
Foundations of
Process Discovery
WIL VAN DER AALST
PROCESS AND DATA SCIENCE @ RWTH AACHEN UNIVERSITY & CELONIS
www.vdaalst.com, @wvdaalst

Process Mining Summer School, Aachen, 4-8 July 2022 #pmschool22

© Wil van der Aalst (use only with permission & acknowledgements)

Recap: Six types of process mining
In this lecture, we focus on process discovery

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

transform

actshow
interpret

drill down

ML

6: Action-Oriented
Process Mining

5: Predictive Process
Mining

3: Performance
Analysis

2: Conformance
Checking

1: Process
Discovery

4: Comparative
Process Mining

© Wil van der Aalst (use only with permission & acknowledgements)

Outline: Foundations of Process Discovery

Baseline: Discovering DFG + filtering

Bottom-up
discovery

Top-down
discovery

Alpha
algorithm

Inductive
mining

At times, I refer to the
formal definitions in the
Chapter 2 to show that
with the right tools one can
be precise and compact.

© Wil van der Aalst (use only with permission & acknowledgements)

Main idea of
process discovery

© Wil van der Aalst (use only with permission & acknowledgements)

The main idea (informal)

a

c

d

b

e

a

d

c

b

e

a

d

e

cb

(a) Event log L1

(c) Accepting Petri Net (APN): M2

(b) Directly-Follows Graph (DFG): M1

(d) Process Tree (PT): M3

16 5 10 16

551010

1

16

1

1

15 1616

15

15

1 1616

15

16

16 1 1

15 15

15 15

1 1

15 15

1

15

16
16 16

16

16

16

16

© Wil van der Aalst (use only with permission & acknowledgements)

The main idea (formal)

© Wil van der Aalst (use only with permission & acknowledgements)

Example

a

d

e

cb

Event log L1

 Process Tree (PT): M3

15 15

1

15

16
16 16

16

Coincidence, model may
allow for more or less than
observed in the event log.

© Wil van der Aalst (use only with permission & acknowledgements)

How discover a process model?

• Base-line approach using Directly Follows Graphs (DFGs)
• Bottom-up discovery

− Alpha algorithm
• Top-down discovery

− Inductive Mining (IM) algorithm

© Wil van der Aalst (use only with permission & acknowledgements)

Baseline approach
using DFGs

© Wil van der Aalst (use only with permission & acknowledgements)

Baseline approach: DFGs

• Graph with nodes representing activities and start ► and end ■.
• Behavior starts with dummy activity ►and ends with dummy

activity ■. Node ► is a source node and ■ is a sink node.
• Arcs represent the directly-follows relation.
• Multisets to represent frequencies.
• Can be viewed as summary of the data!

a

d

c

b

e16 5 10 16

551010

11

1

15 1616

15

© Wil van der Aalst (use only with permission & acknowledgements)

Language of a DFG

• Possible traces: All paths possible according to the graph
starting in node ►and ending in node ■.

• Recall: ► is a source node and ■ is a sink node.

a

d

c

b

e16 5 10 16

551010

11

1

15 1616

15

© Wil van der Aalst (use only with permission & acknowledgements)

Baseline discovery
Your first discovery algorithm in just two lines of mathematics

a

d

c

b

e16 5 10 16

551010

11

1

15 1616

15

© Wil van der Aalst (use only with permission & acknowledgements)

DFG discovery in ProM
One of the views of the
Data-aware heuristic miner
plug-in (Felix Mannhardt)

© Wil van der Aalst (use only with permission & acknowledgements)

DFG discovery in ProM
Directly-follows visual
miner (Sander Leemans)

© Wil van der Aalst (use only with permission & acknowledgements)

DFG discovery in ProM
Animation of the event
log on top of the model

Waiting times

Note that this is a synthetic
data set, thus explaining
the long delays.

© Wil van der Aalst (use only with permission & acknowledgements)

DFG Discovery in Celonis
The result is
the same as
in ProM

animation times

Note that this is a
synthetic data set,
thus explaining the
long delays.

© Wil van der Aalst (use only with permission & acknowledgements)

What if we get Spaghetti instead of
Lasagna?

• Purchase to Pay
(P2P).

• 2654 cases
• 16226 events
• 685 variants
• 24 unique activities
Still relatively simple,
but …

© Wil van der Aalst (use only with permission & acknowledgements)

What if we get Spaghetti instead of
Lasagna?

Data-aware heuristic miner plug-in

© Wil van der Aalst (use only with permission & acknowledgements)

What if we get Spaghetti instead of
Lasagna?

Directly-follows visual miner

© Wil van der Aalst (use only with permission & acknowledgements)

What if we get Spaghetti instead of
Lasagna?

Celonis process explorer

© Wil van der Aalst (use only with permission & acknowledgements)

Filtering

© Wil van der Aalst (use only with permission & acknowledgements)

Filtering

• Activity-based filtering: Rank the activities (e.g.,
based on frequency) and remove lower-ranked
activities completely from your data.

• Variant-based filtering: Rank the variants (e.g., based
on frequency) and remove lower-ranked variants. A
variant is simply a sequence of activities and may
occur multiple times.

• Arc-based filtering (not recommended!): Delete arcs
in the DFG (e.g., based on frequency).

© Wil van der Aalst (use only with permission & acknowledgements)

Activity-based filtering (top 7 of 24 activities)

© Wil van der Aalst (use only with permission & acknowledgements)

Activity-based filtering (top 7 of 24 activities)

Minor differences because
events have the same
timestamp (date only)

© Wil van der Aalst (use only with permission & acknowledgements)

Variant-based filtering (most frequent variant only)

© Wil van der Aalst (use only with permission & acknowledgements)

Variant-based filtering (top 5 variants)

© Wil van der Aalst (use only with permission & acknowledgements)

Variant-based filtering (top 10 variants)

© Wil van der Aalst (use only with permission & acknowledgements)

Variant-based filtering (all 655 variants)

© Wil van der Aalst (use only with permission & acknowledgements)

Challenges

© Wil van der Aalst (use only with permission & acknowledgements)

Challenges

• If the model allows for a loop, we have infinitely
many possible traces. This can never be observed!

• The event log just shows examples, the fact that
something did not happen does not mean it cannot.

• We do not have negative traces, i.e., it is not a
classification problem.

• Hence, precision and recall cannot be defined in the
usual manner.

© Wil van der Aalst (use only with permission & acknowledgements)

Visualizing the challenges

Language of the model
(typically infinitely or
factorial many traces).

Real process
(only known in
lab experiments).

Event log (just
examples)

© Wil van der Aalst (use only with permission & acknowledgements)

What we would like to know,
but cannot know

Language of the model
(typically infinitely or
factorial many traces).

Real process
(only known in
lab experiments).

© Wil van der Aalst (use only with permission & acknowledgements)

Therefore, there are many
approximations (often using proxies)

• Replay fitness (using the fraction of fitting traces on
the event log, token-based, or alignment based).

• Precision (e.g., escaping edges).
• Simplicity (e.g., number of arcs).
• Generalization (e.g., likelihood that the next trace will

fit given some assumptions about the distribution).

Check out stochastic conformance checking!
Sander Leemans, Wil van der Aalst, Tobias Brockhoff, Artem Polyvyanyy: Stochastic
process mining: Earth movers' stochastic conformance. Inf. Syst. 102: 101724 (2021)

See later lectures!

© Wil van der Aalst (use only with permission & acknowledgements)

Bottom-up
discovery

© Wil van der Aalst (use only with permission & acknowledgements)

Bottom-up discovery

• Assume that anything is possible.
• Start adding constraints supported by the data.
• A Petri net place is a constraint.
• Accepting Petri-nets are surprisingly declarative.

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am
Place specifies that buy
ingredients (bi) should
happen precisely once.

An accepting Petri net has an initial and final marking (here the final marking is [], i.e., no tokens).

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am Place specifies that clean
kitchen (ck) should
happen precisely once.

An accepting Petri net has an initial and final marking (here the final marking has one token in sink place).

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

amPlace specifies that bi and cb
should happen the same number
of times. Moreover, at any stage
the number of occurrences of cb
should not exceed the number of
occurrences of bi.

• #bi = #cb at the end of each case
• #bi ≥ #cb at any point in time

A place defines a local constraint.

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am
• #ep = #ck at the end of each case
• #ep ≥ #ck at any point in time

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #bo= #ep at the end of each case
• #bo ≥ #ep at any point in time

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #cb = #as+#am at the end of each case
• #cb ≥ #as+#am at any point in time

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #as+#am = #bo at the end of each case
• #as+#am ≥ #bo any point in time

© Wil van der Aalst (use only with permission & acknowledgements)

Places as constraints

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

• #ac= #bo at the end of each case
• #ac ≥ #bo at any point in time

© Wil van der Aalst (use only with permission & acknowledgements)

Final accepting Petri net

Using short names: buy ingredients (bi), create base (cb), add cheese (ac), add tomato (at), add
salami (as), add mushrooms (am), bake in oven (bo), eat pizza (ep), and clean kitchen (ck).

bi cb

ac

at

as

bo ep ck

am

Also every intermediate model was an accepting Petri net!
Bottom-up process discover uses this locality principle!

© Wil van der Aalst (use only with permission & acknowledgements)

Accepting Petri
Nets

© Wil van der Aalst (use only with permission & acknowledgements)

Examples of accepting Petri nets

• Initial and final
marking.

• Labeled transitions to
refer to activities.

• Allows for transitions
with the same or no
label.

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1
a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(a) AN1 = (N1,[p1],[p6]) (b) AN2 = (N2,[p1],[p6])

b

c

a

d

p2 p3

p5

p1 p4

t2

t3

t1 t4
a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

(c) AN3 = (N3,[p1,p2],[p4,p5]) (d) AN4 = (N4,[p1],[p6])

© Wil van der Aalst (use only with permission & acknowledgements)

Example of an accepting Petri net and
its language (1/4)

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(a) AN1 = (N1,[p1],[p6])

© Wil van der Aalst (use only with permission & acknowledgements)

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

(b) AN2 = (N2,[p1],[p6])

Example of an accepting Petri net and
its language (2/4)

© Wil van der Aalst (use only with permission & acknowledgements)

Example of an accepting Petri net and
its language (3/4)

Initial and final markings
may refer to multiple
tokens and places.

b

c

a

d

p2 p3

p5

p1 p4

t2

t3

t1 t4

(c) AN3 = (N3,[p1,p2],[p4,p5])

© Wil van der Aalst (use only with permission & acknowledgements)

Example accepting Petri net and its
language (4/4)

a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

(d) AN4 = (N4,[p1],[p6])

Two transitions have
the same label and
two are silent.

© Wil van der Aalst (use only with permission & acknowledgements)

Accepting Petri nets & process mining

• A lot of powerful analysis techniques exist for
accepting Petri nets.

• For example, alignments are based on this.
• We can map the relevant subsets of BPMN, process

trees, etc. onto accepting Petri nets.
• No need to restrict to workflow nets or transition

with unique visible labels.
• Surprisingly declarative!!

© Wil van der Aalst (use only with permission & acknowledgements)

Alpha Algorithm

© Wil van der Aalst (use only with permission & acknowledgements)

Just eight lines of mathematics, based
on the DFG created before

The presentation is
different from the
original algorithm, but
in essence it is the
same.
• We add an artificial

start and end to
overcome the usual
problems.

• Also it builds on the
DFG and any tool
can produce this!

• We can filter before.

© Wil van der Aalst (use only with permission & acknowledgements)

Remember DFGs

• Graph with nodes representing activities and start ► and end ■.
• Behavior starts with dummy activity ►and ends with dummy

activity ■. Node ► is a source node and ■ is a sink node.

a

d

c

b

e16 5 10 16

551010

11

1

15 1616

15

Can be filtered using one of
the three approaches.

© Wil van der Aalst (use only with permission & acknowledgements)

Two relations based on the DFG

• 𝒂𝒂𝟏𝟏 →𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is connected to 𝒂𝒂𝟐𝟐 in the
DFG but not the other way around, i.e., a one-
directional arc.

• 𝒂𝒂𝟏𝟏#𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is not connected to 𝒂𝒂𝟐𝟐 and 𝒂𝒂𝟐𝟐
is not connected to 𝒂𝒂𝟏𝟏.

• Note that notation also applies to start ► and end ■.
• 𝑨𝑨 is the set of activities and 𝑨𝑨′ = 𝑨𝑨 ∪ {►,■} includes

the start and end node.
• 𝑨𝑨′ = 𝑨𝑨 ∪ {►,■}, →𝑳𝑳 and #𝑳𝑳 are all we use!

© Wil van der Aalst (use only with permission & acknowledgements)

Step 1: Create candidate places

𝒂𝒂𝟏𝟏 →𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is connected to 𝒂𝒂𝟐𝟐 in the DFG
but not the other way around, i.e., a one-directional arc.
𝒂𝒂𝟏𝟏#𝑳𝑳 𝒂𝒂𝟐𝟐 means that 𝒂𝒂𝟏𝟏 is not connected to 𝒂𝒂𝟐𝟐 and 𝒂𝒂𝟐𝟐 is
not connected to 𝒂𝒂𝟏𝟏.
𝑨𝑨 is the set of activities and 𝑨𝑨′ = 𝑨𝑨 ∪ {►,■} includes the
start and end node.

© Wil van der Aalst (use only with permission & acknowledgements)

Step 1: Create candidate places

a

b

c

d

e
#

𝐴𝐴1 𝐴𝐴2

© Wil van der Aalst (use only with permission & acknowledgements)

Step 1: Create candidate places

a

b

c

d

e
#

𝐴𝐴1 𝐴𝐴2

a

b

c

d

e

𝐴𝐴1 𝐴𝐴2

Represents a place!

© Wil van der Aalst (use only with permission & acknowledgements)

Many overlapping places

a

b

c

d

e
#

a

b

c

d

#
#

a

b
d

e

#
#

© Wil van der Aalst (use only with permission & acknowledgements)

Many overlapping places

a

b

c

d

e
#

If 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 is a candidate then also
𝑎𝑎, 𝑏𝑏 , 𝑑𝑑, 𝑒𝑒 , 𝑎𝑎, 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 , 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 ,
𝑎𝑎, 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑 , 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 , 𝑒𝑒 , 𝑎𝑎 , 𝑑𝑑, 𝑒𝑒 ,
𝑏𝑏 , 𝑑𝑑, 𝑒𝑒 , 𝑐𝑐 , 𝑑𝑑, 𝑒𝑒 , 𝑎𝑎, 𝑏𝑏 , 𝑑𝑑 ,
𝑎𝑎, 𝑐𝑐 , 𝑑𝑑 , 𝑏𝑏, 𝑐𝑐 , 𝑑𝑑 , 𝑎𝑎, 𝑏𝑏 , 𝑒𝑒 ,
𝑎𝑎, 𝑐𝑐 , 𝑒𝑒 , 𝑏𝑏, 𝑐𝑐 , 𝑒𝑒 , 𝑎𝑎 , 𝑑𝑑 ,
𝑎𝑎 , 𝑒𝑒 , 𝑏𝑏 , 𝑑𝑑 , 𝑏𝑏 , 𝑒𝑒 , 𝑐𝑐 , 𝑑𝑑 ,

and 𝑐𝑐 , 𝑒𝑒 !Defines 20 smaller candidates!

© Wil van der Aalst (use only with permission & acknowledgements)

Step 2: Only use the maximal candidates

a

b

c

d

e
#

It should be impossible to add an activity to 𝐴𝐴1 or 𝐴𝐴2

© Wil van der Aalst (use only with permission & acknowledgements)

The rest is just bookkeeping

Add places, transitions, arcs, and initial and final marking.

© Wil van der Aalst (use only with permission & acknowledgements)

Example

a

d

c

b

e16 5 10 16

551010

11

1

15 1616

15

𝐶𝐶𝐶𝐶𝐶𝐶 = {({►},{a}),({a},{b}),({a},{c}),({a},{d}),({a},{b,d}),({a},{c,d}),
({b},{e}),({c},{e}),({d},{e}),({b,d},{e}),({c,d},{e}),({e},{■})}

𝑆𝑆𝑆𝑆𝑆𝑆 = {({►},{a}),({a},{b,d}),({a},{c,d}),({b,d},{e}),({c,d},{e}),({e},{■})}

© Wil van der Aalst (use only with permission & acknowledgements)

Example

𝑆𝑆𝑆𝑆𝑆𝑆 = {({►},{a}),({a},{b,d}),({a},{c,d}),({b,d},{e}),({c,d},{e}),({e},{■})}

a

c

d

b

e

p({a},{b,d})

p({a},{c,d})

tat tp pp({ },{a}) p({e},{ })

p({c,d},{e})

p({b,d},{e})

tb

td
te

© Wil van der Aalst (use only with permission & acknowledgements)

Remove place and transition
names to improve readability

a

c

d

b

e

© Wil van der Aalst (use only with permission & acknowledgements)

a

c

d

b

e

Example

Can be left out if start
activities do not
occur in the middle.

Can be left out if end
activities do not
occur in the middle.

Different from original paper to allow for a larger
class of models to be discovered correctly.

© Wil van der Aalst (use only with permission & acknowledgements)

a

c

d

b

e

Example

© Wil van der Aalst (use only with permission & acknowledgements)

Another example

a

c

d

b

e

© Wil van der Aalst (use only with permission & acknowledgements)

Another example

b

a

Illustrates
why it makes
sense to add
an artificial
start and end.

© Wil van der Aalst (use only with permission & acknowledgements)

Properties of the Alpha algorithm
• Scalable (only needs the DFG)
• Guarantees for a subclass of free-choice nets.
• Cannot handle:

− Short loops (loops of length 1 or 2)
− Skipping (i.e., silent transitions).

• Although not practical in real-life scenarios, it nicely
illustrates the essence of process discovery.

• See “Workflow Mining: Discovering Process Models from
Event Logs. IEEE Trans. Knowl. Data Eng. 16(9): 1128-1142
(2004)” for guarantees and limitations.

© Wil van der Aalst (use only with permission & acknowledgements)

Example showing limitations

b

a

c

© Wil van der Aalst (use only with permission & acknowledgements)

Example in ProM
1856 cases, 11761 events, 197 variants

© Wil van der Aalst (use only with permission & acknowledgements)

Top-down
discovery

© Wil van der Aalst (use only with permission & acknowledgements)

Top-down discovery

• Divide and conquer.
• Split the problem recursively into smaller problems

such that things get trivial.
• An example is the Inductive Mining (IM) technique:

− Uses process trees.
− The leading approach
− Implemented in ProM, Celonis, and many other tools.

© Wil van der Aalst (use only with permission & acknowledgements)

Process Trees

© Wil van der Aalst (use only with permission & acknowledgements)

A process tree

a

d

e

cb Four types of operators: → (sequential
composition), × (exclusive choice), ∧
(parallel composition), and ⟲ (redo loop).

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

Semantics

© Wil van der Aalst (use only with permission & acknowledgements)

Another process tree

a

d

e

cb

a

c

d

b

e
p1

p3 p5

p6

p2 p4

t3

t4

t2

t5t1

Semantics

© Wil van der Aalst (use only with permission & acknowledgements)

Another process tree

a

τ

ab

a

a

b

p1

p3 p5

p6

p2 p4

t3

t4

t2

t5
t1

Semantics

© Wil van der Aalst (use only with permission & acknowledgements)

Inductive Mining

© Wil van der Aalst (use only with permission & acknowledgements)

Inductive Mining (IM)

• Decompose the event log into smaller events logs
until the problem get trivial.

• Four types of cuts corresponding to the operators:
→ (sequential composition), × (exclusive choice), ∧
(parallel composition), and ⟲ (redo loop).

• In each step the activities are partitioned into
subsets until they are singletons.

• Developed by Sander Leemans in the context of his
PhD thesis (NWO project “Don't Search for the Undesirable! Avoiding “Blind Alleys” in Process Mining” 2012-2017)

© Wil van der Aalst (use only with permission & acknowledgements)

Event log
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck

Activities: buy ingredients
(bi), create base (cb), add
cheese (ac), add tomato
(at), add salami (as), add
mushrooms (am), bake in
oven (bo), eat pizza (ep),
and clean kitchen (ck).

© Wil van der Aalst (use only with permission & acknowledgements)

Create a DFG for the whole event log
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck

bi atcb

ac

as

bo ep ck

am

Frequencies omitted for readability

© Wil van der Aalst (use only with permission & acknowledgements)

Apply a sequence cut

bi atcb

ac

as

bo ep ck

am

There is a sequence cut when the DFG can be split into sequential
parts where only “forward connections” are possible. Note that we
need to use the non-reflexive transitive closure of F.

© Wil van der Aalst (use only with permission & acknowledgements)

Sequence cut partitions activities in
six subsets

bi atcb

ac

as

bo ep ck

am

© Wil van der Aalst (use only with permission & acknowledgements)

Color the events based on the partitioning
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck

© Wil van der Aalst (use only with permission & acknowledgements)

Split the event log based on the partitioning
bi cb ac at as bo ep ck
bi cb ac as at bo ep ck
bi cb at ac as bo ep ck
bi cb at as ac bo ck
bi cb as ac at bo ep ck
bi cb as at ac bo ep ck
bi cb ac at am bo ep ck
bi cb ac am at bo ep ck
bi cb at ac am bo ck
bi cb at am ac bo ep ck
bi cb am ac at bo ep ck
bi cb am at ac bo ep ck
bi cb at as ac ac bo ep ck
bi cb as ac ac at ac bo ck
bi cb as at ac ac bo ep ck

© Wil van der Aalst (use only with permission & acknowledgements)

Five of the projected event logs refer to a
single activity (base case)

bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ep ck
bi cb bo ck
bi cb bo ep ck

© Wil van der Aalst (use only with permission & acknowledgements)

The blue group has four activities
ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac

© Wil van der Aalst (use only with permission & acknowledgements)

Recursion: Apply algorithm to all sublogs

Five of the projected event logs refer
to a single activity (base case).

© Wil van der Aalst (use only with permission & acknowledgements)

Handling the base cases (ep can be skipped)

cb bobi

ep

ck

τ

© Wil van der Aalst (use only with permission & acknowledgements)

Only the blue event log remains

cb bobi

ep

ck

τ

© Wil van der Aalst (use only with permission & acknowledgements)

Continue with the blue event log
ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac

at

ac

as

am

There is a parallel cut when the
DFG can be split into
concurrent parts where any
activity in one part can be
followed by any activity in
another part.

Activities as and am
are not connected,
i.e., not concurrent

© Wil van der Aalst (use only with permission & acknowledgements)

Apply a parallel cut resulting in three
activity groups

ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac

at

ac

as

am

There is a parallel cut when the DFG can be
split into concurrent parts where any activity
in one part can be followed by any activity in
another part.

© Wil van der Aalst (use only with permission & acknowledgements)

Apply a parallel cut resulting in three
activity groups

ac at as
ac as at
at ac as
at as ac
as ac at
as at ac
ac at am
ac am at
at ac am
at am ac
am ac at
am at ac
at as ac ac
as ac ac at ac
as at ac ac

at

ac

as

am

© Wil van der Aalst (use only with permission & acknowledgements)

Three new event logs are created
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac
ac ac
ac ac ac
ac ac

at

as
as
as
as
as
as
am
am
am
am
am
am
as
as
as

at

at
at

at
at

at
at

at
at

at
at

at
at

at

Base case (just
activity ac)

Base case (just
activity at)

Not a base case, still two
activities as and am.

© Wil van der Aalst (use only with permission & acknowledgements)

Handling the base cases (ac can be repeated)

cb bobi

ep

ck

ac

at

τ

τ

© Wil van der Aalst (use only with permission & acknowledgements)

Only the red event log remains

cb bobi

ep

ck

ac

at

τ

τ

© Wil van der Aalst (use only with permission & acknowledgements)

Continue with the red event log
as
as
as
as
as
as
am
am
am
am
am
am
as
as
as

as

am

© Wil van der Aalst (use only with permission & acknowledgements)

We find an exclusive-choice cut
There is an exclusive-choice cut when the
DFG can be split into disconnected parts after
leaving out the artificial start and end.

as

am

as
as
as
as
as
as
am
am
am
am
am
am
as
as
as

© Wil van der Aalst (use only with permission & acknowledgements)

We find an exclusive-choice cut
There is an exclusive-choice cut when the
DFG can be split into disconnected parts after
leaving out the artificial start and end.

as

am

as
as
as
as
as
as

am
am
am
am
am
am

as
as
as

Note that projection is now different
than for the sequence and parallel cuts.

© Wil van der Aalst (use only with permission & acknowledgements)

We end up with two base cases

as
as
as
as
as
as

am
am
am
am
am
am

as
as
as

cb bobi

ep

ck

ac

at

asτ am

τ

© Wil van der Aalst (use only with permission & acknowledgements)

The process tree returned by the
Inductive Mining algorithm

cb bobi

ep

ck

ac

at

asτ am

τ

© Wil van der Aalst (use only with permission & acknowledgements)

Can be visualized using Petri nets or BPMN

cb bobi

ep

ck

ac

at

asτ am

τ

bi cb

ac

at

as

bo ep ck

am

© Wil van der Aalst (use only with permission & acknowledgements)

Can be visualized using Petri nets or BPMN

cb bobi

ep

ck

ac

at

asτ am

τ

buy
ingredients

(bi)start

create base
(cb)

add tomato
(at)

bake in oven
(bo)

eat pizza
(ep)

add salami
(as)

clean kitchen
(ck)

end

add cheese
(ac)

add
mushrooms

(am)

© Wil van der Aalst (use only with permission & acknowledgements)

The details

© Wil van der Aalst (use only with permission & acknowledgements)

Four types of cuts

© Wil van der Aalst (use only with permission & acknowledgements)

Another example

• 1856 cases, 197 variants
• 11761 events
• 8 unique activities

Just 11 of 197 variants

© Wil van der Aalst (use only with permission & acknowledgements)

Alpha algorithm (ProM)

© Wil van der Aalst (use only with permission & acknowledgements)

Inductive visual miner (ProM)

© Wil van der Aalst (use only with permission & acknowledgements)

Different visualizations in ProM

© Wil van der Aalst (use only with permission & acknowledgements)

Mapped onto an accepting Petri net

© Wil van der Aalst (use only with permission & acknowledgements)

Celonis also reports 1856 cases, 197
variants, and 11761 events

© Wil van der Aalst (use only with permission & acknowledgements)

Celonis finds the same process tree
using the Inductive Mining algorithm

© Wil van der Aalst (use only with permission & acknowledgements)

Also works well on large real-life event logs
(but you need to put in the work)

© Wil van der Aalst (use only with permission & acknowledgements)

Summary: Inductive Mining

• The models are guaranteed to be sound, i.e., no
deadlocks, no livelocks, and no other anomalies.

• The basic algorithm guarantees that the event log can be
reproduce completely (of course one can filter if desired).

• The algorithm has good performance (and there are also
more scalable variants) and implemented in several tools.

• There are various additional theoretical guarantees, i.e.,
rediscover the process tree used to create the event log.

© Wil van der Aalst (use only with permission & acknowledgements)

Conclusion

© Wil van der Aalst (use only with permission & acknowledgements)

Foundations of Process Discovery

Baseline: Discovering DFG + filtering

Bottom-up
discovery

Top-down
discovery

Alpha
algorithm

Inductive
mining

2 lines of mathematics

8 lines of mathematics approximately 20 lines of mathematics

Not a solved problem!

© Wil van der Aalst (use only with permission & acknowledgements)

Discovery is just one of many techniques

discover

align
replay
enrich

apply
compare

information
systems

extract

process
models

explore select
filter
clean

conformance
performance
diagnostics

transform

actshow
interpret

drill down

ML

6: Action-Oriented
Process Mining

5: Predictive Process
Mining

3: Performance
Analysis

2: Conformance
Checking

1: Process
Discovery

4: Comparative
Process Mining

© Wil van der Aalst (use only with permission & acknowledgements)

Websites
• www.processmining.org
• www.process-mining-summer-school.org
• www.tf-pm.org
• www.promtools.org
• www.celonis.com/academic-signup
• xes-standard.org
• ocel-standard.org
• www.pads.rwth-aachen.de
• www.vdaalst.com

© Wil van der Aalst (use only with permission & acknowledgements)

Online courses

• Coursera course
“Process Mining: Data
science in Action”
Register via coursera.org/learn/process-mining
(152.345 participants since 2015).

• Celonis/RWTH course
“Process Mining: From
Theory to Execution”
Register via www.celonis.com/wils-process-
mining-class.

(edX is coming)

© Wil van der Aalst (use only with permission & acknowledgements)

Books (not intended to be complete)

	Foundations of Process Discovery
	Recap: Six types of process mining�In this lecture, we focus on process discovery
	Outline: Foundations of Process Discovery
	Main idea of process discovery
	The main idea (informal)
	The main idea (formal)
	Example
	How discover a process model?
	Baseline approach using DFGs
	Baseline approach: DFGs
	Language of a DFG
	Baseline discovery�Your first discovery algorithm in just two lines of mathematics
	DFG discovery in ProM
	DFG discovery in ProM
	DFG discovery in ProM
	DFG Discovery in Celonis
	What if we get Spaghetti instead of Lasagna?
	What if we get Spaghetti instead of Lasagna?
	What if we get Spaghetti instead of Lasagna?
	What if we get Spaghetti instead of Lasagna?
	Filtering
	Filtering
	Activity-based filtering (top 7 of 24 activities)
	Activity-based filtering (top 7 of 24 activities)
	Variant-based filtering (most frequent variant only)
	Variant-based filtering (top 5 variants)
	Variant-based filtering (top 10 variants)
	Variant-based filtering (all 655 variants)
	Challenges
	Challenges
	Visualizing the challenges
	What we would like to know, �but cannot know
	Therefore, there are many approximations (often using proxies)
	Bottom-up discovery
	Bottom-up discovery
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Places as constraints
	Final accepting Petri net
	Accepting Petri Nets
	Examples of accepting Petri nets
	Example of an accepting Petri net and its language (1/4)
	Slide Number 48
	Example of an accepting Petri net and its language (3/4)
	Example accepting Petri net and its language (4/4)
	Accepting Petri nets & process mining
	Alpha Algorithm
	Just eight lines of mathematics, based on the DFG created before
	Remember DFGs
	Two relations based on the DFG
	Step 1: Create candidate places
	Step 1: Create candidate places
	Step 1: Create candidate places
	Many overlapping places
	Many overlapping places
	Step 2: Only use the maximal candidates
	The rest is just bookkeeping
	Example
	Example
	Remove place and transition names to improve readability
	Example
	Example
	Another example
	Another example
	Properties of the Alpha algorithm
	Example showing limitations
	Example in ProM�1856 cases, 11761 events, 197 variants
	Top-down discovery
	Top-down discovery
	Process Trees
	A process tree
	Another process tree
	Another process tree
	Inductive Mining
	Inductive Mining (IM)
	Event log
	Create a DFG for the whole event log
	Apply a sequence cut
	Sequence cut partitions activities in six subsets
	Color the events based on the partitioning
	Split the event log based on the partitioning
	Five of the projected event logs refer to a single activity (base case)
	The blue group has four activities
	Recursion: Apply algorithm to all sublogs
	Handling the base cases (ep can be skipped)
	Only the blue event log remains
	Continue with the blue event log
	Apply a parallel cut resulting in three activity groups
	Apply a parallel cut resulting in three activity groups
	Three new event logs are created
	Handling the base cases (ac can be repeated)
	Only the red event log remains
	Continue with the red event log
	We find an exclusive-choice cut
	We find an exclusive-choice cut
	We end up with two base cases
	The process tree returned by the Inductive Mining algorithm
	Can be visualized using Petri nets or BPMN
	Can be visualized using Petri nets or BPMN
	The details
	Four types of cuts
	Another example
	Alpha algorithm (ProM)
	Inductive visual miner (ProM)
	Different visualizations in ProM
	Mapped onto an accepting Petri net
	Celonis also reports 1856 cases, 197 variants, and 11761 events
	Celonis finds the same process tree using the Inductive Mining algorithm
	Also works well on large real-life event logs�(but you need to put in the work)
	Summary: Inductive Mining
	Conclusion
	Foundations of Process Discovery
	Discovery is just one of many techniques
	Websites
	Online courses
	Books (not intended to be complete)

