.
Multisets to represent frequencies.
Can be viewed as summary of the data!




Language of a DFG

Definition 5 (Traces of a DFG). Let G = (A, F') € U be a DFG. The set of possible
traces described by G is lang(G) = {{as,az,...,apn_1) | a1 = » A a, = B A
Vi<ien (@i,aiy1) € F}.

- Possible traces: All paths possible according to the graph
starting in node »and ending in node .

 Recall: » Is a source node and = is a sink node.

1 1
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Baseline discovery

Your first discovery algorithm in just two lines of mathematics

Definition 6 (Baseline Discovery Algorithm). Let . € B(U,.+") be an event log.
disc,..(L) = (A, F) is the DFG based on L with:

- A={a€o|o€L}and
- FZ[(O‘@,O‘@+1)|O‘€L’ /\ 1§’Z<‘O‘HWithL’:KP)'O"(l)|O‘€L].

AT
~_
(a,b,c,e)t!
(a,c,b,e)’
(a,d,e)
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DFG discove
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DFG discovery in ProM

E)-)-)) Directly-follows visual
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DFG discovery in ProM

S - e - ) Animation of the event
e log on top of the model
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DFG Discovery in Celonis
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What if we get Spaghetti instead of

Greate Purcha... GCreate Purchase Ord.. Print and Send Purcha...

210 traces
7.81% of the log

Create Purehase Ord... Print and Send Purcha...

170 traces
B.41% of the log

GCreate Purchase Ord... Frint and Send FPurcha...

108 traces
4.11% of the log

Greate Purchase Ord... Print and Send Purcha...

82 traces
3.09% of the log

ods Receipt

Create Pureha... Create Purehase Ord... Print and Send Purcha...

78 traces
2.84% of the log

70 traces Create Purchase Ord...

2.64% of the log

Create Purchase Ord... Print and Send Purcha...

G2 traces
2.34% of the log

“endor ereates Invoice

Create Pureha... Create Purehase Ord... Frint and Send Fureha...

57 traces
2.15% of the log

Create Purchase Ord... Print and Send Purcha...
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2.03% of the log

‘fendor ereates Invoice

Create Purcha... Create Purchase Ord... Print and Send Purcha...
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1.81% of the log

Create Purehase Ord... Frint and Send Fureha...

43 traces
1.62% of the log
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Wendor creates Invaice

Vendor creates Invaice

Wendor creates Invaice

Wendor creates Invaice

ods Receipt

Purchase to Pay
(P2P).

- 2654 cases

16226 events

* 685 variants

* 24 unique activities

Still relatively simple,
but ...

i “ > Chair of Process
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What if we get Spaghetti instead of
Lasagna?

29

Create Purchase Order Item

Data-aware heuristic miner plug-in
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What if we get Spaghetti instead of

Lasagna?
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What if we get Spaghetti instead of
Lasagna?

Adestmart S

Pllo}
Celonis process explorer $ "é
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» Activity-based filtering: Rank the activities (e.g.,
based on frequency) and remove lower-ranked
activities completely from your data.

» Variant-based filtering: Rank the variants (e.g., based
on frequency) and remove lower-ranked variants. A
variant is simply a sequence of activities and may
occur multiple times.

* Arc-based filtering (not recommended!): Delete arcs
in the DFG (e.g., based on frequency). .

i “ r’é Chair of Process
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Activity-based filteri NJ (top 7 of 24 activities)
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Activity-based filteri NQ (top 7 of 24 activities)
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Va l'i d nt'based fi Ite I'i n (most frequent variant only)
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t'based fi Ite I'i n g (top 5 variants)
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Va riant'based fi Ite I'i n (top 10 variants)
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Va l'i a nt-baSEd fi Ite I'i n g (all 655 variants)
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Challenges

* If the model allows for a loop, we have infinitely
many possible traces. This can never be observed!

* The event log just shows examples, the fact that
something did not happen does not mean it cannot.

- We do not have negative traces, l.e., it is not a
classification problem.

* Hence, precision and recall cannot be defined in the
usual manner.

i “ r’é Chair of Process
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Visualizing the challenges

Real process

mmm I N
(only known in - - T Language of the model
lab experiments). ,/ (typically infinitely or
e factorial many traces).
' 4
# Eventlog (just
examples)
/4
I
\
\
\
\\
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b4 Pé Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



What we would like to know,

but cannot know

Real process
(only known in

lab experiments). ,/’

-y
= i~ Language of the model

(typically infinitely or
factorial many traces).

/
/

V - -
- -
.y ma
foE mm = m Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) and Data Science



See later lectures!

Therefore, there are many

dPl I’OXimationS (often using proxies)

* Replay fitness (using the fraction of fitting traces on
the event log, token-based, or alignment based).

* Precision (e.g., escaping edges).

» Simplicity (e.g., number of arcs).

* Generalization (e.g., likelihood that the next trace will
fit given some assumptions about the distribution).

Check out stochastic conformance checking!

Sander Leemans, Wil van der Aalst, Tobias Brockhoff, Artem Polyvyanyy: Stochastic
process mining: Earth movers' stochastic conformance. Inf. Syst. 102: 101724 (2021) E'J’g—'
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Bottom-up discovery

- Assume that anything is possible.

- Start adding constraints supported by the data.

- A Petri net place is a constraint.

* Accepting Petri-nets are surprisingly declarative.

ac

bi cb at bo ep ck

as

am

EVEn
Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add é

salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck). 'L“L," Chair of Process

© Wil van der Aalst (use only with permission & acknowledgements) and Data Science



Places as constraints

Place specifies that buy
ingredients (bi) should
happen precisely once.

An accepting Petri net has an initial and final marking (here the final marking is [ ], i.e., no tokens).

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

Place specifies that clean
kitchen (ck) should
happen precisely once.

An accepting Petri net has an initial and final marking (here the final marking has one token in sink place).

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

* #bi = #cb at the end of each case
« #bi 2 #cb at any point in time

ac
at bo ep ck @
as

Place specifies that bi and cb am

should happen the same number

of times. Moreover, at any stage A place defines a local constraint.
the number of occurrences of cb
should not exceed the number of

occurrences of bi.
Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add m
Chair of Process

salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck). and Data Science
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Places as constraints

» #ep = #ck at the end of each case
* #ep 2 #ck at any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

» #bo= #ep at the end of each case
» #bo 2 #ep at any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

acC

as

 #cb = #as+#am at the end of each case
« #cb 2 #as+#am at any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&




Places as constraints

acC

as |

e #as+#am = #bo at the end of each case
« #as+#am 2 #bo any point in time

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Places as constraints

 #ac=#bo at the end of each case
« #ac 2 #bo at any point in time

acC |

as

am

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add Chair of P
© Wil van der Aalst (use only with permission & acknowledgements) salami (as), add mushrooms (am)’ bake in oven (bO), eat pizza (ep)’ and clean kitchen (Ck) m an:'IrJ:ta ;2?:[?:&



Final accepting Petri net

A
O

OO

as

am

Also every intermediate model was an accepting Petri net!
Bottom-up process discover uses this locality principle!

PIYyD}
Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add : ]
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck). -L“{_-f-' Chair of Process
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Examples of accepting Petri nets

Definition 14 (Accepting Petri Net). An accepting Petri net is a triplet AN = (N,
p4 p2 p4 Minit, Mfinar) where N = (P, T, F,l) is a labeled Petri net, M;,;; € B(P) is the

2
: b b initial marking, and Mg, € B(P) is the final marking. Uan < Uy is the set of
accepting Petri nets.
t2 t2
@—> a d e —»@ @—> a d e —»@ o B}
1 * |nitial and final
p3

pl t t4 t5 p6 pl t1 t4 t5 p6
i % C% i marking.

t3 p5 p3 t3 p5

(a) ANy = (Ny,[p1],[p6]) (b) AN, = (N5, [p1],[p6]) . ngw
. , . Labeled tra_n_3|_t|ons to
refer to activities.

pl @
i1 /t4 .
%[; d @ @fl  Allows for transitions
b >>( )
p2 t2

with the same or no

p3 B label.
(c) ANz = (Ns,[p1,p2],[p4,p5]) (d) ANg = (N4, [p1],[p6]) E.f@j

] “ r’é Chair of Process
> O and Data Science
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Example of an accepting Petri net and
its lanc

p3 t3 p5
(a) AN; = (Ny,[p1],[p6])

lang(AN1) = {(a.b.c.€),{(a,c,b.¢e), (a.d,e)}

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) > o and Data Science



Example of an accepting Petri net and
its language (2/4)

p3 t3 p5
(b) AN, = (N,,[p1],[p6])

lang(ANs) = {(a.b,c,e),{a,c,b,e),{a,b,c,d,b,c,e),{a,c,b,db,c,e),
..., {a,c,b,d,b,c,d,c,b,d,c,b,e),...}

PlD3
? “ r’é Chair of Process
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Example of an accepting Petri net and

its lanc

3 _,Q Initial and final markings
il may refer to multiple
/ t4 tokens and places.

P2 t2 pP3
(c) AN5 = (Ns3,[p1,p2],[p4,p5])

lang(AN3) = {(a,b,d), (b,a,d). (b,d,a).(c,d)}

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) > o and Data Science



Example accepting Petri net and its

Two transitions have
the same label and
two are silent.

p3 t3 p5
(d) AN, = (Ng4,[p1],[p6])

lan’g(AN4) — {<a’a ba (l>, <CL, a, b>: <(l, ba a, ba a>a <01, a, bﬂ bﬂ a>a SR
(a,a,b,b,a,a,b,a,b),...}

i r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Accepting Petri nets & process mining

* A lot of powerful analysis techniques exist for
accepting Petri nets.

- For example, alignments are based on this.

- We can map the relevant subsets of BPMN, process
trees, etc. onto accepting Petri nets.

* No need to restrict to workflow nets or transition
with unique visible labels.

» Surprisingly declarative!!
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Just eight lines of mathematics, based

on the DFG created before

Definition 22 (Alpha Algorithm). The alpha algorithm discaphe € BUger™) —

Uan returns an accepting Petri net discqpnq (L) for any event log L € B(Uget"). .
Th tat

Let A = act(L) and fp(L) = fp(disc,,. (L)) the footprint of event log L. This allows diffeerperr?tsfer(r;ri lﬁg "

us to write a1 —p as if fp(L)((a1,a2)) = — and ar#rpas if fp(L)((a1,as)) = # for original algorithm, but
any a,,a, € A’ = AU {».m}. ’

in essence it is the

I Cnd = {(A;,A2) | Ay C A AN AL #O AN Ay CTA AN Ay #0 A same.
Varea, Vasea, a1 =1 Gz N Yo, avea, a1FLas N Yo, avea, a1 ras} are the * We add an artificial
candidate places, | | start and end to

2. Sel = {(A1.4s) € Ond | V(s apyecna A1 © A] NAy C A) = (A1, Ap) = overcome the usual

Y . problems.
(A%, AL)} are the selected maximal places, . Also it builds on the

3. P=A{pa, ., | (A1, A2) € Sel} U{pp,pg} is the set of all places, DFG and any tool
4. T ={ty | a € A’} is the set of transitions, can produce this!
5. B ={(tapayan) | (A1, Ax) € Sel N a € Ary U (pra, a,).ta) [ (A1, A2) € . We can filter before.

Sel N a € Ast U{(pw.ty). (Lg.pg)}t is the set of arcs,
6. | ={(ty,a)| ae€ A} isthe Zabelmg function,
7. Myt = [py] is the initial marking, Mgy, = [p.] is the final marking, and
8

- discapna (L) = (P, T, F,1), Minit, Mfnal) is the discovered accepting Petri net. El,’gﬁ

i “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science




Remember DFGs

Definition 6 (Baseline Discovery Algorithm). Ler L € B(U,.:") be an event log.
disc,,..(L) = (A, F) is the DFG based on L with:

- A={a€o|oc€L}and
- F=|(04,0i01) |cel’ N1 <i<|o|lwithl'=[(»)-c-(m)|oc € L]
Graph with nodes representing activities and start » and end m.

Behavior starts with dummy activity »and ends with dummy
activity m. Node » Is a source node and =m is a sink node.

Can be filtered using one of
the three approaches.

AVE)
] “ r’é Chair of Process
> O and Data Science
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Two relations based on the DFG

* a; —; a, means that a, is connected to a, in the
DFG but not the other way around, i.e., a one-
directional arc.

* a,#; a, means that a; is not connected to a, and a,
Is not connected to a;.

* Note that notation also applies to start » and end m.

» Ais the set of activitiesand A’ = A U {»,m} includes
the start and end node.

« A'=AU{p»,m}, —»; and #; are all we use! E'%
e o o oo & oot 1A [ S Barbilid



Step 1: Create candidate places

[. Cnd = {(Al,Ag) ‘ A C 1/4’ A Ay # H A AQ A’ A Ao # H A
Vorea, Vaseds 1 1 a2 A Yy ared, G1F1002 N Vo,uiiea, a1# 102} are the
candidate places; ,,,,,,,,

/// II ”,” /// ”””””
// /- /’/’,—
.7 At ,—’37’
// ’,’ r =T g
’ - / _ - P
// ,” / -=" e

a; - a; means that 04-1S connected to a; i m,the DFG
but ngt the” other- way around, i.e/, a one-dtrectlonal arc.
a,#; a, means that a4 is not co’nnecte’d to a, and a, is
not connected to a;. v K’

A is the set of activities and A" = A U {P» ,m} includes the
start and end node.

P fg‘-

? “ r_'é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > o and Data Science



Step 1: Create candidate places

].Cnd:{(Al,Ag)‘AlgA’/\Al#(zj/\AggA’/\Ag#@/\

valeﬂva@Eﬂg a1 —[ a2 A val,CLQEA]_ a‘l#Lag A Val,agEAg al#LaQ} are the
candidate places,

4 ) 4 )
a [ —
/
b
# ><\ #
v 1 €
C
g J g J
Aq A

PlD3
? “ r’é Chair of Process
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Step 1: Create candidate places

].Cnd:{(Al,Ag)‘AlgA’/\Al#(zj/\AggA’/\Ag#@/\

valeﬂva@Eﬂg a1 —[ a2 A val,CLQEA]_ a‘l#LaQ A Val,agEAg al#LaQ} are the
candidate places,
Represents a place!

4 ) 4 ) 4 ) 4 )
al a
\\\» q N d
» /
" "
#|b # b .
~. - —
c — ] c P
\_ Y, \_ Y, \_ Y, \_ Y,
Al Az Al AZ
@)



Many overlapping places

4 ) 4 ) 4 ) 4 )
al al|
\\\Td \\Td#

" "
b # b
# ><\ ‘ # /
e —| e _—
c c
\_ ), \_ ), \_ ), \_ ),
4 ) 4 )
\ )
H# \ 1 d
b #
\e
N\ , N\ , E,;@—I

i “ r’é Chair of Process
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Many overlapping places

g - : : A If ({a, b, c},{d,e}) is a candidate then also
~ T (la,b},1d, e}), (1a,c},1d, e}), (1b, ¢}, 1d, e}),
# [o ><< # (la, b, c},1d}), (1a, b, c}, te}), (1a}, 1d, e}),
- — e (1b},1d, e}), (ic},1d, e}), (ia, b}, 1d}),
c (a,c},1d}), (ib,c}, 1d}), (1a, b}, te}),
- / \ / (a,ch1e}), (b, c} e}), (la) 1d}),
(laj, te}), (1b}, 1d}), (1b} te}), (ic},1d}),
Defines 20 smaller candidates! and ({C}, {e}) |



Step 2: Only use the maximal candidates

2. Sel = {(Al,Ag) c Cnd | v(A’i,Aé)ECnd A1 C All /\AQ C AIQ — (AlaAQ) —

(A%, AL)} are the selected maximal places,

( ) ( )
=
"
b
# ><\ #
] — ©
C
. J . J
It should be impossible to add an activity to A; or A4, BvEh

? “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



The rest is just bookkeeping

e

P ={pca, A, | (A1, A2) € Selt U{py, pg}t is the set of all places,

T ={t, | a € A’} is the set of transitions,

F = {(tmp(ﬂhﬂz)) ‘ (AlvAQ) € Sel N a € Al} U {(p(ALAQ)?tG) | (AlvAQ) S
Sel N a € A} U{(pp,ty), (tg,ng)} Is the set of arcs,

[ ={(ta,a) | a € A} is the labeling function,

Mt = |pw| is the initial marking, M fiyq; = [p.] is the final marking, and

disc aipha (L) = (P, T, F, 1), Minit, Mfina) is the discovered accepting Petri net.

R

0N

Add places, transitions, arcs, and initial and final marking.

i “ r’é Chair of Process
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Ll — [(CL, b7 Ca €> 107 <(l, C, b7 €>57 <CL, d? 6>] S B(Z/[CLCt*)

(nd = {({™ }.1a}).(1a}.{b}).(1a}.1c}).(1a}.{d}),({a}.1b,d}).(1a}.1c.d}),
({b}.{e}).({c}.1e}).({d}.1e}).(1b.d}.{e}).({c.d}.1e}).(1e}.{m});}

Sel = {({»™}.{a}).(1a}.1b,d}),(1a},{c,d}).(ib.d}.1€}).(1¢.d}. e}). (1€}.{m});

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements) > o and Data Science



L1 = [{a,b,c,e)?, {a,c,b,e)’, {a,d, e)] € BUzet™)

Sel = {({»™}.{a}).(1a}.{b,d}),(1a},(¢,d}).(1b.d}.1€}).(1c.d}. e}). (1€}.{m});

P({b,d}{e})

Cn n®

Pifer.mh)  tg

P{a},{b,d})

d

Bt Puien t

P{a}{c,d)

J |
i r’é Chair of Process
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Remove place and transition

names to improve readability
L1 = [{a,b,c,e)?, {a,c,b,e)’, {a,d, e)] € BUzet™)




Ll — [(CL, b7 Ca €> 107 <(l, C, b7 €>57 <CL, d? 6>] S B(Z/[CLCt*)

DiLRS, HO-HO

Can be left out if end
activities do not
occur in the middle.

Can be left out if start
activities do not
occur in the middle.

Different from original paper to allow for a larger EU’E’-
class of models to be discovered correctly. ;,“Jé Chair of Process

© Wil van der Aalst (use only with permission & acknowledgements) and Data Science



Ll — [(CL, b7 Ca €> 107 <(l, C, b7 €>57 <CL, d? 6>] S B(Z/[CLCt*)

AV

? “ r’é Chair of Process
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Another example

L2 — [<a7 b? C? e>507 <a’? c7 b? €>4O7 <a7 b7 C? d? b? C7 €>307 <a7 C7 b? d? b7 C7 €>207
(a,b,c,d,c,b,e)'’ (a,c,b,d,c,b,d,b,c,e)']




Another example

[llustrates
why it makes
sense to add
an artificial
start and end.

Qv
| “ Pé Chair of Process
> O and Data Science



Properties of the Alpha algorithm

- Scalable (only needs the DFG)
* Guarantees for a subclass of free-choice nets.
» Cannot handle:

— Short loops (loops of length 1 or 2)

— Skipping (i.e., silent transitions).

* Although not practical in real-life scenarios, it nicely
illustrates the essence of process discovery.

- See “Workflow Mining: Discovering Process Models from
Event Logs. IEEE Trans. Knowl. Data Eng. 16(9): 1128-1142
(2004)” for guarantees and limitations. EvE:

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science



Example showing limitations

Ls = [(a)', (a,b)®, (a,c,b)°, (a,c,c,b)°, {a,c,c,c,b)]




Example in ProM

1856 cases, 11761 events, 197 variants

CT scan

X-ray

Q—b initial examination —»O—b lab tests final examination —bo
checkup order medicine —O\‘

administer medicine

Qv

i “ r’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) hg O and Data Science
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Top-down discovery

* Divide and conquer.

- Split the problem recursively into smaller problems
such that things get trivial.
* An example is the Inductive Mining (IM) technique:
— Uses process trees.
— The leading approach
- Implemented in ProM, Celonis, and many other tools.

i “ r’é Chair of Process
© Wil van der Aalst (use only with perm ission & acknowledgements ) hg O and Data Science
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A process tree

Semantics
p2 p4
b
t2
@) I O
pl tl t4 t5 p6
C
p3 i3 p5

Four types of operators: — (sequential
composition), x (exclusive choice), A E'"fgql
iti > i
© Wil van der Aalst (use only with permission & acknowledgements) (para”el CompOSItlon), and O (redo IOOp)- \’“L' é g::IB::aP;::?:I?:E



Another process tree

© Wil van der Aalst (use only with permission & acknowledgements)

Semantics

p2 p4
b
t2
a d e @
1 t4 t5 p6
C
p3 t3 p5

@V
* “ r’é Chair of Process
S O and Data Science



Another process tree

Semantics

P2

p3 t3 PS5
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Inductive Mining (IM)

- Decompose the event log into smaller events logs
until the problem get trivial.

* Four types of cuts corresponding to the operators:
— (sequential composition), x (exclusive choice), A
(parallel composition), and O (redo loop).

* In each step the activities are partitioned into
subsets until they are singletons.

* Developed by Sander Leemans in the context of his
P h D th es i s (NWO project “Don't Search for the Undesirable! Avoiding “Blind Alleys” in Process Mining” 2012-2017) »
PUFDY

i “ r’é Chair of Process
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Event log

bi cb ac at as bo ep ck
p b p cb > ac > as ) at p bo > ep > ck 4
p b » cb > at > ac ) as p bo > ep > ck 4

p b > cb > at > am > ac > bo  ep > ck 4
p_bi > cb > am > ac > at > bo > ep > ck 4

Activities: buy ingredients
(bi), create base (cb), add
cheese (ac), add tomato
(at), add salami (as), add
mushrooms (am), bake in
oven (bo), eat pizza (ep),
and clean kitchen (ck).

© Wil van der Aalst (us n & acknowledgements

Chair of Process
and Data Science



Create a DFG for the whole event log

bi cb ac at as bo ep ck
p b p cb > ac > as ) at p bo > ep > ck 4
p b » cb > at > ac ) as p bo > ep > ck 4

p b > cb > at > am > ac > bo  ep > ck 4
p_bi > cb > am > ac > at > bo > ep > ck 4

Frequencies omitted for readability



Apply a sequence cut

There is a sequence cut when the DFG can be split into sequential E' »g—l
111 H ”» H J
parts where only “forward connections” are possible. Note that we :
| o need to use the non-reflexive transitive closure of F. LI é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) > and Data Science



Sequence cut partitions activities in
siX subsets




Color the events based on the partitioning




|
Vg

J

1
>

itioning

ck
ck
ck

kkkk
OQgogo

A NA RA >>>> >>>

kkk
ON H&)
>// >// /

>>>>>>>>>>

N

Split the event Iog based on the part

Chair of Process
and Data Science
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F|ve of the projected event logs refer to a

base case

EEEARRRELLLEEEE
§ BUEK GRRE CRE




The blue group has four activities




Recursion: Apply algorithm to all sublogs

) b 3 . p o > ol > a5 3 ) b0 3 p ok 3
) o 2 — D IEDICD B0 3 % ) o ¢
P b 3 S EDEDIED P B0 3 & p ok 3
p b 3 &Riaw WD P X
p b S DI IS b 0o ¢ S x»
) o S DD e x» 2y
p b g b5 $ DTS Ty x» p ok g
D b _g P b b ot o a o em § — ) ck_g
) 2= MDA & = L,
4 et EDICDID o4 x> —
——4 DI DI I St =n &
- — DD DD Smrm 4
e - BDEDEDIEDED -~ = 4
o WHEDIDIED
Five of the projected event logs refer E"’Q—'

Chair of Process

. o i >
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Handling the base cases ...

) (o) m=

R )b p ac > at > am 4 T S
S p Do 4
— p c > am > at J S XD
S 2
= 4 x»
p o J S p at > ac > am J b ¢ x»
) b o et b o 3
— p at > am > ac J S ) o 3
) b g 4 pTo 3 =
b 5 3 o p am > ac > at J b o4
r—t — S x»
b2 p am > at > ac J —
) b 3 4 p ot > _ac D b0 x»
T, p EDEDEDEDED Ta
=D ——¢ T g =
S D p as > at > ac p ac 4 b0 3 XD
\—/ N
& )0 g X
——4 A T,
P SU - 4

v

i r’é Chair of Process
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Only the blue event log remains




Continue with the blue event log

© Wil van der Aalst (use only with permission & acknowledgements)

There is a parallel cut when the
DFG can be split into
concurrent parts where any
activity in one part can be
followed by any activity in
another part.

Activities as and am
are not connected,
I.e., not concurrent

Vo
AV
v

] “ > Chair of Process
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Apply a parallel cut resulting in three

| |

activit
mm There is a parallel cut when the DFG can be
IS srlitinto concurrent parts where any activity
in one part can be followed by any activity in

P at > ac ) as JESSIINE
p at > as > ac 4
p s > a0 > ol o S
p as > at ) ac 4

DI ILD
DRI KA

Fe g
Pili03
y ¥

i > Chair of Process
> O and Data Science
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Three new event logs are created

Not a base case, still two
activities as and am.

Base case (just
activity at)

Base case (just
activity ac)

© Wil van der Aalst (use only with permission & acknowledgements)
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Handling the base cases ...

p o 4
= at — T
x»
p ac
p o 4 XD xz»
p ot 4
=2 | ac T e XD
r— x»
p ac
b oo pat 4 p om 4
p o 4 xw x»
P DI p am
p ac > ac g “m p am
p ac > ac > ac J > p am 3
T - Rgp—
e XD E;__-fg‘_,
xD P as i;f “ _r_’é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) ﬁ > o and Data Science
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Continue with the red event log
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We find an exclusive-choice cut

There is an exclusive-choice cut when the
DFG can be split into disconnected parts after
leaving out the artificial start and end.

i mg Chair of Process
and Data Science
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We find an exclusive-choice cut

There is an exclusive-choice cut when the
DFG can be split into disconnected parts after
leaving out the artificial start and end.

Note that projection is now different

than for the sequence and parallel cuts. F ,E_E
© Wil van der Aalst (use only with permission & acknowledgements) m g::';;’::;z?:s:e
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The process tree returned by the
Inductive Mining algorithm




Can be visualized using Petri nets or BPMN

as

AV

am b .
P “ > Chair of Process
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add cheese
(ac)

start {

buy
ingredients

(bi)

H

create base
(cb)

© Wil van der Aalst (use only with permission & acknowledgements)

add tomato
(at)

bake in oven
(bo)

add salami

(as)

add
mushrooms
(am)

|

eat pizza
(ep)

}

Can be visualized using Petri nets or BPMN

clean kitchen
(ck)

J end

@V
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The detalils

Definition 23 (Sequence, Exclusive-Choice, Parallel, and Redo-Loop Cuts). Let L € W v
B(Uact™) be an event log having a DFG disc,,.(L) = (A, F) based on L (norte that
A = act(L)) with start activities AS"*"* = {a € A | (»,a) € F} and end activities .
Aend = Lg € A| (a,m) € F}. An n-ary S-cut of L is a partition of A into n > 2 Process Mining
.. L. . Handbook
pairwise disjoint subsets Ay, As, ... Ay (e, A = Uz‘e{l,... n} Ajand AinA; =0
fori # j)with & € {—.,x, A, O}. Such a &-cut is denoted (&, A1, Aa, ... Ay). For
each type of operator & € {—, x, A\, O} specific conditions apply:

— An exclusive-choice cut of L is a cut (x, Ay, Aa, ... Ay) such that
® Vijer1,..n}Vaca,Voea; i #j = (a,b) € F.
— A sequence cut of L is a cut (—, Ay, Aa. ... Ay) such that
® Vije(1..n}Vaca,Voea; i <j = ((a,b) € FT A (bja) ¢ FT).
(Note that F is the non-reflexive transitive closure of F, i.e., (a,b) € F*
means that there is a path from a to b in the DFG.)
— A parallel cut of L is a cut (A, Ay, As, ... Ay) such that
® Vicq1,..np AiN Astart L () A AN A" L () and
L Vijje{l?mn}‘v’aeAiVbeAJ 1 7£J = ((1., b) e F.

@ .
-

sV

— A redo-loop cut of L is a cur (O, Ay, Ao, ... Ay,) such that 1A
o Astart | pend — Ay --g(‘\ e
b vi,jE{Q,...n}vaEAiviAj i F ] = (a, b) ¢ F, /E@%}y‘
e {acAy|(a.b)eF ANbg A} =A"
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Four types of cuts

(a) exclusive-choice cut (b) sequence cut (c) parallel cut (d) redo-loop cut
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Another example
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15.36% of the lag
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Alpha algorithm (ProM)

order medicine

administer medicine checkup

- 1nitial examination lab tests final examination
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CT scan
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Inductive visual miner (ProM)
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Different visualizations in ProM
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Mapped onto an accepting Petri net
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Celonis also rep

orts 1856 cases, 197

variants, and 11761 events
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Celonis finds the same process tree
using the Inductive Mining algorithm




Also works well on large real-life event logs

(but you need to put in the work)

= | et E"['f@

b= ! “ _r_'é Chair of Process
© Wil van der Aalst (use only with permission & acknowledgements) T oot > o and Data Science



Summary: Inductive Mining

- The models are guaranteed to be sound, i.e., no
deadlocks, no livelocks, and no other anomalies.

- The basic algorithm guarantees that the event log can be
reproduce completely (of course one can filter if desired).

* The algorithm has good performance (and there are also
more scalable variants) and implemented in several tools.

* There are various additional theoretical guarantees, lI.e.,
rediscover the process tree used to create the event log.
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Foundations of Process Discovery

Baseline: Discovering DFG + filtering

Bottom-up Top-down
discovery discovery

Alpha Inductive
algorlthm mining




Discovery is just one of many techniques

information
systems
extract
4: Comparative
Process Mining
1: Process -
Discovery 3: Performance =
Analysis
explore select
filter show
. act
clean interpret
- drill dops . .
Wik 6: Action-Oriented

Process Mining
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WWWw.processmining.org
WWwWWw.process-mining-summer-school.org
www.tf-pm.org

www.promtools.org
www.celonis.com/academic-signup
xes-standard.org

ocel-standard.org
www.pads.rwth-aachen.de
www.vdaalst.com Pl D¥
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Online courses

« Coursera course
“Process Mining: Data
science in Action”

Register via coursera.org/learn/process-mining
(152.345 participants since 2015).

* Celonis/RWTH course
“Process Mining: From
Theory to Execution”

Register via www.celonis.com/wils-process-
mining-class.
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